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The van der Waals forces between a polarizable particle and a conducting wall and between two
polarizable particles are calculated within the theory of classical electrodynamics with classical
electromagnetic zero-point radiation. This theory assumes the differential equations of traditional
classical electrodynamics but changes the homogeneous boundary condition on Maxwell’s equations to
correspond to the presence of random classical electromagnetic radiation with a Lorentz-invariant
spectrum. The van der Waals force calculations are performed exactly within the nonrelativistic
equations of motion for the particles represented as point-dipole oscillators. The classical results are
found to agree identically to all orders in the fine-structure constant o with the nonrelativistic quantum
electrodynamic calculations of Renne. To fourth order, there is agreement with the perturbation-theory

work of Casimir and Polder.

I. INTRODUCTION

In work published recently, 2 it has been shown
that the short- and long-range asymptotic limits
for interatomic van der Waals forces can be cal-
culated from a simple classical model. Picturing
atoms or molecules in the Drude-Lorentz approx-
imation as classical dipole oscillators, one can
understand the van der Waals forces between a
neutral polarizable particle and a conducting wall
or between two neutral polarizable particles as due
to classical electromagnetic interactions when the
particles are immersed in random classical radia-
tion with a Lorentz invariant spectrum. In two
previous articles, the unretarded London force?
when the particle separation R -~ 0, and the asymp-
totic retarded force! when R~ < were evaluated
and found to agree exactly with quantum calcula-
tions; the present work extends the agreement be-
tween the theories for these forces to the entire
range of separations R. The full fourth-order
Casimir-Polder formula® from quantum electro-
dynamics has thus been obtained from a purely
classical theory of electromagnetism.

There has been continuing interest in van der
Waals forces within both physics and chemistry,

and recently even attention to applications of van
der Waals forces in biological systems. However,
the present article does not produce any new for-
mula for application to a specific situation. Rather
the calculation here represents a further step in a
general program in theoretical physics. The pro-
gram is intended to discover just how much of the
physics which is presently regarded as dependent
upon the notion of discrete quanta can actually be
understood within a specific theory of purely clas-
sical electromagnetism. The theory, which we
have termed classical electrodynamics with clas-
sical electromagnetic zero-point radiation, adopts
the differential equations of traditional classical
electrodynamics but changes the homogeneous
boundary condition on Maxwell’s equations to cor-
respond to the presence of random classical elec-
tromagnetic radiation with a Lorentz invariant
spectrum. Thus far, a number of phenomena with-
in statistical thermodynamics have been analyzed
in terms of this theory—including the blackbody -
radiation spectrum, * the fluctuations usually as-
cribed to photon statistics, ® the third law of ther-
modynamics, ¢ and oscillator and rotator specific
heats.” Marshall has applied the theory to the van
der Waals forces between macroscopic objects. ®
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The present article extends the theory to van der
Waals forces between microscopic particles de-
scribed as point dipole oscillators.

The quantum-mechanical work on van der Waals
forces was initiated by London® in 1930 when he ob-
tained the force between two quantum dipole oscil-
lators interacting through the Coulomb field. In
1948 Casimir and Polder® performed the full fourth-
order quantum-electrodynamic calculation of the
force between two neutral polarizable particles. A
number of recalculations have followed the Cas-
imir-Polder result. Some involving dispersion
theory!® or canonical transformations! within per-
turbation theory have obtained the full fourth-order
expression; some employing quantum zero-point
energy'? have obtained only the asymptotic limit
forms. Recently, Renne!® has provided a quantum-
electrodynamic calculation to all orders.

It is apparent that the two-particle van der Waals
force involves a relatively simple system which is
also fundamental. It is a natural place to investi-
gate the predictions of an unexplored theory such
as classical electrodynamics with classical elec-
tromagnetic zero-point radiation. In earlier pa-
persl'z the asymptotic limits were considered; in
the present work, a calculation valid for all par-
ticle separations is provided. The calculation here
is exact for the nonrelativistic classical theory.

It turns out to agree precisely with Renne’s results
from nonrelativistic quantum electrodynamics.

The material to follow is broken into three basic
sections: a calculation of the force between a po-
larizable particle and a conducting wall, a calcula-
tion of the force between two polarizable particles,
and finally a sketch of Renne’s procedure for con-
necting the exact expressions with the formula of
Casimir and Polder.

