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Atom-antiatom rearrangement collisions in which the nucleus-antinucleus bound state is formed are
important processes in atom-antiatom interactions. We give a general discussion of the atom-antiatom
interatomic potential energy ¥ and calculate ¥ for H-H, p-H, and M -Ar where M means
antimuonium (n~e* atom). We apply the semiclassical and optical-potential methods to determine cross
sections for rearrangement collisions. At low energies these collisions are the dominant processes leading

to particle-antiparticle annihilation.

I. INTRODUCTION

The concept of antimatter and speculation on its
existence in the universe is more than seven de-
cades old.! Atom-antiatom interactions are of
great importance in any matter-antimatter en-
counter when either the matter or antimatter con-
sists at least in part of atoms or antiatoms that
are not wholly ionized. This is the case in the
laboratory for the interaction of heavy negative
antiparticles produced in accelerator experiments
with target matter. It may also be true for the
interactions between large amounts of matter and
antimatter in the universe.

The existence and consequences of cosmological
antimatter have been considered by Alfvén and
Klein,? Harrison,® Omnés,* and others.® Cosmol-
ogies have been developed in which the universe
contains equal amounts of initially mixed matter
and antimatter. After a large degree of annihila-
tion the matter and antimatter separate into dif-
ferent regions but may continue to interact at their
boundaries.

In any “big-bang” model or other model of the
universe that involves temperatures that were at
one time 210" K, particle-antiparticle production
in thermal collisions was prevalent in that stage
of development. Thus, antimatter existed in copi-
ous amounts at one time in the universe according
to such models irrespective of whether or not it
was in equal amount to the matter. It is then con-
ceivable that the same mechanisms proposed by the

ki

above authors®* or other mechanisms resulted in
the separation of at least some of the antimatter
from the matter.

It is therefore possible that antimatter does
exist now or did exist in sufficient amount and for
a sufficient time that there are presently observ-
able consequences of its existence. One such pos-
sible consequence is the isotropic cosmic y-ray
background spectrum above 1 MeV. Stecker, Mor-
gan, and Bredekamp® and Stecker and Puget” have
considered y rays that would result from the decay
of neutral 7 mesons produced by annihilation in a
thermal hydrogen-antihydrogen mixture. They
find that the spectrum of such y rays coming from
red shifts of up to about 200 agrees well with the
experimental results. Other possible consequences
that have been considered include the possibilities
that quasars may consist of annihilating matter and
antimatter®? that the Tunguska “meteor” consisted
of antimatter,®! and that ball lightning may be
caused by particles of antimatter.?

It has been pointed out by the present authors
that atom-antiatom interactions are important in
the treatment of matter-antimatter annihilation.!®
In any matter-antimatter mixture in which the
atoms and antiatoms are not wholly ionized, atom-
antiatom rearrangement collisions can lead to
bound states of the nucleus and antinucleus from
which the annihilation can proceed.'1%1¢ gince
the cross sections for such collisions at low en-
ergies are considerably higher than the direct par-
ticle-antiparticle annihilation cross sections,®
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atom-antiatom interactions may play a dominant
role in such a mixture. It is the purpose of this
paper to give a detailed treatment of atom-anti-
atom interatomic potential energies and rearrange-
ment collisions.

In Sec. II we give a general discussion of the
principal features of atom-antiatom interatomic
potential energies and compare them to atom-atom
interatomic potential energies. In Sec. I we dis-
cuss the various aspects of atom-antiatom rear-
rangement collisions and present two methods with
which approximate values of the cross sections
may be calculated. In Secs. IV-VII we present our
calculations of interatomic potential energies and
rearrangement cross sections for certain specific
atom-antiatom pairs. The results are compared
to the results of others where they exist. Brief
reports of this research have been published.!® 4

The existence of antimatter in the universe is at
present speculative, and it is not at all clear under
what physical circumstances cosmological atom-
antiatom interactions should be considered. For
collision energies above about 100 eV the direct
particle-antiparticle annihilation cross sections
apply. At lower energies rearrangement colli-
sions are important. If densities are not suffi-
ciently high to lead to breakup, annihilation follows
formation of the nucleus-antinucleus bound state,
and the annihilation cross sections are then given
by the rearrangement cross sections.

In this paper we take atom-antiatom interactions
to mean interactions between the members of any
pair consisting of a neutral or ionized atom and a
neutral or ionized antiatom, exclusive of the case
in which both atom and antiatom are wholly ion-
ized. We consider only Coulomb interactions; all
radiative effects and all relativistic effects, such
as magnetic interactions and retardation, are un-
important for the results obtained here. Likewise,
the effects of annihilation on the atom-antiatom in-
teratomic potential energies and rearrangement
cross sections are negligible.

II. ATOM-ANTIATOM INTERATOMIC POTENTIAL
ENERGIES

The atom-antiatom interatomic potential energy
V is the difference between the total energy of the
atom-antiatom pair calculated with the nuclei held
fixed at an internuclear distance R and the energy
for the nuclei fixed at R=«. Knowledge of this
potential energy is necessary for calculating the
rearrangement cross sections by the methods giv-
en in Sec. III.

In coansidering V for an atom-antiatom pair and
in comparing it to V for the corresponding atom-
atom pair it is useful to employ the Rayleigh-
Schrédinger perturbation expansion?® for V in which
the Coulomb potential energy between the particles
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of the atom and the particles of the antiatom is
taken to be the perturbation potential energy v.
The Hamiltonian of the system therefore has the
form

2.1)

where H, is the unperturbed part of the Hamiltonian
with the nuclei held fixed. If the charge of the
nucleus is Ze, the charge of the antinucleus is
— Ze, the number of electrons is N, and the num-
ber of positrons is N, then

Nl N
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where subscripts i and 7 denote the 7th electron
and 7th positron, the ¥, are the vector distances
from the nucleus to the electrons, the ;7 are the
vector distances from the antinucleus to the posi-
trons, and R is the vector distance from the anti-
nucleus to the nucleus. Atomic units are used in
Egs. (2.2), (2.3), and throughout the paper (ex-
cept that the Bohr radius g, is included when dis-
tances are stated).

The unperturbed energies and normalized eigen-
states of the system are denoted by E, and ¢,.
These quantities are solutions of the unperturbed
Schrddinger equation

(Ho‘Ek)¢k:0 . (2.4)

In order for the ¥, to be solutions to Eq. (2.4) they
must be the product of unperturbed wave functions
of the atom and antiatom or the normalized sum of
such products, each having the same E,. Such
products cannot involve exchange in the electron
and positron positions because of the different
signs of the electron and positron charges.

