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Kinetic equations for the phase-space-time correlation functions contain memory functions
that involve projection operators. It is shown that these memory functions can be repre-
sented by integral equations involving only real-time correlation functions, thereby eliminat-
ing the projection operators completely in the kinetic description of correlation functions.
The weak-coupling and density expansions of the memory functions have been obtained through
these integral equations.

I. INTRODUCTION

The calculation of the self- and density-correla-
tion functions in simple classical fluids via a ki-
netic equation, or a generalized Langevin equa-
tion, ' has received considerable attention in the
past few years. ' ' It is shown in these studies
that the self -correlation function

where

g(p, t)=~. g.(p, t) (6b)

It has also been shown that the phase-space-
density correlation function

p(p, p', t) = (g (p, t) g *(p', o) &

—(g (p, t)&(g(p', 0)&, (6a)

where

g (p t) = ~(p -p (t)) e (1b)

(g.(p, t) ) = 6„„(k)M(p),

and zest) and p (t) are the position and momentum
of the test particle (o.), satisfies the following ki-
netic equation:

(lc)

g, p, p, t

b, (p, p', t) -=(g.(p, t) g +(p', 0))-(g.(p, t))(g.(p, 0)),
(la)

where

d'u dp yp, p, u g p, p, t-u
0

t((p) = — n~(p) C(&) .
m

—(g (p, t)) =nM(p) 6„„(k)
satisfies

(g, —
) (((p p' 0- v(p)fdp (((p p' &(

(6c)

(8)

t
d'u dp" q, (p, p", u) g, (p", p', t —u) . (2)

0

In (1) and below ([ ~ ~ ~ ]) denotes the thermal av-
erage of the quantity [ ~ ~ ~ ], 6„„(k)is the Kroeneck-
er 6 and M(p) is the Maxwellian distribution. The
memory function q, (p, p, t) in (2) is defined in I.a-
place domain by

rp. (v, v', ~)=~(-
(

(v'. (v'), (( ~(,.~ ~.(u() (s(

In (8), C(k) and n are the direct correlation func-
tion and the number density, respectively. The
memory function y(p, p, t) in (7) is given by

y(p, p', s)

(o"(P') . 0 —&)tr(P(),

where N=nV is the number of particles in the sys-
tem and

o(p) =~.o.(p) . (9b)

o.(p) = ~ o.~(p), (4a)

s 8 V( I
x"

I ) -~,.-„.;no,(3(p) =
s ~,—

& (p - p )
e'"'*

Bp BX

x '=x -x'

(4b)

(4c)

PG= dp ~-—— g p (6)

and V(x) is the interparticle potential. The pro-
jection operator P in (8) is defined by its action
on a phase function G with zero mean:

The projection operator P in (9a) is defined by its
action on a phase function G with zero mean as

PG= dp g —C k Gp* p
- (Gg*(p))

(10a)
where p is the configuration-space number density

p= Jdpg(p)=~. e"* . (10b)

It is observed that the central problem in the cal-
culation of the self- and density-correlation func-
tions with the kinetic equations is to find meaning-
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ful and tractable approximations to the memory
functions y, (p, p, t) and y(p, p, t) I.t is to be noted
that the time evolution of these functions is deter-
mined by the reduced propagator e"' ' rather
than the conventional I.iouville propagator e"~. In

Refs. 3 and 4 we calculated y, and y in the lowest
order in the coupling coefficient, and showed that
the resulting kernels were non-Markovian general-
izations of the conventional Fokker-Planck opera-
tor. Fo~ster and Martin worked out the weak-
coupling expansion of y using diagrammatic tech-
niques. More recently, Mazenko obtained an ex-
pansion of cp to the lowest order in the density and
showed that the resulting kernel is a generalization
of the linearized Boltzmann collision operator to
arbitrary wavelengths and frequencies. Boley7 has
presented a shorter derivation of Mazenko's kernel.

In addition to these systematic perturbation ex-
pansions, several phenomenological models for
y, and y have been proposed in 'he recent litera-
ture to calculate the self-correlation and density-
correlation functions at liquid densities in the 0 and
se regions encountered in the neutron-scattering
experiments.