II. POLARIZABLE PARTICLE NEAR A CONDUCTING WALL

A. Basic Model

The calculation for the van der Waals force be-
tween a neutral polarizable particle and a perfectly
conducting wall was first carried out by Casimir

_J

2
ERZP(F’ t)=Re 27

A=1 2
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and Polder, 2 who found that the attractive potential
varied asymptotically as R™3 when the separation R
between the particle and the wall became small,
and as R™ when this separation became large. In
previous papers, we have shown that the purely
classical theory involving zero-point radiation ex-
actly reproduces the Casimir-Polder asymptotic
limits. In the present work we will show the
agreement for all separations R.

Our model pictures the atom as a dipole oscil-
lator, and this oscillator will intact with its dipole
image in the conducting wall. The random zero-
point radiation forces the dipole oscillator into ran-
dom motion. In free space the Lorentz-invariant
spectrum!* of random zero-point radiation is given
as a sum over plane waves

2
E,pF t)=Re 2 [d’re(k, )b (&, 1)

a1
xexpli(E* ¥ - wt+9(K )], (1)

AE(:E, R) . E(k, 7\’) = 6)‘).1 )
- (2)
ke €k,\)=0, w=ck,
and with the scale set by Planck’s constant
mhi=irw. (3)

The random character of the radiation is provided
by the use of the random phase 9(k, A), as in the
work on random classical radiation by Planck!® and
Einstein and Hopf. !¢

The equation for the oscillator on the z axis at a
distance R from a conducting wall in the xy plane
given by

pors - 2,2 da'g . -
mdtg ="mw(z)§+§'c'aﬁ‘+€ExMG +eEgzp, (4)
where E is the displacement of the oscillator of
mass m and charge e, while —mwj ¢ represents
the harmonic restoring force, %(e2/c®)(d*t/df®) is
the radiation damping self-force, and Epyg is the
field due to the image dipole. The zero-point ra-
diation is reflected from the conducting wall and,
hence, must satisfy this boundary condition in the
form

o e {cexpli(R« T —wt+9)]+ (-1, ~] €+ €,) explilk, x+kyy — k2 — wit +9)]}

=Re i} /; “ e 52[i(ie, +] €,) sink, z + { €, cosk, z] expli(kyx + by — wt +9)] . (5)
A=l

(4

We will use the (_:I_ipole approximation which eval-
uates the fields Epyg and ERZP at the center of mass
of the oscillator.

It seems convenient to change from the oscillator

[

displacement £ over to the dipole moment of the
oscillator

p=ef. (6)
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We may then rewrite the oscillator equation of mo-
tion as

- - 3t - -
=“wgp'*'rp+%r03E1MG+%r03ERzp, (M
where
2 e
“3med ®)

The oscillator equation of motion (7) refers only to
the natural frequency w, and damping constant T,
and does not involve the individual mechanical
properties of the oscillator such as charge or
mass.

B. Fourier Decomposition of the Equation of Motion

Introducing a Fourier decomposition for p(¢)
which formally follows that for Eg,p

B(t)=Re f} w BrB(K, \)e it , 9)
A=1

t4

2
Erzp(T, )=Re 20 FrERT, Kk 2)emivt, (10)

2 =1 k<0
the equation of motion becomes
(C+Zx)Px:ﬁERx s (11)

with analogous equations for the y and z compo-

nents. Here we have introduced the symbols
C=-wi+wi-ilw®, (12)
=3rct=e?/m, (13)
and
1 i 1 ) ;
= —.3p,.3 _ i2kR
Zy=Zy=+zlw (ZkR T(2rR)? T (2RRRP) ¢
(14)
- _ JREDS
s 2((2kR)2 +(2kR)3> ‘ (15)

The terms in T provide the fields of the image di-
pole.!” Note that the signs involved in ¥, and T,
recognize that the image dipole for orientations
along the x and y axes is reversed in orientation
from the initial dipole. Clearly the solution to Eq.
(11) is

P, =BEg,/(C+Z,) . (16)
C. Force on a Dipole

The force on a dipole is given from classical
theory as

- . = 1dp_ =
F: . —_——
® V)E+c thB’ 17)

where E and B are the total electric and magnetic

fields. The time-averaged force can be trans-
formed as
8B
(Fy= <(p V)E+— —>< B> <(p v)E --c-x " >