Since v is zero at R=, the total energy & at
R= is equal to E, when the system is in the state
p, and therefore the interatomic potential energy
is given by

V,(R)=8(R)-E, . (2.5)

The matrix element of v between the two unper-
turbed eigenstates is

Ay = [vtop,dr (2.6)

where & and 7 each denote the collection of quantum
numbers that characterize the unperturbed state
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of the system. The perturbation expansion of the
interatomic potential energy between the atom and
antiatom for the system in a state p is then

Vp=é’1+82+53+-” ’ (2.7)
with
81=App9 82=E —Eé&_l_%’?' )
rtp Ep A @.8)
App AL A AprA
6= T ey, 5 A
: 314 (B, = ED (B, —E;) "7 sy (B,—Ep)°

where the &, denote the contributions to V, which
are of order # in v and where the summations are
understood to be integrations when E, and E; are in
the continuum,

In Egs. (2.7) and (2. 8) the term &, is the elec-
trostatic potential energy between the unperturbed
atom and antiatom. For large values of R this

~term is the sum of the potential energies between
the static multipoles of the atom and antiatom.
The effect in V, of distortions in the wave function
caused by v appear in the higher §,. These dis-
tortions involve correlation in the electron and
positron positions and/or induced multipoles.

The interatomic potential energy of the corre-
sponding atom-atom pair (the pair formed by re-
placing the antiatom with its charge-conjugate
analog) is given by the preceding equations with
two important changes.

First, the unperturbed wave function of the
atom-atom pair must satisfy the Pauli principle
with respect to exchange of electrons between the
two atoms. This is accomplished by requiring
that the unperturbed wave function be one of a set
of specific linear combinations of products (with
equal eigenenergies) of the individual atom wave
functions, that involve exchange of electrons be-
tween the atoms. By virtue of the atom-atom sign
of charge symmetry, such a wave function is a
solution to the Schrédinger equation (2.4). The re-
sult of this is that each §, [Eqs. (2. 8)] and conse-
quently V, [Eq. (2.7)] is the sum of two parts.

The first part of §,(V,) is equal to the value that
would have resulted if no exchange were present
(as in the atom-antiatom case). The terms making
up the second part are the result of exchange and
are usually denoted “exchange forces.” The ex-
change forces are roughly proportional to the de-
gree of overlap of the electron wave functions of
the two atoms and therefore are negligible for
large values of R. Such exchange forces are the
predominate feature of atom-atom interatomic po-
tential energies for intermediate values of R
(roughly lag SR 56a,) when at least one atom is
neutral, but they are entirely absent in atom-anti-
atom interatomic potential energies.

Second, v for the corresponding atom-atom pair

is just the negative of v for the atom-antiatom pair.
Thus, each &, for an atom-antiatom pair will be
equal in magnitude to the nonexchange part of the
8, for the corresponding atom-atom pair and will
have the same sign for » even and the opposite

sign for » odd. For long-range values of R (rough-
ly R 210a,), where exchange forces may be ne-
glected, the perturbation expansion for V of an
atom-antiatom pair is therefore readily obtainable
from the perturbation expansion for V of the cor-
responding atom-atom pair.

For more specific consideration of the inter-
atomic potential energy for an atom-antiatom pair
we delineate three cases, in each of which the
atoms and antiatoms are in states of zero total
angular momentum and hence possess no static
multipoles beyond monopole. In case (i) both atom
and antiatom are neutral, in case (ii) one is neu-
tral and the other is ionized, and in case (iii) both
are ionized. The important features of V for these
cases for small, intermediate, and long-range val-
ues of R are as follows.

For an atom-antiatom pair, V is given by

V=-ZZ/R as R-0 . (2.9)

This dominant term is part of §; [Egs. (2.3) and
(2.5)-(2.8)] and is opposite in sign to the similar
term in the corresponding atom-atom pair.

In case (i), V at long range is nearly equal to V
for the corresponding atom-atom pair where it is
dominated by the negative long-range R™® mutually
induced dipole-dipole correlation energy that comes
from &,. The negative R™® and R™° higher induced
multipole terms of §, may also be important.
Taken together we therefore have for this case at
long range,

V==Cg/R®~Cy/R®~Cyy/RV—... , (2.10)

where the C’s are the same as those in the eorre-
sponding atom-atom pair and have been tabulated!®
or may be obtained from approximate formulas.!% !
The terms of §, “cut off” within the range of inter-
mediate values of R (i.e., they become less :
strongly dependent on R and approach constants as
R-0), and &, remains negative, Within the inter-
mediate range, §;, which is an exponentially de-
creasing function of R (since it depends on over-
lap), becomes important. Its sign is positive for
R Z2a,. Owing to the difference in sign of &, and
8, and to the effect of higher &,, no prediction
about the sign of the potential throughout this range
can be given.

In case (ii), V is again nearly equal to that of the
corresponding atom-atom pair at long range where
it is dominated by the negative monopole-induced-
dipole energy of §,. This energy is given by'®

V=-2Z,a/2R*, 2.11)
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where Z, is the absolute value of the charge on the
ionized member of the pair and « is the polariz-
ability!® of the neutral member, which is the same
for an antiatom and the corresponding atom.
Equation (2.11) and the higher induced multipole
and correlation energies of &, cut off in the inter-
mediate range of R where &;, which is again an ex-
ponentially decreasing function of R, becomes im-
portant. In this case, however, &, and V for the
members of this case are probably negative for
all values of R.

In case (iii), the dominant term of V is the
Coulomb attraction of the net charges of the ion
and antiion which comes from &,. For large R
this gives

V=-2'Z'/R , (2.12)

where Z’ and — Z' are the net respective charges
of the ion and anti-ion. For small R this term is
given by Eq. (2.9). The V of Egs. (2.12) and
(2.9) differ because of screening by the electrons
and positrons. The transition from one form of V
to the other will occur for values of R Sa,. At
these values of R other parts of &; as well, as the
other &,, will be important to V. However, for all
values of R it is probable that V is negative. For
R>aq, V is roughly the negative of V for the corre-
sponding atom-atom pair.