The objectives of this paper are to show that the
memory functions can be related to the force cor-
relation functions by integral equations, thereby
eliminating the need of working with the reduced
resolvent [8 -i(I —P)L] and to develop expansions
for p, and y in the density and coupling constant
using these integral equations. The integral equa-
tions obtained in this paper are extensions of those
derived by Mori~ in matrix form to the continuous
index representation of the state variables.

II. INTEGRAL EQUATION FOR THE SELF-CORRELATION
MEMORY FUNCTION yg(lf, f', t)

We use the operator identity

PIL . (11)
s —(1 —P)t',L s —iL s —iL s —(1 —P)t',L

in (3) and express (((),(jf, f', s) (we drop the sub-
script s on q&, in this section) as

Cp(p p 8) = ((pp(p p S) + ((pl(p p, S),
where

Po(P P', s)= (,)
(rr&(p') v(P)), (13)

1 „, 1 . 1
((pI(p, p ) s) = —

(~g 0'~(p ) . PzL . O'l(p)

(14)
Substituting the definition of P from (5) into (14),
one finds

Vi(p, p', s)

& ~(- )
(~:(I'), ,~ (,.(I"))) ()) )

Using the self-adjointness of L, in the first factor
of the integrand, iLg (p")=o (p")+(ik ~ p"jm)
xg (p"), and(g*(p")[s-i(I —P)L] '(t (p))=0, we
can verify that

M(
' )(g' (P )(& () /) + (P))= P(P P &) ~

(16)
This is a crucial identity in the derivation of the
integral equation for p(p, p', s).

The second factor in the integrand of (15) can be
related to pp(p, p, s) in (13) by observing that

o'e p o'o p

0'+~ p . $Lgo, p — go p

a -' '
1(s'.(i'), ,q g.(p)), ()'))

where we have used (o ~(p ) g (p)) = 0, which can be
verified by calculating the indicated ensemble av-
erage explicitly. Substituting (16) and (IV) into
(15), we obtain qr~(p, p', s) in terms of y(p, p, s)
and pp(p, p, s). Using this result in (12), we ar-
rive at the desired integral equation for y, (p, p, s):

((p, (p, p, s) = pp(p) p ) s)+ tfP F~(p) p ~ s)

x(to(p", I', s)(s —' ' )I, ((8)

[See Appendix for an alternative derivation and
discussion of (18).]

This equation relates (p, (p, p', f) to pp(p, p', t),
which evolves in time according to the I iouville
propagator, as indicated by (13). Expressing the
latter as

we find that yo is proportional to the time-correla-
tion function of o (p, t) and o (p, 0). We can use
(18) to obtain expansions of y, (p, p, t) in a small
parameter & (not necessarily a power-series ex-
pansion) in terms of the expansion coefficients of
(I)p(p, p, f) in the same parameter. I et us suppose
that yo has an expansion as

((()p = c (ap+ o'ay+ 6 ap+ ~ ~ ~ ) )

where a& are of course functions of p, p', and t.
Substituting this into (18) we find

p, (p, p', s) = &"(a, + ca~+ ~ ~ ~ + a„q c" ')

1 «/ I g «I I 1

( I) dp
~

g*,(p )iL .(I )
o, (p) +e" a„+ dp" ao, p', s aop", p', s
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One conclusion from this result is that yo and y,
have the same expansion coefficients up to E " '.
The effect of the integral term in (18) which arises
from the projection operator P in the expression
of y, (p, p, s) [cf. Eq. (3)] appears first in the term
of the order of &~". As an application, we consider
the weak-coupling and low-density expansions. The
weak-coupling expansion of yo(p, p, s) immediately
follows from (13) by noting that o (p) is of the or-
der X, the interaction strength, and expanding
(s —iLO —iL ) in powers of y:

yo(P, P, s) =]). (so+]).ay+ X'as+ ~ ~ ~ ) ) (21a)

G,„,(s) = (s —iL,„,—tL'(„~&) ' . (23c)