=@+ VE+Px (VXE) . (18)

The first step here involves an integration by parts,
noting that the end-point terms do not contribute

to the time average; the second step uses Max-
well’s equations. In the present case, symmetry
dictates that the average force on the oscillator
will be normal to the wall,

- A N 8E, 9E,
@)= iF=F (b 5% +h 5,0 +pegys) - (9

The self-fields of an oscillator do not contribute
an average force so that the electric field E at the
oscillator is that due to the image dipole and to
zero-point radiation. Thus terms such as
(p,9E,/9z) become

<17x > (anz ERZPx> <an EIMGx\) . (20)

D. Force Due to Incident and Reflected Fields

The first term in (20) is

2
<Px oz ERZPx>:%Re<E a’k

»=1Jy o

BE&E(O 0, R; kz 2) oot
C+Z,

2
x 27 ase’
M=l Jp <o

8 -
X E%,(0,0, &', \)

z:Rei”"), 1)

where from (5) and (10)

EgR (0,0, R;K, ) =b (&, )24, (K, A) sink,R &' ? E»
(22)
and

] N
-é; ERx(()’ 0: Z;k ’ A )‘z=R

=0 (K, \)2ie, (&', N )k, coskiR e P EN | (23)

The expression iRe is introduced because of the

use of complex notation in the averaging. Treat-
ing the averaging over the random phases 9(k, 1)

and 3(1?, X)),

<eis(1?,x) e-is(ﬁ':h')zan,é:’(ﬁ—ﬁl) s (24)
(P EM Ga @Ay g (25)
Thus
B N 4
<Px azERsz>—2Re§ o a’k C+Z,
2

xe€,lk, sink,Rcosk,R. (26)

Since the integrand is even in k,, we may introduce
a further factor of 3 and carry the integral over all
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values of K. The expression for {p,8Eg;p,/02) is
the same as (26) with the subscript x replaced
everywhere by y, while the expression for
(p, 8Eqzp,/ 92) is the same as (26) with the sub-
script x replaced everywhere by z and an addition-
al over-all minus sign from differentiating cosk,R
in the equation analogous to (23).

The sum over the two polarizations gives

Sk
2, =1-% . (27)

The angular integrations needed for Eq. (26) can
be carried out before differentiating with respect
to R by noting

1 9
€%k, sink,Rcosk,R=35 7 (e,°sin’k,R) .  (28)

Then the angular integrations are

2
25 | deelsink,R =J.
A1

6=0

T

dfsiné

or
Xf d¢ (1 - cos?¢ sin6) sin®(kR cosb)
»=0

2m 2T
=57 (T'-ImZz,)= —-@5 Im(C+Z,),
(29)
2 . 2T
?f J' s E,zsmzsz=b—k§ (T -Imz,)
2T
=8 Im(C+Z,), (30)
2 2., .2 2m
zjl df . cosk,R=5 (T ~m3,)
2m
-2 m(e+z) . @D

The expression (26) becomes

LR D N B
<Px oz ERsz>-2 zjhodkk BY

2r 1 9 1
x4 (—'@5 3 3R Im2x> Re C+3, (32)

and the contributions involving y and z are found by
merely replacing the subscript x.

E. Force Due to Field of Image Dipole

The second term in (20) involves the field due to
the image dipole {p,8Eys,/ 98z). Here we must be
careful to understand the original classical force
expression in (20). All derivatives are with re-
spect to the field coordinate, and not with respect
to the source of the field. Thus recalling that for
p, the image dipole is -p,,

2
Ec:(0,0, z, t)=Re 2J d’k = = Tw®
w=1Jp <0

x( 1 i 1 )
k(z+R) "k (z+RP K (z+R)®

x elk(z+ R)(_ Px)e- iwt , (33)

so that
9 2 s
37 Emex(0,0, 2, 0],.x=Re s | d’

»=1Jp <0

11 8%
~twt (2 = TS
xperter (-1 1 2Bx) g

with analogous expressions in y and z. Observing

this one delicate point,
dsk BEEx e-iwt

9 . &
<”” 52 E‘M““>' 2 Re@ c+z,

2 % 1 ozx
x 23 a2 (—— ——i)> .
HL@ cx+zx \" 28 R
z
(35)

