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Field gradients have been calculated at 12 values of the internuclear distance from 34-, 66-, and
87-term molecular wave functions expanded in prolate-spheroidal coordinates and r». Convergence of
the gradients as the basis enlarges is indicated and the dissociation energy of H, is in agreement with
experiment, Using vibrationally averaged gradients, experimental values for the quadrupole-interaction
constant, and estimating the error in the field gradients arising from truncation of the basis, the electric
quadrupole moment of the deuteron is found to be 0.2875+0.002&(10 cm', which is 2% larger thari
the most recent values. This disagreement as well as that among earlier authors is explained. First-order
perturbation-theoretic results for the magnetic spin-spin interaction constant for H, (J =1), HD(J =1),
D,(J =1), and D,(J=2) are in agreement with experiment and, except for H„well inside experimental
error.

I. INTRODUCTION

Although it is evidently an easy matter to calcu-
late the electric field gradient q in the hydrogen
molecule to an accuracy of 10%, ' results probably
accurate to better than 1% have remained elusive
for some time. 7 Part of the problem lies in the
sensitivity of the field gradient to errors in the
molecular wave function, part in actually calculat-
ing the field gradient given the wave function, and
the remainder in averaging over vibrational motion
of the molecule.

On the other hand, while q itself is not presently
measurable, Ramsey and co-workers ' have de-
termined the electric-quadrupole-interaction con-
stant eqQ/h, where Q is the magnitude of the elec-
tric quadrupole moment of the deuteron, for the
J= 1 state in the HD molecule and the J= 1 and 2
states of Dz. Using the molecular-beam magnetic-
resonance method, with considerable associated
experimental refinements, Code and Ramsey im-
proved the accuracy of the quadrupole-interaction
constant for the Dz J=1 state to the point where it
mas possible for them to show that the results of
the most recent field-gradient calculation, that of
Narumi and Watanabe, were not consistent with
their D2 J=1 and the best earlier HD J=1' inter-
action constants. Assuming the experimental re-
sults to be correct, this implied either that non-
adiabatic effects mere being observed or that ap-
proximations made in the field-gradient calculation
were much poorer than believed by Narumi and
Watanabe. We return to this point in Sec. IV.

Signell and Parker' have noted that quadrupole
moments corresponding to previous field-gradient
calculations ~ are in serious disagreement. As
discussed in Sec. IV, we believe that the chief
source of the disagreement is the earlier error
assignments.

In this paper we report new results for the field
gradient and the direct magnetic spin-spin inter-
action constants. Parts of this work mere briefly
reported earlier. We use molecular wave func-
tions expanded in a basis some eight times larger
than in previous work. The concomitant difficul-
ties in calculating the field gradient introduced by
the larger basis were handled by a numerical
method incorporating exact, analytic treatment of
the singularity occurring in matrix elements of the
field-gradient operator. The average over nuclear
motion was performed using vibrational wave func-
tions obtained from the adiabatic potential of Kolos
and Wolniewicz. '~'

Following a brief statement of the formalism in
Sec. II we describe the calculations in Sec. DI,
give results and discuss errors in Sec. IV, and
conclude in Sec. V.

II. BACKGROUND THEORY

Working within the framework of the adiabatic
approximation' we decompose the molecular Ham-
iltonian H into

H=H +H

where H is H when the nuclei are fixed. The com-
plete wave function 0 is approximated by

4'= g(x„x~, R) y(R),

mhere x& and xz are the electronic coordinates and
R is the relative coordinate for the nuclei. The
electronic mave function is then determined by

[H —E (R)] (= 0

and the wave function X, mhich describes molecular
vibration and rotation, satisfies

[(-1/2p, ) v~'+ V(R) —Z] X(R) = 0, (4)

mhere p is the reduced nuclear mass in a.u. and
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U(R)=Z'(R)+e' (R), (5)

with

Iform(R) = 0 III'I0 & . (6)

By means of Boo the coupling between electronic and
nuclear motion is included to first order.

The electric field gradient along the molecular
axis evaluated at one of the nuclei isa, ao

q = 2e(q' (R)&~,

with the average being taken over the molecular
zero-point vibration in the Jth molecular rotational
state using the appropriate X from Eq. (4) and

q'(R) =R —f d x, d xag (x„x2& R) V"(x„x2),
(8)

where

V (Xl X2) +3(el) xi ++2(ea) x2

dissociation energy. We kept all 81 terms, re-
gardless of the degree to which they improved the
energy, in order to avoid omitting components of
the wave function to which the field-gradient oper-
ator was more sensitive than the Hamiltonian.