III. ATOM-ANTIATOM REARRANGMENT COLLISIONS

In this section we present a qualitative discus-
sion of atom-antiatom low-energy rearrangement
collisions based on the Born—-Oppenheimer approx-
imation. The concept of a critical radius for the
collision is introduced and two approximate meth-
ods for calculating the cross sections for rear-
rangement collisions are presented.

In any atom-antiatom collision the possibility
exists that the particles will undergo a rearrange-
ment in which the nucleus and antinucleus become
bound and some or all of the electrons and posi-
trons are emitted. Because of the large available
binding energy of the nucleus-antinucleus system,
there is always a rearranged state with a total
energy equal to that of the initial state. There-
fore, there is no lower-energy threshold for atom-
antiatom rearrangement. However, when the col-
lision energy, which resides principally in the
nucleus and antinucleus, exceeds the change in
binding energy of the electrons and positrons dur-
ing rearrangement, kinetic energy must be car-
ried away by the emitted electrons and positrons.
It is unlikely that any more than a small fraction
of the collision energy can be transferred to the
kinetic energy of the emitted electrons and posi-
trons. The probability of rearrangement is there-
fore very low at collision energies in excess of
the total binding energy of the electrons and posi-

trons.

At collision energies below the lesser of the ex-
citation energies of the atom and antiatom the only
inelastic process allowed is that in which the nu-
cleus and antinucleus become bound. We will take
“low energy” to mean such energies, and we will
give principal consideration here to atom-antiatom
collisions at low energy. Steigman®’ and Omidvar?®
have discussed higher-energy collisions.

For low collision energies the velocities of the
bound electrons within the atom and bound posi-
trons within the antiatom are much greater than
the atom-antiatom relative velocity prior to and
during most of the rearrangement. Under this
circumstance, according to the Born—Oppenheimer
approximation,? the wave function and energy of
the electrons and positrons are very accurately de-
scribed by the solution to the Schrodinger equation
obtained by holding the nucleus and antinucleus
fixed, which gives the interatomic potential energy
V (Sec. II). The atom as a whole and the antiatom
as a whole move under the influence of V. In
treating an atom-antiatom collision we will first
give consideration to the wave function and energy
of the electrons and positrons in the Born-Oppen-
heimer approximation. In this approximation we
take the initial state to be the state in which all
electrons and positrons are bound in the ground
state in the field of the fixed nucleus and antinu-
cleus. We take the rearranged state to be a state
in which one or more of the electrons and positrons
(which may be in the form of one or more ground-
state positronium atoms) are at infinity with zero
kinetic energy and the remaining electrons and
positrons are in the ground state in the field of the
fixed nucleus and antinucleus. We do not consider
excited levels of either state. In cases in which
sufficiently low-lying excited levels exist it is ex-
pected that the resultant state mixing will not usu-
ally have a substantial effect on our results.

In the initial state, for a sufficiently small value
of the nucleus-antinucleus distance R, the proxim-
ity of the oppositely charged nucleus and anti-
nucleus will reduce the effective charge by which
the electrons and positrons are bound, to the extent

that at least one electron or positron will become
unbound. This value of R is called the critical

radius R, which in most cases will have a value on
the order of ay. If the exact total-energy curves
for the initial state and rearranged state are
plotted as functions of R they will join at R =R,
For R >R, the energy curve of the rearranged state
will lie above that of the inital state by an amount
equal to the binding energy of the emitted particles
(minus the binding energy of positronium, if an
electron and positronhave been emitted as positron-
ium). For R<R, the curves will be identical

since they describe the same state., The splitting
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of one state into two as R increases through R,
occurs because the number of bound states avail-
able to the electrons and positrons increases as

R increases. In an actual case in which the curves
are obtained by an accurate approximate calcula-
tion,: they will cross or join in the vicinity of R,.

In some cases in which there are either no elec-
trons or no positrons it is possible in principle for
all of the electrons or positrons to remain bound for
all values of R. In such cases no R, exists, and we
will not consider them further.

In all but the simplest cases that involve only one
electron or one positron, more than one R, will
exist. For instance, in the interaction of a neutral
helium atom with a singly ionized antihelium atom,
there will be one R, for the unbinding of one elec-
tron, a second for the unbinding of one electron and
a positronium atom, and a third for the unbinding
of the two electrons and the positron as free par-
ticles.

The preceding description of the wave function
and energy of the electrons and positrons is made
under the assumption that the Born—-Oppenheimer
approximation is valid for all values of R. This
approximation is, however, invalid for R ~R_ when
applied to the motion of the electrons or positrons
that become unbound at R=R,. As R approaches
R, from above, the mean velocity of these electrons
or positrons approaches zero in the Born—Oppen-
heimer approximation. Hence, when R approaches
R, there will be a point when their velocities be-
come roughly equal to the atom-antiatom relative
velocity. At this point the Born—-Oppenheimer
approximation breaks down and a direct coupling
develops between the motion of the nuclei and the
motion of the electrons and positrons that are to
become unbound. This coupling will lead to a
transferral of kinetic energy to the electrons or
positrons of an amount that is roughly equal to the
kinetic energy of the nuclear motion times the
ratio of the electron or positron mass to the nucle-
ar mass. This transferred kinetic energy is also
roughly equal to the portion of the kinetic energy
of the atom-antiatom motion that is associated with
the electrons or positrons. For R ~R, the Born-
Oppenheimer approximation is valid for the motion
of any electrons or positrons that remain bound.

The motion of the atom as a whole and antiatom
as a whole in the Born-Oppenheimer approxima-
tion can be taken with good approximation as the
classical orbit in the interatomic potential energy.
This approximation is valid in the initial stage of
the collision for R >R,. For a sufficiently small
impact parameter, R will become less than R,
and a small fraction of the atom-antiatom kinetic
energy is transferred to the electrons or positrons
that become unbound. However, the effect on the
atom-antiatom motion is negligible. After R has
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passed through its minimum value it will approach
R, from below, and the system will with high prob-
ability remain on the rearranged potential-energy
curve,

The high probability for rearrangment occurring
when R has been less than R, can be made plausible
in the following way. The correlation in motion
between the unbound electrons or positrons and the
nucleus and antinucleus is destroyed by the break-
down in the Born—-Oppenheimer approximation when
R =R, In addition, the energy transferred to the
electrons or positrons is such that their wave func-
tion extends throughout a volume of space which is
large compared to that occupied by the nucleus and
antinucleus. Hence once R has become less than
R, it is highly probable that the final state is one
in which rearrangement has occurred.