Averaging over the random phases as in (24) and
(25), this becomes

8 1 2 s,  PPh4
<1’x 5z EIMGx>’2 o8 AT
a=1 k<0 x
2. ...2 1 3
x (¢, 2 sin k,R)—-Z—B B Rez}). (36)

The term in p, is found merely by changing the x
subscripts to y, and that for p, by changing sub-
scripts and also replacing sin’k,R by cos®%,R.
Again the expression is even in %, and so the inte-
gral may be converted to all K values while intro-
ducing a compensating factor of 3.

The angular integration needed is exactly that
listed in Eq. (29), so that

2 L1 2 _BY4
<px oz EIMG’C> “2 ZLO dkE 1oz

x(-—%’gg Im(C+Z}x)> <—% 36}—2 ReE*). 37

F. Total Force

It is clear that Eqs. (32) and (37) may be com-
bined in a symmetrical form if we rewrite part of
(32) noting

1 1 T
Re 513, “TCam,r neler B %)

Then

9 - ) _[_)_2_ 1 ( * 3K
<px Py Ex> ——WJ; odk A [m Re(C*+Z¥)
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xgﬁ ImZ, —Im(C+3Z, ) ReE*)] . (39)

Inasmuch as C is independent of the distance R so that

1
- *x) 2 -
lC+E,|z (Re(C +Z} ) ImZ) Im(C+E ) ReE*)

1
lC+Z) 1z 2;

z
:—.. = =X
ImIn(C+Z,)= Imln(1+ :> .

The terms in y and z are obtained by replacing the
subscript x by the appropriate y or z. Adding the
three terms on the right-hand side of Eq. (20), us-
ing the forms (39), (41), while noting b from (3),
we find the particle is attracted to the wall by a

force
prz:_;i_;'f dk—é{lmln[<1+%‘—>
%) ()
X(1+C> <1+C It (42)

G. Result for Potential Energy Function

The associated potential-energy function U(R)
for which

9
F=-37 U (43)

is

UPW(R) o R ln[(l +—Ei>
, C

x(12) (z I

The expression (44) which we have obtained for
the van der Weals potential between a polarizable
particle and conducting wall is exact beyond the
nonrelativistic approximation used in the original
dipole equation of motion (4). However, we would
like to demonstrate analytically that this exact ex-
pression agrees to order o with the result obtained
by Casimir and Polder using quantum-electrody-
namic perturbation theory. Renne has shown how
this may be done conveniently using contour inte-
grations, and we will review his treatment in Sec.
v,

III. TWO NEUTRAL POLARIZABLE PARTICLES
A. Basic Model

The van der Waals force between two neutral
polarizable particles arises from the same basic

((C* +Z)*) — (C+2 )-(C+Z,) 5%{(0* +E;“)>

TIMOTHY H. BOYER 7

8C aC*
5R7oR O’ “o)

the factor in square brackets in Eq. (39) becomes

((C+123 y og (C*Z )>

(41)

f
mechanism as considered in the previous case of
a polarizable particle and a conducting wall. The
classical zero-point radiation in the universe
forces the oscillators into random motion and these
then interact through classical electromagnetic in-
teractions.

The equations of motion for the dipole oscillators
representing the atoms are

o s SO R i N
m A = muitaty 3

+eBp(Fy, t)+e_E')ZP(FA, t), (45)
d*E, _ ax 2 & a%
Mg ST mwebsty 3 T
+eE p, (Fp, D +eByp(Fy, ), (46)

where, analogous to Eq. (4), EA and EB are the os-
cillator displacements. Now E,;(¥,, #) and E , (5,
#) are the dipole fields at the position of each par-
ticle due to the other particle. We will assume
that dipole A is at the origin of coordinates while

B is displaced at distance R along the positive z
axis. The zero-point radiation E, is that of Eq.
(1) appropriate for free space.