Complete calculations were also carried out with
66- and 34-term bases. The 60 terms added to the
original six, for the larger one, were obtained by
allowing at most two of the five exponents to be as
large as 2. The 28 terms added for the smaller
basis were defined by restricting p. to 0, 1 and al-
lowing at most one of the remaining four exponents
to be as large as 2.

The expansion coefficients in Eq. (11) and o.

were, for each R, determined by minimizing the
Rayleigh quotient (tfi~H ~(&/(pig&. A few remarks
regarding the necessary overlap integrals and ma-
trix elements of the Hamiltonian are contained in
Appendix A.

x; is the distance of the ith electron from the nu-
cleus under consideration, and 8; is the angle be-
tween x, and the molecular axis. Using the elec-
tron number density n(x, 8), q' can be written iD the
transparent classical form

q'(R) =R ' f-'d -xn( xe) P, (8)x-'.

B. Field Gradient

Inserting Eq. (11) into Eq. (8) yields

q'(R) =R '-2 c,c, &iI
V"

I~ &,
2

with

(13)

The conditionally convergent integrals appearing in
Eqs. (8) and (10) are defined ' ' as the limit
E-0 of the integral evaluated with a sphere, cen-
tered upon the nucleus and of radius &, excluded.

III. CALCULATIONS

A. Electronic Vfave Function

Using the interelectronic distance x&z in the form
p= 2rqa/R and the natural, prolate-spheroidal co-
ordinates of each electron, g = (r, +r~)/R and q
= (r, —r,)/R, where r, and rs are distances from
nuclei a and b, we write g in the form

(11)
m/2 S22

x e,(x„x,R) V "(X„X) 4,-(x„x,R); (14)

we have condensed the labels on the basis functions
defined by Eq. (12). Turning now to prolate-spher-
oidal coordinates with

IV($, n)= (5 n)(h+n) —'[3(in+I)' —(h+n)'], (16)

which includes the field-gradient operator and part
of the volume element, and with the excluded sphere
of radius —,'eR, we write

(iI V" Ij&=R [—,'g A,. (o'.)+—,'g B,,(o)], (16)

((7N 7~/ $
s' ~s + ]t' ~s (st ~pl) pal e (I (4)+ 4g ) (12)

1+6
4;~(a) = lim 2 f d$, f d71, W($ „g,)

For our basis we first chose the six terms
(m, p, r, s, p)=(0, 0, 3, 0, 0), (0, 0, 0, 4, 0), (0, 1, 1,
3, 0), (1, 0, 4, 0, 0), (1, 0, 0, 4, 0), and (3, 0, 0, 2, 0)
which, from the work of Kolos and Wolniewicz, '
appeared to play a significant role in giving rea-
sonable values of Eo in the equilibrium region.
For the largest basis used we added the 81 terms
generated by allowing (m, p, r, s, p, ) to assume all
combinations of the values 0, 1, 2 subject to the
symmetry requirements of the 'Z' state, i.e. , to
p+s being even. This choice was partly motivated
by the work of Newell, who found that some terms
with small exponents produced considerably great-
er improvement in the electronic density near the
nucleus, and thus in the field gradient, than in the

XF ~($(~7i)~ G) as E 0 q

B,.&(o.) = lim f dg& f dg& W($q, g&)

and

xE )(4, 'Itg, tx) as t 0, (18)

f d0'i f 42 C'~c's

A. .
&

reduces to '

4;~( o)=(-I)'*"~ 'e' ' f d( f, dq(& —g)

&;;(hi, ni, o')=(2~) 'f did f dna($2 n2)-
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x($+q) "'"&"e 'X,,(&, q), (20)

where, with the notation [m, p] = $"q~,

X„(],q) = [m,.+m„p;+p, ]+[m, +~„p,+s,]

+[x;+mz, s;+pi) +[r;+x&, s,. +s,] . (21)

Consequently A,.; can be done analytically.
When p;+ p,. is even, B;,- can also be evaluated

in terms of simple integrals. ' ' However, the

B;& with p;+ p& odd are quite another matter. By
themselves, they constitute the major obstacle to
using the basis of Eq. (12). The relatively few re-
quired by Narumi and Watanabe~ for the James-
Coolidge 11-term wave function involving only one
value of the nonlinear parameter were successfully
evaluated ' essentially analytically. However,
the complexity is sufficient to blur the distinction
between an analytical and a numerical approach.
We used a combination briefly described in Appen-
dix B.