A semiclassical method can be used to calculate
the cross section for rearrangement.? The quan-
tum-mechanical atom-antiatom interatomic poten-
tial energy is determined in the fixed nucleus or
Born-Oppenheimer approximation. The atom-anti-
atom motion in this potential is treated classically
and the turning point R, of the orbit is determined as
a function of the impact parameter R,. If R, is
less than R, the rearrangement will be assumed
to occur.

For an interatomic potential energy V (V will
be spherically symmetric for the cases we con-
sider), R, is a function of R, and the collision en-
ergy E. The quantity E is the total kinetic energy
in the center-of-mass frame of reference of the
atom and antiatom treated as single particles. The
quantity R is determined by equating the initial
collision energy and angular momentum to the en-
ergy and angular momentum at a turning point R;,

where the motion has no radial velocity. The re-
sulting equation for the R; is
[V(R;)-E]R®=-ER?, (3.1)

where V(R;) is the value of the interatomic poten-
tial energy at R;. There will be one or more roots
of Eq. (3.1), depending on E and V. The value of
R, is then the maximum R;,

RO = (‘Ri )ma.x

As R, is decreased R decreases. In some
cases Ry is a discontinuous function of R, for fixed
E, The value of R; at which R, becomes equal to
R, or suddenly drops below R,, is designated R,,.
Rearrangement will occur only for Ry< R, and the
rearrangment cross section ¢ will be

(3.2)

(3.3)

In Sec. V the semiclassical method is applied to
hydrogen-antihydrogen rearrangement scattering
and in Sec, VI to antimuonium-argon rearrange-
ment scattering.

o=7nR%, .
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If the semiclassical method is not applicable
because the atom-antiatom motion is not classical,
then an optical-potential method may be employed.
In this method the atom-antiatom scattering is
treated as two-particle scattering in the presence
of a potential energy, which is the interatomic po-
tential energy V plus a negative imaginary poten-
tial energy V;. The quantity V; results in absorp-
tion of the incoming wave, which corresponds to
rearrangement. ‘ V; is taken to be 0 for R>R,, and
its magnitude and form for R <R, are chosen to
maximize the absorption cross section. This
choice of V, corresponds to the conclusion of the
semiclassical discussion that rearrangement oc-
curs only for R<R, and then with near unity
probability. Inthe optical-potential method the re-
arrangement cross section is equal to the absorp-
tion cross section. In addition this method may be
used to determine the scattering phase shifts. This
method is used in Sec. VI to treat antimuonium-
argon scattering,

IV. HYDROGEN-ANTIHYDROGEN INTERATOMIC
POTENTIAL ENERGY

A. Long Range

At long range (R 2 10q,) the perturbation potential
energy v [Eq. (2.3)] is, on the average, quite
small so it is convenient to use the perturbation
expansion, Egs. (2.7) and (2.8), to find the hydro-
gen (H) -antihydrogen (H) interatomic potential en-
ergy V. We take both atoms to be in the ground
state. We use the two-center multipole expansion
for v which is valid for 7, +7,< R (Fig. 1):

24

2 © o .B m=+<g‘ 1
e B riry T (a+p8)!
"R w1 s RP L Tce (a+1m)I(B+ 1ml)!

X Pi™ (cos8,)Py™ (cosh,) cos[mlp, + d,)] ,
(4.1)
where the P’s are the associated Legendreé poly-
nomials and < ¢ denotes the lesser of ¢ and B.
After the sum over w has been carried out for
each combination of values of @ and B, the ¢ =1,
B=1 term is the dipole-dipole term of v, the ¢ =1,
B=2 term is the dipole-quadrupole term of v, etc.
The first-order perturbation energy &, is zero

X

@
R’ p
FIG. 1. Coordinates used in the definitions of the
H-H variational wave functions ¥,, ¥z, and ¥,. The
points x are the centers of the wave function ¥,.
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=3

when evaluated by substituting Eq. (4.1) for » in
Egs. (2.6) and (2. 8) due to the angular integra-
tions. This is consistent with the discussion in
Sec. II, indicating that &, is negligible at long
range for this case.

The second-order perturbation energy &, for
H-H has been evaluated® using Eq. (4.1) with the
sign changed. The value of §, for H-H is equal
to that of H-H, hence,

8,=-6.50/R®~124,4/R® -~ 3286/R® ... .

(4.2)

The R™® term is the (dipole-dipole) X (dipole-dipole)

contribution, the R™®term is the (dipole-quadru-

pole) X (dipole-quadrupole) contribution, and the

R term is the sum of the (dipole-octupole)

x (dipole-octupole) and (quadrupole-quadrupole)

% (quadrupole-quadrupole) contributions.

The third-order perturbation energy &5 has a
lowest-order term contribution of R} which
comes from the (dipole-dipole) X (dipole-dipole)

x (quadrupole-quadrupole) and (dipole-dipole)

x (dipole-quadrupole) x (quadrupole-dipole) contribu-
tions associated with the first term of é’a in Egs.
(2.8). The second term of &, is zero when Eq.
(4.1) is used for v. The R™ term of &, for any two
hydrogenlike atoms was calculated by Morgan?® us-
ing a closure-expansion method. The result is in
agreement with a more accurate variation-pertur-
bation calculation of the same quantity by Chan and
Dalgarno.

A brief description of the closure-expansion
method as applied to the R™! term of &, follows.
The first term of §, [Egs. (2. 8)] can be written as

2, i 8
éssza 0E3m,,+Z%)Rm, 4.3)
m= n= m=
in which
- EN"(E,\'
E3mn=Eqg? Zz-;o (ﬁ) (EI,—) AorAwm Aro (4.3a)
%0
E} E\"
o 4 e (E
R, =2E, kzgo (Eo-E,) (E0> AgpAp Aso
1#0
for m#3, (4.3b)

EE,}

Ry=Eq® 2 A

8o £20 (Ey - Ep) (Ey - E,
1#

7 Aus i Ago -

(4. 3c)
Closure may be used to calculate each of the Ej,,,.
The indices m and » in Ej,, are restricted to be no
greater than 2, since otherwise divergences re-
sult. To calculate the Ej,, using closure we use
Eq. (2.4) and write

E"E/ Ay = [ E"0f vE M, dT= [ (HHvH, dT .