B. Fourier Decomposition of the Equations of Motion
Again introducing the electric dipole moments
I-SB =ekp, (47)

the Fourier decompositions analogous to (9), (10)

- -
Pa=¢et,,

2

Pa()=Re 21 a°kP,(k et (48)
A=

- 2 = >

ps(t)=Re Zl) a3k Pk, N)em ¢t (49)
A=

2
E p(f, =Re 20 | d’kE,(F, K e ot (50)
a=1

and denoting

EZ(FA’E’ 7\)=E‘§A ) EZ(FB:E, A)zéB: (51)
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the equations of motion become
CPAx+nxPBx=ﬁ@Ax ’ (52)
ﬂxPAx‘*' CPBJ: = 3@Bx ’ (53)
where C and B are just as defined in (12) and (13),

but 7, arises from the dipole fields E , as

oo spsf b 2 1\ e
N =1M,=—3Tw (kR+(kR)2 wee) e (54)

__3p 39 =1 1 irR
N,=—3Tw 2<W W)e . (55)

Equations (52) and (53) are specified for the x com-

ponent of the dipoles, with similar terms understood

for the y and z components.
The solutions to the equations of motion are

PAfB(c@gx—nx@gx)%(@m@n+cs, -G )

C =y C+ny C=ny
(56)
_ (C@Bx_ngc‘gdxl_é (@Ax'*'@&x @Ax— @B_x_)
PBI_B Cz_nx _2 C+nx - C"nx ’
(57)

where the last expressions are given in the normal
coordinate form.,

C. Force on One Dipole

The arguments for the force given earlier in Sec.
IIC also hold true here, so that the average force
upon dipole B is along the z axis:

OF O 9E
Fz=<i>x—aj+m”g§+bz —a—j> , (58)

where the electric field at B has contributions from
the dipole at A and the zero-point radiation,

9 - 2] -
<PBx 'y E,(Tp, t)> = <1’Bx 3z Ezp(Tp, t)>

+ priED,(FB,t) . (59)
< 9z >

D. Force Due to the Homogeneous Radiation Field

The first term on the right-hand side of (59)
gives the force due to the homogeneous zero-point
radiation field,

9 -
<p Bx 5; EZ Px (rB’ t)>

=%Re<i dakE(M@ e )e""”
r=1 2\ C+ny, C—ny

2
x25 \ a3
1

8 3 7 i lt
ot a EZ‘(O, 0,z,k, 2 )lz=zB=Re © ’

(60)
where from (1) and (50)

E#(0,0, 2, K, V) = €, (&', \)p (K, \')
xexp [ik,z +i9(&, )] (61)

1837

o e o

and
9 > - - .
'é; Ez, (0, 0, z, k,s }\,)|z=zB=R= Ex(k’, )\l)b (k,, )t,)lk,;

xexp [ik,z+i9®&,\)] . (62)
Here we have written Pjp, using the normal coordi-
nate form in (57). Averaging over the random
phases as in (24) and (25),

) - 2 .
<P3x 9z Egp,(Ts, t)> =zRe ).E-l d’k g b%e,*(~ ik,)

(e-isz+1) (e-ik,R - 1))

The integral in (63) is over all values of k.
Hence the terms which are odd in %, vanish in the
angular integrations, leaving the terms

9 . 2
Dow o= Egpy(Fn, 0)=2Re 20 | a% £ 122~ ,)
bz r=1 2

11
C+n, C-=n,

X sinsz( ) . (64)
The analogous expressions involving pp, and pp,
are obtained by replacing the subscript x in (64)
by y and z.
As in Sec. IID, we will remove the derivative
from the angular integration, noting
9

€,%(= k,) sink,R= ‘3R (¢,°cosk,R) . (65)

The required angular integrations then give

2 T
2| dee? cossz=I 40 sing
a=1 ©=0

2r
x‘( d¢ (1 - cos®¢ sin?0) cos (kR cosp)

6=0

4
=- Egg Imn, , (66)

i 2 47[
/ dQ e, cosk,R= “3F Imnp, , (67)

A=

& 2 47

Z_‘; df €, cosk, R= - o5 Ty, . (68)

Introducing the result (66) into (64) and writing the
real part as

Re( 1 1 )z(Re(C*+n;‘)_Re(C*—17;")>
c+n, C-m, [C+n,l? IC=n.1% ]~

(89)
it follows that

o] -
<PBx 2z Egp (s, t)>
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A a2 (2 2 )
—zj dk k" 5 b ( 7 R Imn,
k=0
Re(C* +1¥) Re(C*—n;*))
<|C+17xlz “Tcmit ) 0 (0

with analogous expressions for the y and z compo-
nents.