The A,-; and B;,. were calculated for the set a
= 0. 8(0.1)1.4, which spans the range of n needed.
For a given R, the n minimizing the Rayleigh quo-
tient, n, was first determined to within + 5 x10
If n was one of the values in our set, then elec-
tronic wave functions were generated and q' cal-
culated using Eqs. (13) and (18). If the deviation of
of n from one of those in our set did not exceed
0.025, then q' was calculated for the three nearest
values in our set and quadratic interpolation, on q'
as function of n, was employed. For greater de-
viations in a it is more accurate to interpolate on
q' as a function of R, as described in the next sub-
section.

C. Vibrational Average

Restricting our attention to the lowest vibrational
state, we make the partial-wave decomposition

For the HD molecule, f, is shown in Fig. 1. This
is the case with the greatest spread in f~(R), rele-
vant to the field gradient.

In order to calculate the integral of Eq. (25),
q'(R) -R ' was interpolated by means of a cubic
spline fit to the smoother function R q'(R) —l.

IV. RESULTS

A. Field Gradient

Values of q'(R) calculated with the 87-term basis
at 12 points along with a few interpolated values
are given in Table I and shown in Fig. 1. Purely
numerical errors in our values of q'(R) are pri-
marily systematic. They are believed to be less
than 3 0&10 and independent of R to less than
1&10 . Difficulties in calculating the field gra-
dient for a given wave function are exacerbated by
the fact that, from Eq. (10), only the Pz(8) com-
ponent of the electronic charge density contributes.

The strong rise in q'(R) as the internuclear dis-
tance decreases from its equilibrium value R,
-=1.4 a. u. is largely due to the increasing failure
of the electrons to screen the contribution, R in
Eq. (8), to the field gradient from the other nu-

cleus.
The 34- and 66-term wave functions yield sim-

ilar field gradients, with the 34-term gradients
being always somewhat smaller and the 66-term
always slightly larger than the 87-term gradients
in Table l. The R dependence of q'(R) with the 34-
term basis is nearly the same as, and with the 66-
term virtually identical to, that of the 87-term
basis.

The differences in Table I among values of q'(R)
for given R arise from the different electronic wave
functions used by the corresponding authors.

To average over nuclear motion, q'(R) was
smoothly extrapolated outside the range of R in

Rq(II) =Z f, (R)P, (e),
J

after which Eq. (4) becomes

(22)
2.8-

2.4-

—
I.4

-1.2

-g —2p, U(R)+ 2
—E~ I fJ(R)=0 . (23)

Z(v+1)
2pR' J) 2.0- —

I.O

(24)

(25)

We suppress the vibrational quantum number v;
we deal only with ground vibrational states for
which' =0.

The adiabatic potential U(R) used was that of
Kolos a,nd Wolniewicz. '7' '2~ For E~(R) their
earlier Born-Oppenheimer energies were used
outside the range of their 100-term values. '

.After numerically integrating Eq. (23) and nor-
malizing, we obtain

f dR [f,(R)]'=1,
(q'(R)) = f dR [f (R)]'q'(R) .

l2-

-0.8~
O

-0.6 c

-04

-02

0.0
0.8 I.O 1,2 I.4 l.6 I.B 2.0 2.2

R(a.u.)

FIG. 1. Squared, zero-point vibrational eigenfunction
for HD(J=1} and the electric field gradient. Note that
the scale on the right applies to q'.
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TABLE I. Comparison of field gradients calculated at
various R.

R (a.u. ) This work
q'(R) (a.u. ) Narumi-

Nprdsieck" Ishiglir p Newell Watanabe

0.9693
1.00
1.10
1.15
1.20
1.25
1.30
1.40
1.45
1.50
1.60
1.65
1.70
1.80
1.90
2.00
2.055

0.78349
O. 69626'
0.48010
0.40092
O. 33589'
0.28203
0.23712
0.16815
0.14157
0.11902
0.08371f
0.06982
0.05787
0.03893
0.02475
O. O142O'

0.00962

0.2462
0.1755

0.1257

0.34936 0.33842

0.24063 0.24906 0.23995
0.16942 0.17816 0.17181

0.11971 0.12769 0.12425

'87-term electronic wave
function.