52(p p' S) '' S( (p2) I S12()2))
m~ip ~ S —2 fP

(25)

In (23b) L,„ is the Liouviile operator involving the
particles of n and y and iL«z& is the streaming
operator involving the remaining (N —2) particles.
Similarly L „J in (23c) is the Liouville operator in-
volving the particles a, y, and j and iL,„» is the
streaming operator associated with the remaining
(N —3) particles. Substituting (23a) into (13), and

using (4a), we obtain

p, (p, p', s)=n(b()+nb, + ~ ), (24)
where

where

SS(22, 22', 2)=, „2",(22') . S,(22)),
'

sx(p p s)

(21b)

~2(S, ), S) = (S (P22) S 12(P )] S22(P))
M&p r S —Z fats

o 12(p ) '.
L
.i,(p) I. (26)s-Z 12

( )
o*(P ) .L t

1
o (p)s —jLO

It follows from (19) to (20) with the help of (24) that

y, (p, p, s) has the following density expansion:

1

+]).' a, + dp" na(p, p", s) q)(p", p', s)

xi s — +O(y') . (22)
m

In Ref. 3, ~(p, p, t) was evaluated explicitly [cf.
Eqs. (60)-(64) of Ref. 3] using (21b). The calcula-
tion of af and a& does not seem to be of any interest
at present, and thus will not be attempted.

The density expansion of yo(p, p', s) can be
achieved using the following form' ' of the cluster
expansion of G(s) —= (s —iL) '.

G(s)=G „(s)+ Z [G»(s) —G,„(s)]+~ ~ ~, (23a)
)Peag

where

G )(s)= (s —iL „—iL()s.a)) (23b)

(21c)
Hence, the weak-coupling expansion of y, (p, p, s)
is

p.(p p' s) =]('(so+~nl)

y, (p, p, s) = nba+ n b, + dp" bo(p, p", s)

~l I

XSS(22", )2', S)(2 —
I O(S') .

FPl J
(27)

The matrix element in (25) can be evaluated ex-
plicitly by expressing L~z(p~, P, p2, xs) in terms of
the center-of-mass coordinate 5 and the relative
coordinate r = x —x:

p 9
iLgz= ~ +iL(q) r) )

(28)

q e s V(r) e
tL(q, r)=, ~ —— ~-

2m BF Br Bq

w'here

P=s (p' +Ps), q=-.'(p'-p'), K=-,'(x'+x') .

Substituting e&z(p) from (4a) into (25) and perform-
ing the indicated thermal averages, we find the ex-
pression of cp, in the lowest order in density as

n )6 8 s . s, s2)
p(p p, s)=, — i; dn dr dq e

M vm sp sp

P -1
x g(r) e ' '"

6(p —n-q) s — —iL(q, r) e' ' 5(p —n —q) +O(n ) . (29)d V(r),."„."„)s -, - - i k n . - - dV(r), „.,gs
dr m dr J

We have not attempted at present to calculate the
second-order terms in the expansion of p, . This
would require the evaluation of the matrix element
bq(p, p, s) given by (26) which involves triple colli-
sions.

III. INTEGRAL EQUATION FOR THE DENSITY-
CORRELATION MEMORY FUNCTION y(|f,g', s)

The derivation of the integral equation for the
memory function y(p, p, t) appearing the kinetic
equation (7) for the density correlation function
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x O*P . PiL
1 P' 1-P ap

(sl)
Using the definition of the projection operator P
given by (10a) in (31), we find

q'i(ps P, s) = J dP P(p, P, s) q()(P, P, s),
where

(32)

as(p, i', s)=~~(- (a "(p'), ,~ p(i)) . (»i

We then express q)o in (30) in terms of qo by first
replacing (1 —IP) o(p) by (1 —Ip)iLg(p), and using
the following step:

(- )
((a'(p')( . —() P(p))

0.* p' . PiLg p

Evaluating IPiL g (p) using (10a) and noting

qo(p, P', t=o) =+~,.- (a*(p')g(p))
I(iM(p

proceeds in the same way as discussed in Sec. II.
We again split q), defined in (Qa), as q) = q)o+ q), ,
using (11), where

ps(p, p', s)= (, (a "(p')
Z ((-S)a(i))