E. Force Due to the Field of the Other Dipole

The second term in (59) involves the field at Pj
due to the first dipole p,,

<pr8EDAx(FB, t)/az > .

9 >
<pr 3; EDAx(rm t)>

2
=lRe<E
2 =1 C+nx C—nx

isink,R

skg <§_Ax+_@19.1__§41x:_§.ﬂ&> - 1wt f}

Carrying out the derivative with respect to the co-
ordinate of the field point, we have

3
Epa:(0,0, z, 1) =Re Z Skﬁ S rod

2

1 3 1 ikz -iwt
TP 71
X(kz " 2) (kz)3) ¥ Py e, (1)

9
'a—g EDAx(O’ 0, 2y t)

Iz:zB =R

=R 223 d3kP -iwt ___1 _BIIJ. (72)
=he H Ax € 3 3R °

The force term then becomes

3k,§<csz*ﬂz+@3*§EE G% - %;) ot =1 a_n;<_>
2\ C*x+nr  C*-nf B B8R

isink,R

& & 1+cosk.R
_ 1 3 2p2
_zReE a’r €xb2<|c+m

where in proceeding to the last line we have aver-
aged over the random phases as in (24) and (25).

The two terms involving sink,R are odd in %, and
vanish in the angular integrations. The remaining
angular integrations may be read off from equation
(67), together with the observation

2
22| an e’ =j
A=l

T

do sinf
6=0

or
xj' do (1 -cos®¢ sin®g)=4r, (74)
¢=0

2 2
23| del=2
a=1 =1

It follows

dQel=%7. (75)

2
2 dne,,z(licossz)=—%;%Im(cinx), (76)
A=1

|

Cny) (C* -n¥)

- - *
1 cossz> =1 an¥ (73)

e nx)(C*+n,,)— IC=n,12) B B8R ’

with the expressions for ¢,, €, found by replacing
the x subscript.

The expression (73) for the contribution to the
force is then simplified to

9 -
<P3x oz Epax(rs, t)>

2
=%j dkkz—i—baz( An ————a—llm(c )
£=0

- C+n,l
41r Im(C-n,)
——-——ﬁ—l C—ml ) BR —Ren}, (77)

F. Total Force and Potential-Energy Function

The total force involves the contributions of (77)
and (70) as

1
<p5x 52 E, (5,1t >——nJ, dk? TCinl? (Re(c*+n;‘)——1mn,—lm(c+77x) Rem)

-1 * )2 Ren
TConi® (Re(C n,,) 7 Imn - Im(C -1n,) s5 Rem’ . (78)

The expression in the bracket is analogous to that appearing in Eq. (41).

as given there, we have

Following the same procedure

1 9 1
—_— X *) — - _—— X -
[fc**’f)xlz (Re(C +nX) 57 Im. Im(C+n,) — 3 Renx> C-n.? <Re(C nx) Imnx Im(C-n,) — 5 Renx)]
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1
_Im(C+nx R —(C+ nx)+ vy

Thus from Eqgs. (59), (78), and (79), the force of
attraction between the two particles is

s 2
Fapg= -%j dk _E Im ln[(l -—25)

U ) ed)] w

and the associated potential energy function U(R)
as in (43) is

U»s(R) = —zﬁ—; I: . dkImln [(1 - %2)
(-5)6-5)] - o

IV. COMPARISON WITH RESULTS OF QUANTUM
ELECTRODYNAMICS

A. Agreement with Renne’s Results

The expressions (44) and (81) for the potentials
between a polarizable particle and a conducting
wall, and between two polarizable particles corre-
spond exactly to the results found by Renne!® from
quantum-electrodynamic calculations using a non-
relativistic —qliantum-oscillator model for the po-
larizable particles. Thus there seems to be agree-
ment between the two nonrelativistic theories
which extends to all orders in perturbation theory
for van der Waals forces.