'Reference 2.
'Reference 3.

Reference 4.
Reference 7.
Obtained by interpolating

on R.

Table I. Since, from Fig. 1, this is the region of
the extreme tails of f~(R), our values of (q'(R))~
given in Table II are independent of any reasonable
extrapolation. Our values of (q'(R))~ are also es-
sentially independent of interpolation errors; the
maximum change in (q'(R))~ brought about by de-
leting any one of the 12 calculated values of q'(R)
in Table I was 3x10

As can be seen in Fig. 1, q'(R) weights R &R,
—= 1.4 a. u. more heavily than A &R„and the form
of the vibrational wave function, owing to anhar-
monicity, does the opposite. The anharmonicity
is the larger effect and (q'(R)) z is reduced by
about 1% from the equilibrium value; compare
q'(1. 4) in Table I with the (q'(R)) ~ values in Table
II.

The physical constants we used are those of
Taylor, Parker, and Langenberg. In particular

in Eq. (23) we used 2 p = 1836.109, 2447. 'l4, and

3670 4 a u for H& HD and D& respectively
If, in the vibrational averaging the nuclear cor-

rection Hoo(R) is omitted and only the Born-Op-
penheimer potential is used, then (q (R))& for the
8V-term case is 0. 16636, 0. 16671, and 0. 16548
a.u. for HD(J=1), Dz(8=1), and D2(J=2), respec-
tively.

B. Quadrupole Moment

Values of the electric quadrupole moment of the
deuteron, Q, given in Table III were obtained from
Eq. (I) and the corresponding field gradients in
Table II using the experimental quadrupole-inter-
action constants eqQ/h of 224. 540(60), '3

225. 044(24), ' and 223. 380(180)' kHz for HD(J= 1),
D2 (/=1), and D2 (8 =2), respectively.

In Table III one sees at once that as the basis
enlarges, Q evidently converges. There is also
good agreement among values of Q obtained from
different isotopic forms of the hydrogen molecule.
Moreover, if the dissociation energies in Table II
are used as a rough indication of the accuracy of
the corresponding electronic wave functions and

the error estimates in Table III are ignored, then
the earlier results obtained with less accurate wave
functions are not in disagreement with ours. This
will be further discussed in Sec. IVD.

Neglecting Hoo(R) and using only the Born-Gp-
penheimer potential for vibrational averaging yields
Q = 0.28'l3 x 10 6 cm, which can be compared with
the value of 0.2875 x10 "cm' in Table III.

C. Magnetic Spin-Spin Interaction

Contained within (q'(R))z is (R ~)~. Our values
for the latter quantity in another form are given in
Table IV Code and .Ramsey'4 calculated ((R/R, ) )
using Raman spectra as observed by Stoicheff3' and
the Dunham-theory approach of Schliers and
Herman and Short. '4 Stoicheff's~' R, = 0. 741 I3(6) A

was used to obtain the "experimental" values given

TABLE II. Comparison of field gradients averaged over the ground vibrational state.

Source (Ref. )

Nordsieck (2)
Ishig ro (3)
Newel. l (4)
Narumi-Watanabe (7)
Auffray (6)
This work
This work
This work
Kolos-Wolniewicz (27)

Parameters
in fII)

2
7
6

11
10c
34
66
87

De
(a.u. )

0.149
0.157
0.168
0.17301
0.17376
0.17432
0.1744712
0.1744721
0.1744750

HDTV=1)

0.1768
0.1729
0.1745
0.17086"

0.16485
0.16621
0.16620

(q'(R))~ (a.u. )
D, (a=1)

0.1763
0.1723
0.1749
0.17116"
0.1698
0.16525
0.16662
0.16660

Dg(J =2)

~ ~ ~

0.16402
0.16539
0.16538

aFor estimated errors see the corresponding quadru-
pole moments in Table III and the text.

bAs reported in Ref. 7. See Ref. 28.

'Reference 29.
"Inferred from the value of the quadrupole moment re-

ported in Ref. 6.
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TABLE III. Values of the quadupole moment of the deuteron obtained from field-gradient caj.culations and experimental
interaction constants.