(4.4)
The closure relation
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gzozl)k(ﬂwt (F)=06(F - ) = v () (4.5)
is then used to perform the two summations in
each of the Eg,,. Using the Hermitian properties
of Hf and neglecting terms that have Ay, as a fac-
tor, we obtain

Egpn=Eq @ ™" [o(HTw) (HvYe)dT . (4.6)

The values of the R"!! terms of the E,,, are found
by substituting the various relevant terms in the
multipole expansion for v, Eq. (4.1), into Eq.

(4. 6) and performing the integrations. These val-
ues are first used to obtain knowledge of the depen-
dence of the matrix-element product Ay, 4, A;o On
E, and E; when Ay, A, A, is considered as a func-
tion of these variables. This knowledge allows the
values of the R, to be placed within fairly definite
limits.?® With the values of the Ej,, and the allowed
ranges of the R,,, Eq. (4.3) gives

83=~(3700+17%)R™1 + O(R™™) . (4.7)
From the result of Chan and Dalgarno®” we find
83=-3986R+ O(R™) , (4.8)

which falls within the range of error given in Eq.
(4.7). The quantity §4 is small compared to §; at
long range. The long-range interatomic potential
energy of H-H may therefore be taken to be §, of
Eq. (4.2). The principal significance of §; is that
it leads to a difference in the H-H and H-H long-
range nonrelativistic interatomic potential ener-
gies. From Eq. (4.8) this difference is

Vion = Vg =T972R" 1 + O(R™Y3) . (4.9)

B. Short and Intermediate Range

For values of R<10q, the multipole expansion
Eq. (4.1) becomes inaccurate and also use of the
perturbation expansion for V[Eq. (2.7)] is ques~
tionable. Hence we use a variational method to de-
termine V.

Four variational wave functions were used
[Fig. 1 and Eq. (2.86)):

Y, =gp=mle 2, (4.10)
Yy=e Tt — by (4.11)
\I/y=e-a'(ri+ré) , (4. ]_2)
Aged)
Vp= o+ s SRR (4.13)
o= Yo re0 §—Ey

The first variational wave function ¥, is the un-
perturbed wave function; ¥, and ¥, are two-param-
eter variational wave functions; ¥, is the wave
function through first order in » in the Lennard-
Jones—-Brillouin-Wigner perturbation expansion. '
Each wave function is used in the variational ex-
pression for the energy,
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8= [YHY dr/ [ ¥ar. (4.14)

For ¥, and ¥,, &§ is minimized with respect to
variations of their parameters. From Eq. (2.5),
the interatomic potential energy V is given by

V=8 -Ey=8 +1. (4.15)

For ¥,, ¥,, and ¥, Eq. (4.14) is evaluated exact-
ly resulting in an upper bound to § and hence V.
For ¥, the closure approximation is used in the
evaluation of Eq. (4.14) and an approximate upper
bound to V is obtained.

The results for V for the different trial wave
functions are shown in Fig. 2. Also shown in Fig.
2 are the interatomic potential energies for the
rearranged states. Curve I shows V+2 for the
state in which ¢~ and e* are in the ground state of
positronium with zero kinetic energy, and curve I
shows V+1 for the state in which ¢~ and ¢* are
free particles with zero kinetic energy. The criti-
calradii R;;and R ;;, as definedinSec. III, arethe
values of R at which curves I and II cross the
curves for V and are given in Table 1.

The wave function ¥; of Eq. (4.11) is exact in
the limits R= (g=1, 5=0) and R=0 (¢=0, b=3)
corresponding to free positronium. The integrals
in Eq. (4.14) for ¥, can all be evaluated analytical-
ly. The values of ¢ and b that minimize § show
little tendency to approach their R=0 values as R
decreases, and indeed the minimum of § disap-
pears for R<1.2a,. The negative values of b in
Fig. 3 show a tendency of the electron and positron
to be farther apart on the average than in the un-
perturbed state.

The wave function ¥, through the parameter R’
allows the centers of the electron and positron
charge distributions to be shifted by the same
amount away from the opposite nucleus. The in-
tegrals in Eq. (4.14) are easily determined. For
small R, ¥, approximates a generalization of the
wave function that Wightman found®® gave a good
approximation to the energy of the 7"-H system.
Figure 4 shows the values of the variational pa-
rameters a’, R’ as functions of R.

The trial functions ¥,, ¥,, and ¥, are not
capable of giving the negative long-range van der
Waals energy of H-H and indeed give positive val-

TABLE 1. Values of the critical radii R, and R,y for
the trial wave functions ¥,, ¥, %, and ¥%,.

Wave
function R,y R,y
¥, 1.31a, 0.83a,
Yy 1.28aq undefined
v, 1.21q, 0.62a,
‘Ilﬁ 0. 5a0 0. 2(10




1818 D. L. MORGAN, JR. AND V. W, HUGHES

=3

FIG. 2. H-H interatomic poten-
tial energy V as a function of nu-
cleus-antinucleus separation R in
units of 3. Curves «, S, v, and 6
are approximations to V in the ini-
tial state. Curve Iis V+3% for the

rearranged state when the e¢* and e~
are emitted as an atom of ground-
state positronium with zero kinetic
energy. Curve IIis V+1 in the re-
arranged state when the e* and e~
are emitted as free particles with
zero kinetic energy.
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ues of V for R21.6a, (Fig. 2). These variational
wave functions do not include the correlation in
the positions of the electron and positron that lead
to the van der Waals energy.

The wave function ¥, [Eq. (4.13)] is the wave
function for H-H in the Lennard-Jones-Brillouin-
Wigner perturbation expansion taken through first
order in » and includes correlation. When it is
used in Eq. (4.14), & is the Lennard-Jones-Bril-

where the A,, are given by Eq. (2.6). Note that in
Eq. (4.16), V appears in the denominators of the
sums as a result of the form of ¥;. In practice
this usually requires that V be obtained by an
iterative solution. To avoid the difficulty in cal-
culating and using A, we drop the third term on
the right-hand side and make a closure approxima-
tion for the second term. We write

Agplp 1
louin—-Wigner expansion for the energy carried si0 V-1-E, “v-1 kZ;‘-)D AgrAr
through third order in ». The result for V is 1
A A + EpAgAm
V=A00+E 'V—}Bi—_%--f- V=1 120 V-1-E,
R0 A" s =Epy+Ej . 4.17)
vz (v-1 —0}; Y (V-1-E;) °’ (4.16) We drop the term Ej and apply the closure rela-
10 k tion, Eq. (4.5), to obtain
1.2 0.2
N — 0.1
a b
a
1.0 0.0 FIG. 3. Values of the variational
b ] parameters a and b of ¥, as func-
\ / tions of R in units of a.
0.9 /\ -0.1
0.8 -0.2
I 2 3 4
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FIG. 4. Values of the variational

parameters a’ and R’ of ¥, as func-
tions of R in units of a.