B. Comparison with Casimir-Polder Form

In order to convert the exact results over to the
form obtained by Casimir and Polder, in fourth or-
der, we may proceed as follows. Since both (44)
and (81) involve taking imaginary parts, they can
be split into two integrals, for example,

i e[ -2) 2]

Jic 25 (1,22 (1,2
~ i k=0dkln[<1+c*> (1+C*) <1 —éf;;)] .
(82)
The integrands are analytic functions in the right
half-plane for % now regarded as a complex vari-
able. Moreover, since Z,, Z,, and Z, all involve
¢'**®, these expressions are exponentially decreas-
ing in the upper half-plane, while Z}, Z¥, ZX are
exponentially decreasing in the lower half-plane.
Hence, for the first integral, it is possible to con-
sider a closed contour out the real axis, along a
quarter circle in the upper half-plane, and down a
line in the right half-plane parallel to the positive

aR (C- nx))
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2

Imln[(C+77x)(C—nx)]=5%Im1n<1—%g> . (79)

r

imaginary axis. No singularities are enclosed and
hence the contour integral vanishes. Also the con-
tribution along the quarter circle vanishes as the
contour is pushed to infinity. Exactly analogous
comments can be made for the second integral
where the contour is in the lower half-plane. Thus
the original integral is converted to an integral
along a line to the right of the imaginary % axis.
The integrands still have singularities on the
imaginary axis corresponding to the two points
where C and C* vanish,

C==cP+ud-iI'fr=0, (83)
C*==C PP +wi+il k=0 . (84)

Renne shows that the contributions from these
singularities are negligible compared to the ap-
proximately equal integral obtained by changing
the radiation damping term, replacing C by

C'==Pr+wi+iTcwik . (85)

The integrals along the positive and negative imag-
inary axes give equal contributions. Hence writ-
ing k=4u, we obtain

Upw(R)Z %I ) duln [(1
u=0
(142 (1

&)

+ %Eg—:g)] , (86)

Ugp(R) = -2——J’ du 1n 1 C?(Z_ZQ
nxz(iu) n(iu)
><<1 - C’z(iu)) <1 -0, (z‘u))] . (87
Next, expanding the logarithm as
In(l+x)=x-3x%+5x3—--. (88)

and keeping only the first term, we obtain

Upu(R) = [ du(z i) Zuiw) 2, (zu)) ©9)

- C'Gw) TC'Gu) T )
and
(R)= - ﬂy(zu) nZ(iu) )
Uz (R (C' Gw) () T C%w)

(90)
Finally in the limit that the radiation damping is
neglected I'~ 0, we obtain the Casimir-Polder re-
sults

~ fic (° Wwl
UenlR)Z = a5y fo WIS

x_eﬁ (1+ 1 __..]_‘.__2_> (91)
2R uR 2Ry’
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~_ 2kc jm wtwg
Usp(R)Z - ), du m
- 2uR
e 2 5 6 3
TR <1 "uR TRy TRy +(msz)‘) » 62)
where
a=e/mwd (93)

is the static polarizability of each particle.
V. CLOSING SUMMARY

In 1948 Casimir and Polder® calculated the van
der Waals forces between a polarizable particle
and a conducting wall, and between two polarizable
particles using up to fourth-order perturbation
theory in quantum electrodynamics. These authors
were struck by the apparent simplicity of the as-
ymptotic forms for the for'ces, and Casimir® went
on to show that the asymptotic retarded forces, R
- oo, could be obtained within a semiclassical pic-
ture which treated seriously the zero-point energy
3 7w per normal mode in the quantum electromag-
netic field.

As a gradual outgrowth of Casimir’s ideas on
quantum zero-point energy, the present author has
been led to consider»%*~" a purely classical elec-
trodynamic theory which changes the homogeneous
boundary condition on Maxwell’s equations so as to

include random classical electromagnetic radiation
with a Lorentz invariant spectrum. It is natural

to set the scale of this classical zero-point radia-
tion to correspond to the 7w familiar in quantum
theory. In the present article we have found that
this purely classical electromagnetic theory gives
a complete classical understanding of the Casimir-
Polder result., The classical random radiation
sets the polarizable particles into motion and these
then interact via classical electromagnetism. The
classical expressions are in precise agreement
with the quantum electrodynamic calculations to

all orders by Renne,® and they recover the original
quantum electrodynamic perturbation-theory re-
sults of Casimir and Polder.
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