Source (Ref. ) HD(J=1) D, (J=»
0-26 cm2)a

D, (J=2)
Weighted

average

Nordsieck (2)
Ishiguro (3)
Newell (4)
Narumi-Watanabe (7)
Auffray (6)
This work: 34 terms

66 terms
87 terms

0.2703
O. 2764
0.2738
0.27967

0.28985
0.28748
0.28749

'The quadrupole-interaction constants used are those
of Refs. 13 and 14. Values of Q for the first three
authors in the table were altered to conform with these
constants.

0.2716 ~ ~ ~ 0.2714 + 0.005"
0.2779 ~ ~ ~ O. 2777 + O. OO6b

0.2738 ~ ~ ~ 0.2738 + 0.002"
0.28011 2.8003 0.2800 + 0.0005
0.282 ~ 1 ~ 0.282 + 0.001d
0.28979 0.28980 0.2898
0.28741 0.28741 0.2874
0.28745 0.28743 0.2875 + 0.002

"Nominal error estimate by the corresponding author.
Accuracy of these error estimates is discussed in the text.

Corrected values. See Ref. 28.
Reference 15.

d„'=2p, p, ,(R ')/5hI, I, , (26)

where p, , and I, a,re the magnetic moment and spin
of nucleus a, and similarly for b. Values of d '

which follow from our (R s) '~' values of Table IV
are given in Table V. For the deuteron we took
Wimett's p n / p~ ratio.

The H2 (J= 1) case appears anomalous; however,
some approximations are made in the experimental
analysis' and small deviations from the expression
for d „' in Eq. (26) are to be expected. Ramsey"'"
has examined the effect of electron coupling.

In general, the agreement between our calculated
values in Tables IV and V and experiment is satis-

in Table IV for rough comparison. Forthe Hz (J=1)
case Herman and Short34 use the data of Foltz
et al. ' and apply corrections to the theory to ob-
tain (R ) ' =0. '74695(3) A.

Another observable obtainable from the vibra-
tional wave functions is the nuclear magnetic spin-
spin interaction constant d ', which in first-order
perturbation theory is proportional to (R 3). With
Ramsey's3~ definition of the proportionality con-
stant it is

factory, and with the slight exception of H~, the
adiabatic results are superior to the Born-Oppen-
heimer.

In odd rotational states of the Dz molecule —in
particular, for the D2 (J'= 1) case —matrix elements
of eqQ/h and d „' are proportional; only the com-
bination

d = eq@/10h+d „' (2&)

is observable. If one used our value for d' from
Table V and d=25. 2414(14) kHz, as found by Code
and Ramsey, '4 in Eq. (27), then eqQ/h=225. 037
kHz, with an error of at least 0. 014 kHz. This is
directly comparable with the value 225. 044(24) kHz

given by Code and Ramsey. We ignore this small
difference.

D. Errors

Given the error assignments by previous work-
ers, the quadrupole-moment values in Table III are
in striking disagreement. " For example, our re-
sult for Q differs from that of Narumi and Wata-
nabe by 15 times their stated error and from Auf-
fray by 5. 5 times his error.

Code and Ramsey'4 have pointed out that a test,

State BO~
(R ) 'i3 (A)

Adiabatic From experiment

H2(J= 1)
HD(J= 1)
D, (J=»
D2(J=2)

0.74676
0.74590
0.74494
0.74609

0.74696
0.74605
0.74505
0.74619

0 74683(6)c
0.74601(6)
0.74509(6)
O. 74625(6)'

Calculated in the Born-Oppenheimer approximation,
in which Hp'p(R) is neglected.

"Calculated from Stoicheff's Raman spectra (Ref. 31)
by Code and Ramsey (Ref. 14). See text.

Minimal error, assigned by us, corresponding solely
to Stoicheff's stated error (Ref. 31) in R, for H&.

TABLE IV. Expectation values of R in ground vibrational
states.

d' 0 HE)
AdiabaticState BO Experiment

115.342 (48)b

17.761 (12)c

2.737(1)'
2.725 (14)

I-I,(J=1) 115.382
HD(J = » 17.773
D, (J=1) 2.7388
D2(J = 2) 2.7261

/

Born-Oppenheimer approximation; Hpp(R) neglected.
"Harrick et al. (Ref. 12).
uinn et al. (Ref. 13)..

Code and Ramsey (Ref. 14).