(»)and

~I ~ 1
q't(Ps P ) s) =

~~( p)p

from (36) by first finding the expansions of q)o and

qp in the coupling constant p)(. as

qo = X(ho + )(. bc+ ' ' ') s

q)o=)(. (ao+A. a~+ ~ ~ ~ ) .2

(37a)

(s7b)

s — ~p g*p — . 0'p

(38)

, '„.i)b1(pf p, s) = s~» 0' (p ) . iL
NM~p ) S —ZLO

S — ~I 0'* p . Q' p

(»)
The coefficients ~, a&, . . . can be obtained either
directly from their definition in (30) using Pa(p)
= p, (p) p, or by substituting (37a) into the integral
equation (35) and noting that p(p) is at least of the
order of A.. We present only the lowest-order term
in the coupling explicitly as

as(p i', s)=p, , a"(p') .~ (S —p)a(p))
NM(p s —iLo

=N~(p) ~(
'"'P'. ;L 'P'

The expansion coefficients bo, 5&, . . . are obtained
from (33) by expanding (s —iL, —iL )

)ss(pp', s),=PM,-, a'(P') .~ a(P))N~~p ) s —sL,O

P bf(p)ng(b), (34)
—a(i) (a'(i'), ,~ a)) (&~)

we find
~ 1
g~ op ~/ ~/

q) (P, P, s) = s — qo(P P, s) —qo(P, P, t = 0)

-a(i)f aim(i, i', s), (»s)

which in time domain reads

as(i i' ')=I „- )as(i, i', s)(et pn

—~(p))~dp qo(p, p', t) . (35b)

The desired integral equation is found by substitut-
ing (32) into cp= go+ a), as

q (P, P', s ) = q)o (P, P', s)

+ J d P" 9 (P, P", s) qo(P", P', s) .

Although it is possible to express qp in terms of yo
by solving (35), we find it more convenient to work
with both qo and po.

The weak-coupling expansion of y is obtained

The relation between Qp Qg ~ ~ ~ and 50 5& . . is
determined by (38) as

s —i b& —
JL( p dpbo p p, s, 41a

aq= s — b2 —p. p dpb& p, p, s . 41b

Substituting (37) into (36) we find the desired weak-
coupling expansion of y as

q)(p, p', s) = x' (ao+ z [a, + f d p" ao(p, p", s)

2
qo =n(co+nc&+n co+ ~ ~ ~ ), (4Sa)

x'bo(p", p', s)]j-+ 0(X') . (42)

The lowest-order term a (p, p, t) was calculated
explicitly as a function of time in a previous work.
In Eq. (42) we display the next higher term with-
out attempting to evaluate it explicitly.

The density expansion of q)(p, p, s) follows the
exact same pattern. We first expand qo and yo
using the cluster expansion of G(s) in (23):
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yo = n(dp+ndg+ n da+ ~ ~ g,

V ~p 1
c,=, „og,(p) . ~ g, (p)

M~p ) S -ZI. 1g

c,=, , rr(g(p ) .~ Z zg(i))
M~p 13$ &=1

(44)

g=(s — '
)c,(p, p', s) —c,(i, p', t )0,=(4')&)

zk ~ p tu(p)
c1 — dpco p p, s . 47b

m ] n

The density expansion of y is now found by substi-
tuting (43) into (36):

p(p, p', s) = n ( (f(,+ n[d) + J d p" (f()(p, p", s)

O~1~ P' g~ P, 45s-zL,„),
4=~,-; ~fs(P) ~ (~M(i)+~&i(i)]). (46)

M(p) S —ZL12

The expression of (f, is lengthy, and will not be
presented explicitly. However we can express d&

as well as (fo in terms of co and c, again using (38):

) c,(p", p', s)]+"~ ]
It is interesting to note the resemblance of the

memory function y, (p, p, s) and y(p, p, s) in the
lowest order in density, which are given by (25)
and (46), respectively. The latter involves

aqua(p)

+ o2)(p), whereas q, involves only a&2(p) in the in-
dicated correlation functions. The lowest-order
approximation to q(p, p, s) in density can be cal-
culated as in (29):

p n )6 8 8 . ()( 2, 2)((p(p, p, s)=,-. — ~: dc( dr d(le
M(p ms sp sp

x 'g (r) [e '"'~'6(p' —n —(l) —e'"'"~'6(p' —n+(1)]

x s — —zLqr e 6p —n —q +On

This expression is identical to that obtained by
Mazenko and later by Boley.