which equals about 8% of V from Eq. (4.2).
To ascertain better the effect of the neglect of
EJ we have calculated V for H-Hneglecting exchange

TABLE II. Values of the interatomic potential energy
V for H-H in atomic units as a function of nucleus-anti-
nucleus separation R. In column ¢ are the values of V
obtained by the use of ¥; and closure. In column J-B are

7
1.2
1.0 /
0.8 — —
o /
o q’
N 0.6 / .
o
\D '
/D
0.4 7V ] 7
0.2 \\
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
R/ag
1
E20=V_—_—T<I ngvsz-Aﬁo) , (4.18)
where
v=1/x%+1/%-1/7r-1/R (4.19)
and
Ag=(1/R)e?® (-1 -3R+3R*+4RY) . (4.20)

Using Eqs. (4.16)- (4.18), we obtain a quadratic
equation for V whose solution is

V=3(Ag+1) =3[ (Ag - 12 +4( [ d0v? dr - A%)]V2 .

(4.21)
The integration can be done analytically. Diver-
gent integrals are obtained if closure is used for
the third term of Eq. (4.16) or for Ej in Eq.
(4.17). The solution for V obtained from Eq.
(4.21) is shown as curve § in Fig. 2, and given in
Table II.

Estimates of the values of the terms neglected in
Eq. (4.186) to obtain Eq. (4.21) can be made as
follows. At long range the third term of Eq.
(4.16) is given by Eq. (4.7) which is small com-
pared to V from Eq. (4.21) for R>3g,. An esti-
mate of Ej; at long range can be made by compar-
ing the asymptotic expansion of the left-hand side
of Eq. (4.17), given by Eq. (4.2), with the asymp-
totic expansion of E,, obtained from Eq. (4.21) as

V=Ey=~6R%-135R"®-3937.5R"10—... ,
(4.22)
These two expansions determine Ej= —0.5R™%+...,

the values obtained by Junker and Bardsley by the use of a
75~term variational wave function (Ref. 29).

R v
5 J-B

0.1a, —8.807
0.2a, —-3.970
0. 5a —-1.266
0.8a ~0.643
0.975a, —0.277201
1.0a, —0.442 —0.257076
1.2a, -0.312
1.5a, —0.1894 —0.055216
2.0a, —0.0843 —0.010219
2.4a, —0.0446
2.5a, —0.001244
3.0, —0.01757 —0.000 040
3.05a, —0.000033
3.10a, —0.000031
3.15a, —0.000039
3.4a, —0.009 67
3.5a, —0.000165
4.0a, —0.00410 —0.000301
5.0a —0.001 077 —0.000208
6.0a, —0.000315 ~0.000154
8.0q, —0.000 0387
10.0a, —0.000 007 96 —0.000008
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using Eq. (4.21) with the appropriate v for H-H:
==1/x,-1/x,+1/7+1/R . (4. 23)

Curve 2 of Fig. 5 shows the result. Curve 1 of
Fig. 5 shows accurately calculated values of V.2
At R=3ay, curve 2 lies above curve 1 by an amount
that is somewhat in excess of the exchange contri-
bution to the energy of H-H as given by Heitler—
London theory. Hence the neglect of Ej is justi-
fied for H~H for R>3a,. We conclude that use of
Eq. (4.21) gives a reasonably accurate value of V
for H-H for R>3aq,.

For R=<0. 5q, the dominant term in » of Eq.
(4.19) is =1/R. Hence V is obtained from Eq.
(4.21) to a good approximation.

C. Summary of Results

Tables II and III and Fig. 6 summarize our re-
sults for V for H-H for the different ranges of R.
Also Table I and curve J-B of Fig. 6 give results
of a recent calculation by Junker and Bardsley?®
based on the use of a 75-term variational wave
function. Our curves @, B, and y and the J-B
curve are derived variationally and provide upper
bounds to V. Our curve 5 is an upper bound if E,
in Eq. (4.17) and the third term in Eq. (4.16) can
be neglected; we have argued that the curve § is in-
deed an upper bound for R > 3a,.

V. H-H AND p-H SCATTERING

Using the interatomic potential energy V obtained
from Sec. IV, we apply the semiclassical method
discussed in Sec. III to calculate the total cross
section for the rearrangement collision:

(5.1)

where Pn denotes a protonium atom (bound p, )
and Ps is a positronium atom.

Using V as specified in Table IV we determine
the turning point R, of the classical orbit as a

H+H-~Pn+(Ps, or e"+e*),

D. L. MORGAN, JR.

AND V. W. HUGHES 7

TABLE III. Results for interatomic potential energy V
of H-H as a function of internuclear distance R.

R Va g
R= ].an

Equation (4.2)
10ay=R >3aq, Equation (4.21)
3ay> R >0.5q Uncertain

0.5ay>R Equation (4.21)

function of the impact parameter R; and collision
energy E by solving Egs. (3.1) and (3.2)., A
graphical solution is illustrated in Fig. 7. The
functions — ER? and (V - E)R? are plotted vs R for
a low-energy collision. If a horizontal line is
drawn that intersects the upper curve at R= Ry,
then the largest value of R at which this line inter-
sects the lower curve is Ry. R, is a discontinuous
function of R, due to the maximum in the (V - E)R?
curve at R=R,,. The value of R, that gives Ry=R,,
is Ry, since Ry <R, for R <R,., as applied to either
final state in Eq. (5.1). In our calculation R,, is
determined numerically for each E and then R, is
obtained.