TABLE V. Comparison of calculated and observed
magnetic spin-spin interaction constants in ground vibra-
tional states.
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TABLE VI. Comparison of "equivalent" quadrupole-
interaction constants with experiment.

Source

Narumi-Watanabe
This work; 87 terms
Experiment

eqQ/P (kHz)

HDTV=1) D, g=2)

223.442(5O) b

223.396(24)'
223.3so(1so)'

224. 892 (80)"
224 504(24)C
224.54O(6O)'

~Reference 7.
Code and Ramsey (Ref. 14). Their error assignment

includes observational error and the uncertainty in the
calculated ratios of the average electric field gradients.

'Minimal error corresponding solely to the experi-
mental error in eqQ/h for D2(4 =1).

Quinn et aE. (Ref. 13).
Deference 14.

primarily of the R dependence of q'(R) but partly
also of the averaging procedure, can be ma,de by
using the experimental quadrupole-interaction con-
stant for the most accurate case, D2 (J=1), and

ratios of vibrationally averaged field gradients to
calculate "equivalent " interaction constants for
HD (J= 1) and Dz (J'= 2). The comparison is made in
Table VI.

The failure of the Narumi-Watanabe field gradient
seen in Table VI can be traced back to the fact that
the James-Coolidge molecular wave function2' has
the same value of the nonlinear parameter, e in the
notation of our Etl. (12), at each of the four values
of R used by Narumi and Watanabe. We find that
the field gradient is more sensitive to improperly
optimized a. than is E, and that holding n fixed in-
troduces spurious oscillations in q'(R).

From Table VI we conclude that the R dependence
of our field gradient is in agreement with experi-
ment and that nonadiabatic effects are not, here,
being observed. From this and our ear1ier-men-
tioned sources of error we believe that, given our
form for the molecular wave function, the process
of extracting the quadrupole moment produces an

error of less than 0. 0002 &10 cm .
On the other hand, the largest uncertainty in our

field gradient may well arise from the fact that our
electronic wave function is not exact; we work
within a truncated Hilbert space. Our dissociation
energy, D, =0. 1744721 a. u. at R=1.4 a. u. , differs
from that of Kolos and Wolniewicz' by 0. 1 cm ',
and this difference is approximately constant at
points where comparison was possible within the
range of R that we have considered. Consequently,
our dissociation energy Dp for the hydrogen mole-
cule, after relativistic corrections'~' ' obtained
from the Breit equation and radiative corrections,
is ' 36117.3 cm ', which is 0. 1 cm ' less than that
of Kolos and Wolniewicz' and in agreement with
the experimental bounds of Herzberg": 36116.3
&Dp&36118.3 cm '. However, since D, is obtained
variationally, it is a lower bound. Using the value
0. 1744750 a. u. of Kolos and Wolniewicz, ' we as-
sume that our D, is 2. 9 x10 6 a, u. too small.

By varying all parameters in the 87-term elec-
tronic wave function of Eq. (11)we find that the
maximum possible change in Q consistent with a
decrease in D, if 2. 9x10 ' a. u. is approximately
0. 004 x10~6 em . We take one-half of this for
our estimated error.

In earlier work simpler wave functions were
used and more approximate approaches to vibra-
tional averaging. But the main source of disagree-
ment in quadrupole moments is in the earlier error
estimates. Assuming thai our error scales like
v 6, where 6 is the dissociation energy error, we
obtain the estimates given in Table VG correspond-
ing to earlier values of Q. The authors' errors
in the last column are repeated from Table III for
comparison here. Clearly they are, without excep-
tion, too small.

Briefly, Nordsieck and Newell based their er-
rors on comparisons of their electronic charge
density with rough estimates of that of the James-
Coolidge ' wave function, assuming negligible er-

TABLE VII. Values of the quadrupole moment of the deuteron with errors estimated in this work.

Source (Ref. )

Nordsieck (2)
Ishiguro (3)
Neweu (4)
Narumi-Watanabe (7)
Auffray (6)
This work: 34 terms

66 terms
87 terms

Error~ in D
(a.u. )

0.025
0.017
0.0065
0.0015
0.00072
0.00016
0.0000038
0.0000029

Q
(10-26 cm2)

0.271 + 0.19b
0.278+ O. 16b
0.274+ 0.095"
O. 2SO + O. O45'
0, 282 + 0.031~
0.2898 + 0.015
0.2874+ 0.0023
0.2875 + 0.0020

Authors ' es timated
error in Q
(10 cm )

+ 0.005
+ 0.006
+ 0.002
+ 0.0005
+ 0.001

+ 0, 002

Difference of D, from that of Kolos and Wolniewicz
(Ref. 18).