IV. CONCLUSIONS

The main conclusion of this paper is that the
memory functions involving reduced propagatorse"" ' can be expressed in terms of the real-
time correlation functions through certain integral
equations. Although the original kinetic equations
are obtained using the projection-operator tech-
nique, the projection operator has been eliminated
from the kinetic description of the time-correla-
tion functions by the integral equation representa-
tion of the memory functions. Since the reduced
resolvent [s —i (1 —P)L] ' does not lend itself
easily to conventional perturbative analysis, the
integral equations obtained in this paper provide
a more convenient starting point for the perturba-
tion approximation to the memory functions; this
we demonstrated in the paper by finding the first
two coefficients in the weak-coupling and density
expansions.

The work presented in this paper is regarded as
an extension and application of the integral equa-
tion derived by Mori [E(l. (3. 14) and (6.38) of Ref.
2] in discrete-matrix notation. As in the deriva-
tion of the kinetic equation itself, we have ex-

APPENDIX: AN ALTERNATIVE DERIVATION AND
DISCUSSION OF THE INTEGRAL EQUATION (18)

The correlation function yo(p, p, s) defined by
(13) can be related to the self-correlation function

g, (p, p, s) using a similar procedure given in (17):

zk ~ p
po(p, p, s)= s — '6(p —p )

s — g,(p, p', s) '. (Al)
Mp m

In order to compress the writing below, we intro-
duce the following functions:

zp (P, P', s)=—(s — wo(P P, s), (A2)

M(p ) m
(A3)

tended Mori's formalism to a continuous index
representation of the dynamical variables to ob-
tain the integral equations for the memory func-
tions, the continuous index being the momentum
variable. The idea of expressing the memory
functions in terms of mechanical correlation func-
tions was also pointed out by Martin.
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In terms of these new functions (Al) reads as

Zo(p, p, 8) = ~(p —p') —X.(p, p' s) (A4)

Tile gellel'Rlized LRngevill equation (2) fol' Q (p, p,
s) on the other hand can be cast in Laplace domain
into

Jd—'P" Z,(p, p", s)X,(p", I', 8), ("5)

&.(R)t', ~)=(~- w.5 7 ~)

If we eliminate X,(p, p, s) in favor of Z, (p, p, s)
between (A4) and (A5), we obtain

Z.(p, p' 8) = Za(p, p' 8)

+ J d'P" Z, (p p", s)Z0(p", p', 8), (»)
which is identical to (18). This equation can be

regarded as an integral equation for Za(p, p, 8) if
we assume that the memory function Z,(p, p, s) is
known. In this sense it is formally equivalent to
the original generalized Langevin equation (A5) for
the self-correlation function X,(p, p, s). Since
Zo(p, p, s) and X,(p, p, s) are simply related to
each otller by (A4), we CRI1 lllvestigate ill pl'lllclple
the self correlation function by either of these bvvo

integral equations provided Z, (p, p, s) is known.
However, we can also regard (AV) as an integral
equation for Z, (p, p, s), as we have implied in the
text, provided that we can find a meaningful ap-
proximation to Za(p, p, s), such as the low-density
and %'eak-coupling approximations. By virtue of
the simple relation between Zo(p, p, 8) and X,(p,
p, s), this procedure is formally equivalent to
approximating X,(p, p, s) in the original kinetic
equation to find a corresponding approximation to
the memory Z, (p, p, s). The method used by
Holey to obtain the Mazenko's kernel is essential-
ly the same as this procedure.
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