The total rearrangement cross section ¢ includ-
ing both final states in Eq. (5.1) is given by Eq.
(3. 3)and is shownas curve 1 in Fig, 8 and tabulated in
Table V. Alsoshownas curve 2in Fig. 8 arethe re-
sults of Junker and Bardsley? for the cross section.
Curve 1is valid for E between 3x107° (10" % eV)and 3
%1072 (1 eV). For E$3x10® the classical-orbit
approximation is not valid, and for E23x10-2, val-
ues of V for R<3a, (Where g, is the Bohr radius)
are required but in this region V is uncertain. An
accurate power-law fit to the solid portion of
curve 1 is given by

0=5,0E%%2,42 | (5.2)

- 0.2
3 |
a i
~ 0.l ]
I
. FIG. 5. H-H interatomic po-
z \ : ;
> 0.0 tential energy V as a function
L — T of R in units of qg. Curve 1 is
2 — ] an accurate form of V from the
-0.1 N work of Kolos and Roothaan
| (Ref. 28) Curve 2 is an approxi-
\_ mation to V using a wave func-
-0.2 \\/ L tion similar to ¥, and closure.
-0.3
(o] | 3 4
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FIG. 6. H-H interatomic po-
tential energy as a function of
nucleus-antinucleus separation
R in units of qy. Curves a, B,
v, 6, I, and II are defined as in
Fig. 2; curve J-B is the result
of the use of a 75-termwave func-
tion by Junker and Bardsley
(Ref. 29). A cube-root scale
has been used along the vertical
axis to illustrate the peak in
curve J-B at 3.1qy and to allow
all curves to be shown.

,_.

The relative probability for formation of the
two final states in Eq. (5.1) is difficult to deter-
mine, The relative probability for Ps formation
is made greater by the fact that R ;> R ;;, but it
is made less by the greater phase-space restric-
tion imposed on Ps formation.

The elastic-scattering cross section for H+H
at low energy is approximately equal to o since
several angular-momentum waves are involved in
the collision which is highly absorptive.

The semiclassical method can be applied to cal-
culate the rearrangement cross section for

p+H-~Pn+e . (5.3)

The p-H (or p-H) interatomic potential energy V
can be determined for different ranges of R as fol-
lows:

FIG. 7. Illustration of the solution of Eqs. (3.1) and
(3.2) and a determination of Ry, for an interatomic po-
tential energy similar to that found for H-H by the use
of ¥, and closure.

~

(i) For R<a, we use the V determined by Wight-
man® for the 7"-H system.

(i) For agy< R<4.5a, we use Bates’s calcula-
tion® of the electron binding energy of »-H.

(iii) For 4.5ay< R<20qg, we use a form for V
that joins smoothly with V in regions (ii) and (iv).

(iv) For R> 20q, we use the long-range mono-
pole-induced dipole energy'®*® given by

=-2,251R*, (5.4)

The resulting V is shown as curve I in Fig. 9 and
is given in Table VI. The critical radius R, is
equal to 0,8394a,.2

The semiclassical method is applied in the same
manner as for H-H and the resulting cross section
is shown as curve I of Fig. 10 and in Table VII.
The cross section is valid for 3x10"7 (10 eV)3S E

TABLE IV. Detailed form used for the interatomic
potential energy V for the calculation of the H-H rear-
rangement cross section for various ranges of nucleus~-
antinucleus separation R.

R

\4

R=1lgq,
1llay=R=9a,

9ay= R = 34

3ay=R=0.5aq,

0.5a,=R

Equation (4.2)

Smooth interpolation of
above and below forms

Equation (4.21)

Any smooth interpolation
of above and below forms

Equation (4.21)




E (a.u.)

<3x10"% (1 eV). For lower energies the classical
orbits are not valid and for higher energies the
method we use has limited accuracy.

In view of the difference in the H-H rearrange-
ment cross section determined here from ¥; and
that of J-B?® and of the astrophysical importance of

TABLE V., The hydrogen-antihydrogen rearrangement
cross section o, determined from V as given in Table IV,
in units of a} as a function of collision energy E in atomic
units.,
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o 320 FIG. 8. H-H rearrangement
S \ cross section in units of 1ra§ as

~ a function of collision energy in

T atomic units, obtained by the
]': \ semiclassical method. Curve 1

b 10 N shows the results obtained in
\ \ the text; curve 2 shows the re-

2 sults of Junker and Bardsley

\ (Ref. 29).
3 AN
! -6 -5 -4 -3 -2 -1
10 10 10 10 10 10 |

this cross section, ® it would be valuable to have
further calculations of V,;_z and a more fully quan-
tum-mechanical calculation of the rearrangement
collision,

VI. ANTIMUONIUM-ARGON SCATTERING

The scattering of an atom of antimuonium (i,
bound u-, e) by an atom of argon (Ar) is important
to the possible conversion of muonium (/, bound
u*, e°) to antimuonium as it may occur in argon
gas.?! The rearrangement cross section and the

elastic scattering cross section for -Ar are

E - important to the probability of this conversion,2:32
5 00x 10 16 The M—'—ér interatomic potential energy is equal
8. 00 X 10 186 to that of H-Ar. Because of the complexity of the
1.25 %107 162
2,00 % 107 140
3.15x10% 123 TABLE VI. Interatomic potential energy V for p—H in
5.00 X107 107 atomic units as a function of internuclear separation R.
8.00 %107 94 The sources of the values are given in the text.
1.25x 10" 83
2.00x 10" 73 R 14
3.15x10™ 65
5.00 x 10~ 57 0.1ay —9.30
8.00 x 10~ 50 0.2a, —4.50
1.25x 10" 44 0.4a, = 2,00
2.00 x 103 38 0.7ay -0.929
3.15 x 1073 33 1.0ay -0.510
5.00 X103 28.6 2. 0ay —0.087
8.00 x 1073 24,2 4.0ay =0.0081
1.25x 107 20.4 7.0ay —0.001 36
2.00 x 102 16.8 10.0qq —0.000310
3.15 x 1072 13.7 20.0q, —0.0000141
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FIG. 9. Interatomic potential energy of p-H in atomic
units as a function of nucleus-antinucleus separation R
in units of ;. Curve I is a plot of V as given in Table V;
curve II is a plot of Eq. (5.4); curve IIl is V+% for the
rearranged state of Eq.(5.3).

argon atom, there is no simple method that will
allow a direct and reasonably accurate determina-
tion of the M-Ar interatomic potential energy V.
We have employed a variety of methods that are
applicable for different values of R, and have com-
bined them to give a single analytic formula as a
reasonable estimate for V%,

V=5,+8,, (6.1)
8,=-(8/R)e" ¥R+ A8, , (6.1a)
where

8y==(1- e"KGR’s)CGR‘e
-(1- e'”‘eR’e)CaR's

- (1= e K0R0c 210 (6, 1b)

A=[-0.21-0.068(fF “,—-R)
+0.0122 (6. 35 - R2Je™R/89% (g 1¢)

and
K=2.6, Kg=0.530, Kg3=0.305,
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Kyp=0.200, Cy =485,

Cm =39000 .