"Obtained from the 87-term error estimate by assum-

ing that it scales as the square root of the error in D~.
'Reference 15.
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ror in that wave function. Ishiguro' used Nord-
sieck's error. Narumi and Watanabe, ' who used
the James-Coolidge wave function, considered
only the error involved in interpolating and extrap-
olating their four values of q'(R). In contrast,
James and Collidge estimated errors in their $2 or
expectation values using their P to be about 8-10%.

From Table VII one observes that not only is our
result for q consistent with earlier work but also
the consistency would remain even if our error
were reduced by a factor of, say 5. We let it
stand; the error remains only an estimate.

V. CONCLUSIONS

Our field gradients appear to converge as the
size of the basis increases and the dissociation
energy approaches experiment. Values of the
deuteron's quadrupole moment obtained from dif-
ferent isotopes of the hydrogen molecule and dif-
ferent rotational states are in good agreement.

The theoretical results sketched in Sec. II in-
volve approximations. In that connection, on a
cruder level, we note that problems which can
arise in the transformation of atomic orbitals from
one center to another, where the field gradient is
evaluated, 6 are absent in our approach, and that
Sternheimer corrections ~ do not apply, since we
have included effects due to all electrons.

Although no particular attempt was made to opti-
mize the dissociation energy, our value is less
than the best value known by 0. 1 cm ', which, for
perspective, is half the radiative corrections in
H2. Nevertheless, we estimate an error of about
0. V% in Q due to the possible omission of unknown

components in the molecular electronic wave func-
tion relatively much more important for Q than
for the Hamiltonian.
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tion with Ref. 49, our expressions can be cast in
the form of those of Kolos and Roothaan.

The primitive integrals of Eq. (A2) can be done
analytically for even p,, and for p. odd are reducible
to integrals of the form

4„,(z)= f d$($ —1) 'f„($,z)f, (g, z), (A3)

where

P (5)f„($,z)= f dtt"P (f) e ".
Except for another misprint we have noted xn con-
nection with Ref. 50 we agree with Kolos and
Roothaan.

C ~,(z) was evaluated by 64-point Gaussian quad-
rature2' after expressing the integral of Eq. (A4)
as a linear combination of terms of the form

g„(g, z)= f dtt" e "
= [ng„,(&, z)+e-'- g" e'-"'] z-'

(A4)

)m(~n+m+1

(n+m+1)m t (As)

We used the recursion relation for z(g —1)» 5 and
the power series otherwise.

»(&„n„&,n, I;+~,), (»)

APPENDIX B: FIELD-GRADIENT MATRIX ELEMENTS

As described in Sec. GIB, the chief problems
in evaluating the (i ~

V"
~ j) reside in the B,z(u) with

p., + p& odd. Our approach to these is outlined
here.

Working from the right, P;& of Eq. (19) is first
expressed as

P;~(5g, ni, &)= f, A2 f, dn2 (&2 n2)—
xe 2 Aty((gp Rg& $2y 62)

We are grateful to Mean-sea Tsay for calculating
checks for us in the early stages of this work.

APPENDIX A' MATRIX ELEMENTS OF H

where, suppressing the coordinates,

X(p.;+ p~)=(2v) 2f dy, f dyzp"&"~

and, using the notation

(a2)

Minimization of the Rayleigh quotient leads im-
mediately to the eigenvalue problem

(e'- Z'S) q= 0, (A1)

where S;& = (4,. ~ 4,. ) and H, ~
= (4,. ~ H ~ 4,. ) define the

overlap and Hamiltonian matrices in Eq. (A1) and
we abbreviate the indices on the basis functions of
Eq. (12). Following Ruedenberg and Kolos and
Roothaan, S,, and II,, were expressed in terms of
the primitive integrals

K„"q„,= f dVgdV2($, —
vP~)

'

xgq, (2~qzrfqe '~&' 2'. (A2)

Except for the misprint we have noted in connec-

[ P r ] ~1 41~2 F2+~1~1~2 l2

A;q = [m, +mq, p;+p), r;+r), s;+sq]