Ce=20.2,
(6.1d)

Equation (6. 1) expresses V as being roughly the
sum of the first-order energy &, and the second-
order energy &,.

The first term on the right-hand side of Eq.

(6. 1a) is an approximation to §, for RS, and is
the potential energy between the u~ and the Ar
core of the nucleus plus the ten inner electrons
screened by the outer eight electrons. The second
term is an approximation to §, for R22q,. The
quantity A for M-Ar can be computed for R > 6aq
by using the Hartree-Hartree wave function® for
Ar to determine &, and using Eq. (6.1b) for &,,
and it is given in Eq. (6.1c). The quantity A for
H-H can be determined from the results of Sec.
IV. It is observed that Ag.a; /Ay is independent
of R for R>6a,. Hence we assume that Eq. (6.1c)
can be applied for all R.

Equation (6. 1b) gives §, as a sum of the RS,
R"% and R long-range contributions to §,, and
each term is multiplied by an appropriate cutoff
factor to improve the accuracy for small values of
R. The values of Cg, Cz, and C,q are equal to the
corresponding quantities for H~Ar. Cghas been
accurately calculated,!® and we have determined
Cg and Cyy from the known polarizabilities of H and
Ar and a harmonic-oscillator-model equation for
the C’s.!" The oscillator energies are chosen to
fit the values of Cq4 for H-H, H-Ar, and Ar-Ar.!®
The value of Cyy has been increased to take into
account the R-!? and higher terms of §,. The pa-
rameters Kg, Kz, and K;y are determined by com-
parison with H-H and from the properties of a
Poincaré-type asymptotic expansion.*

We estimate the uncertainty in V_,, of Eq. (6.1)
to be about +10% for R210ay, and to increase to
a factor of 2 for ¢y< R<3aq.%® A fit to Eq. (6.1)
which is correct to within about 20% for 5a5< R
<15q, is given by

TABLE VII. Antiproton-hydrogen rearrangement cross
section o in units of ma§ as a function of collision energy
E in atomic units.

E o
108 4240
3x10% 1700
1075 930
3x 1070 555
10~ 315
3x 10 200
10-3 115
3x 103 60.0
102 29.5
3x 102 15.0
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FIG. 10. p-H rearrangement
cross section ¢ as a function of col-
lision energy E determined by the
semiclassical method. For curve I
the V of Table V is used. For curve
II the V of Eq. (5.4) and ¢ of Eq.
(7.4) are used.

E (a.u.)

=—240R%% | (6.2)

The semiclassical method can be used to deter-
mine the total cross section for the rearrangement
collision:

M+Ar—(u, Ar™)+(Psor e*+e’)+(n=1)e" .

(6.3)
We estimate that the critical radii for the final
states for n=1 or 2 in Eq. (6.3) lie between 0. 54,
and 1.5q,. These critical radii are greater than
the turning points of classical M-Ar orbits for low
collision energies. Using the method of solution
of Sec. V and Eq. (6.2) for V with the above esti-
mates of uncertainty, we find

O - ar = 557d§ (293 K/ T)*%° £ 20% , (6.4)

in which T is the temperature. Equation (6.4) is
not valid for 7<1 K where the classical-orbit ap-
proximation is not applicable, and for 7'>2000 K
where R, <5ay. Within most of the range 1 K<T
<2000 K several angular-momentum waves are
involved in Eq. (6.3), and the elastic scattering
cross section will be roughly equal to ogp_,,.

We have employed the optical-model method
discussed in Sec. III to calculate oy_,, for a colli-
sion energy of 1.86%10® (mean collision energy
of M and Ar at T=293 K). The real part of V is
given by Eq. (6.1) and the imaginary part, V,,
was chosen in accordance with the prescriptions
of Sec. III. It was found that there is a broad
range of depths and forms of V; which lead to a
nearly constant and maximum oj.4.. We find

0Fap = 56. 5Tl + 5% (6.5)
and
Gele\.:xtlc:487"1(%:t 10% , (6.6)

in good agreement with the results of the semi-

classical method for 7=293 K. The uncertainties
result from the uncertainties in V and R,.

It should be noted that when V was reduced in
magnitude by more than a factor of 2 around R
~2a, or increased in magnitude by more than a
factor of 3 around R ~2a,, oj._,, Was considerably
reduced.

VII. REARRANGEMENT CROSS SECTIONS IN OTHER
LOW-ENERGY ATOM-ANTIATOM COLLISIONS

General approximate formulas for the atom-
antiatom rearrangement cross section at low ener-
gies may be derived for two cases using the semi-
classical method. The first case involves atoms
and antiatoms for which the interatomic potential
energy V is negative and proportional to R™¥,
where p.>2, for large R. The second case applies
when the atom and antiatom are bqth ionized.

In the first case R, is a discontinuous function of
R,, and there is the additional requirement that V
be sufficiently negative for small R to ensure that
Ry <R, for R, <R,, where R, is determined from
R, according to the procedure used in Sec. V. Then
the rearrangement cross section depends principal-
ly on V for large R (RZ5qy). We take

=-CR " . (7.1)

Using the semiclassical method as applied in Sec.
V, we obtain

R, =((n-2)C/2E)"* (17.2)
and
0=u(,u—2)(2/”)'1(C/ZE)2/“1m§ , (7_3)

which is valid when R,, lies in a region where Eq.
(7.1) gives V approximately. Equation (7.3) can
be applied to atom-antiatom collisions in which one
member is neutral and the other ionized. Taking



7 ATOM-ANTIATOM INTERACTIONS

w=4 and C=+$q, where ¢ is the polarizability of
the neutral member, we obtain

0=Q2a/E) %nd} . (7.4)

For p-H (¢ =4.502), Eq. (7.4) gives curve II of
Fig. 10, which is a good approximation to the ac-
curate values of ¢ given by curve I.

In the second case we take

1825

V=-Z2Z/R (7.5)
for all R>R,. The quantities Z and Z are the mag-
nitudes of the charges on the ion and anti-ion. We
apply the semiclassical method by determiningas R,
the value of R, which gives Ry=R,. Hence, we find

o=+ ZZ/R,E)TR? . (7.86)

For singly ionized species, Z=Z=1 and, in general,
R.=0.5a,.
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