(as)

+ [m, +r~, p, +s&, r, + m~, s; +p& ]. (a4)

In Eq. (a2) one can use

p = [T —S cos(y, —y2)] "',
T= pi+0, +$2+62 —2 —2)P,$2'Ilz,

2 2 2 2

S= 2[($~ —1) (1 —q~) ($2 —1)(1—7l2)]'

to obtain

(asa)

(asb)

(asc)

X(1)= (2/v) (T +S) ~ E(k), (asa)

X(3)= (2/Sz) (T +S)' 2 [4TE(k) + (S —T)K(k)] (a6b)
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where K(k) and E(k) are complete elliptic integrals
of the first and second kind and

/

k = 2S/(S + T). (Bv)

F,-J was then evaluated by means of crossed 12-
point Gauss and Gauss-Laguerre quadratures af-
ter using approximations for E(k) and K(k) due to
Cody, with an absolute error of less than 10 ",
to achieve an explicit realization of the coordinate
dependence of X.

The remaining integration, that of Eq. (18), was
broken down into ones over three regions. The

area 1 & $,& 1.4 and —1 & q, & —0.8 which contains
the singular point, was treated by constructing a
two-dimensional quadrature using 8' from Eq.
(15) as weight function, a locally quadratic ap-
proximation to E,.&, and the indefinite integrals

f d$ f d7) W($, q) g'q for i,j = 0, 1, 2.

Seventeen points were used on t and nine on q.
Integration over 1& g, & 1.4 and —0. 8& q was done
with crossed 8&&12 Gauss quadratures and that
over 1.4& g, with crossed 14x12 Gauss and Gauss-
Laguerre quadratures.

*Work supported in part by the National Science Founda-
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Two-photon emission from heavy elements with a single K-shell vacancy (e.g. , Cu ) is considered.
Simple closed-form expressions are given for the spontaneous, singly stimulated, and doubly stimulated
two-photon emission rates. The material parameters relevant to these two-photon processes are shown to
be the one-photon absorption cross sections and oscillator strengths.

I. INTRODUCTION

We describe here a simple theory of the decay
of a K-shell vacancy in heavy elements such as
Cu by the process of two-photon emission. ' Spon-
taneous, singly stimulated, and doubly stimulated
processes are considered. We show that with
suitable approximations the matrix elements de-
scribing the material parameters important to
the two-photon emission process can be obtained
from those describing one-photon emission and
absorption. This permits us to obtain simple
closed-form expressions which contain only known
material parameters. The close relationship be-
tween corresponding linear (one-photon) and non-
linear (two-photon) processes is similar to that
found previously, and appears to be character-
istic of the x-ray region. Since the two-photon
emission rate is found to be comparatively intense,- 10 the one-photon rate, there exists the pos-
sibility of experimentation.

Two-photon absorption and emission by atomic
hydrogen' and by heavy hydrogenic ions have re-
ceived very con.siderable attention. Although in-
ner-shell electrons are often considered to be hy-
drogenic in nature, this important body of work-
which provides the necessary background to our
present treatment —cannot simply be applied to
many-electron. ions. The reason is that the sets of
intermediate states available to an I -shell electron

in atomic hydrogen, for example, are very dif-
ferent from those which are available in Cu. These
distinctions are made more apparent later when
the similarities and differences between the two
kinds of systems are discussed.

The model we use here is that of a single elec-
tron moving in some effective spherical potential.
It is supposed that this potential reproduces the
set of energy levels which are available to the
electron. Such a description considers only the
existence of sin. gle-particle excitations and is thus
equivalent to a representation of the wave function
in terms of a single Slater determinant. We ex-
plicitly neglect electron spin, since we assume
that two-photon emission accompanied by a spin
flip is a weaker process than one in which no spin
flip is required. '

In order to be specific, we treat the case of a
Cu' ion with a single K-shell vacancy, and consider
the process of two-photon emission by an L-shell
electron dropping down to fill this vacancy. The
initial state of the system is thus an electron in
the I shell and a hole in the K shell, while in the
final state the position of the electron and hole are
reversed. The energy levels available to the elec-
tron are shown in Fig. 1. While we treat an iso-
lated ion, we consider our results to be applicable
to solid copper. The reason for this is that the
deep K- and I -shell electrons are not much af-
fected by the presence of other atoms, while the


