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bound two-body systems can give rise to a series
of excited states in the corresponding three-body
systems. 8

If one assumes for the He trimer the same wave
function arid interaction, its ground-state binding

energy can likewise be calculated, It is found to be
unbound by 0. 127 K, a result in agreement with
Stenschke 's. 9

Of some interest is the form of the correlation
function; f(r,&) resembles closely those derived by
Nosanow' and Massey and Woo' from their varia-
tional calculations for solid He. This is shown in
Fig. 3.

In summary, the following conclusions can be
drawn: (i) The ab initio potential of Bertoncini and

Wahl leads to a bound trimer of He. Other realis-
tic interactions should lead to the same result.
(ii) The trimer of He is probably unbound. If the
He- He potential is deeper than the He- He poten-

tial, as suggested by Bennewitz ef; al. ,
' a bound

trimer could result. (The author is at present
studying this. ) (iii) The correlation function de-
rived in this paper is similar to those obtained in
solid- He calculations. (iv) The behavior of the
E-vs-g curve from this work indicates inaccuracies
in the Kruger calculations.
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The ionization of E-shell electrons by heavy particles is examined in the energy region where the
projectile is moving faster than the orbiting electron. An explanation suggested for the rise of the

experimental results above the Born approximation is the mechanism of "charge exchange to the

continuum. ".An estimate of the effect shows reasonable agreement with experiment.

At sufficiently high energies, one expects that the
E-shell ionization cross section of an atom by a
charged projectile would be well described by the
first Born approximation. This approximation pre-
dicts a cross section proportional to Z, (Z, is the
projectile charge number), so that the ratio 8
= o(Z, )/Z, v(1) is expected to be unity where the pro-
jectile velocities are the same. In fact, experi-
mental results for projectiles of protons and n
particles show significant deviations from unity. '
Attempts have been made to explain these devia-
tions in both the low- and high-velocity regions of
the curve. We discuss only the high-energy end
here.

Two mechanisms ' have been proposed to explain
the deviation of R from unity at higher energies
based on initial-state polarization of the E-shell
electron by the projectile, The firsta corresponds
to a second-order correction in the standard per-

turbation expansion in Z,e jhv which, it is expected,
extends over a region comparable to the size of the
E-shell electric orbit. Since this initial-state po-
larization is the adiabatic response of the bound
electron to the projectile, we suggest that this ef-
fect is more appropriate for the low-velocity re-
gion. The second initial-state polarization effect
extends over projectile impact parameters larger
than the atomic radius and could contribute at
moderately high projectile velocities where the
target still has time to adjust.

In this paper we propose another mechanism to
explain the experimental deviations at the higher
energies. It has been called "charge exchange to
the continuum, "or polarization of the final state.
When an electron is ionized by the projectile, it
can correlate strongly with the projectile in the
final state, but still not be bound to it. Even at
high velocities the polarization at the final state
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is no significant interference between the two kinds
of final states, and, in effect, the total ionization
cross section is just the sum of the two kinds of
ionizations, namely,

o(1) (2) o(1) (1 o(2)/ ())
)O'tot = &

In order to calculate the second cross section
we shall use the impact-parameter formalism to
describe the motion of the projectile, assume that
the spectator electrons do not change their states
during the collision, and describe the transition by
the Brinkman-Kramers matrix element. ' In ryd-
bergs this matrix element is

~,(b)=f f dt's"~' f d'xy,' '*(x- H, Z, )e '"'""

x ( - 2Z,/ I
x- 8

i ) (j)„(x,Z,), (2)
I

2
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FIG. 1. R vs projectile velocity for 0. particles and
protons incident on titanium. The lower curve repre-
sents the experimental data of Lewis, Watson, and Nato-
witz. The upper curve corresponds to Eq. (10). The
ratio V&„/v,»= V/Z2, where Z2 is the effective nuclear
charge seen by a K-shell electron. In the approximations
of Born, Gryzinski, and Garcia, R=l.

can be large since the relative velocity of the elec-
tron and projectile can be small. Furthermore,
this final-state polarization will be stronger the
larger the projectile charge, which is in the right
direction to explain the deviation of R from unity.

An accurate calculation of this effect is by no
means a simple task. One has to calculate the ma-
trix element for ionization to a state k and then
integrate over a11 possible states. We consider
here two kinds of final states: one in which the
electron is correlated with its initial center (the
atom), and another in which it is correlated with
the projectile. In integrating over final electron
momenta, care must be taken to assure that states
are not counted twice. However, if the relative
velocity of the projectile and atom is high enough,
the interference between the two kinds of states
becomes less important.

We expect the first kind of state to populate a
volume in momentum space whose size is of the
order 0= Z2/ao (Zz is the charge on the atomic
nucleus). The second kind of state will probably
populate a volume of momentum space centered
about the moving projectile with radius - Z, /ao.
That is, this kind of electron will be likely to have
momenta -mV+q, where V is the projectile veloc-
ity, m is the electron mass, and q-Z, /ao.

If the projectile velocity is sufficiently high [mV
» (Z, + Z2)ao'], it is reasonable to expect that there

where (j)
„

is the K-shell wave function and (t),
' ' is the

(incoming wave) Coulomb wave function of an elec-
tron with momentum q relative to the projectile Z,
and with unit amplitude at infinity. The change of
energy of the electron is

hE = q + ~ V —5'~8

and the position of the projectile is given

R=b+Vt,

(3)

where b is the impact parameter of the collision.
The cross section for this ionization is

, = f d.'b
~ X,(b) ~'

and the total ionization cross section is

d (I
otot

~

(2&)3 oa ~

It may readily be seen that 0„,is a function of Z,
and Zz only through the variables Z, /V and Zz/V.
Since we are interested in the region V&Z~ and

Z, «Zz, we can then exploit the inequality Z, /V«1
by expanding in this parameter. The lowest-order
contribution to ot„is proportional to Z„andwe
note from Eq. (2) that this contribution is obtained
by replacing (t)( ' by a plane wave. However, the
use of a plane wave in Eq. (2) and the subsequent
calculation of ot,t is exactly the first Born approxi-
mation with the final state of the electron correlated
to neither center. Thus we see that the term in c„,
proportional to Z~t is just the first Born result (the
Brinkman-Kramers form) calculated in this round-
about way. The remaining part of o„,is the en-
hancement of the cross section due to the final-state
intera, ction contained in (t),

( '.
Instead of calculating this enhancement absolutely

we shall take the ratio of the Z', term in Eq. (6) to
the Z, which is in lowest order, just the ratio o+'/
o'" in Eq. (1). This calculation is greatly simpli-
fied by the use of the momentum-space representa-
tion of (j),. The result is
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v"'/a'" = (Z, /Z, )f(X),
where

ds
[(s —1 X) 4X] '

dsv8
( )[(s —1+X) +4K]

X= 4Z2/V = (W„/E,~~)(M/m) .

(lo)

Here E„„is the lab energy of the projectile and M
its mass.

The ratio for n particles and protons

A=a(Z, )/Z', o(l)~g s

l + (2/Zs)f(~)
l+ (l/Z, )f(~)

is plotted with experimental data' for targets of
Tis~ and Cl~7. The Z2 dependence of Eg. (l0) is
such as to make the deviation of R from unity
smaller the higher Z~. This is qualitatively in the
right direction but the deviation from unity in R is
greater than experiment. This is understandable
since the Brinkman-Kramers matrix element has
been used to calculate the "exchange" cross sec-
tion. This approxima. tion is known to yield results
which are often a factor of 5 or so too high for
charge transfer in the energy range considered
here. The defects of the matrix element can be
corrected at the expense of extensive numerical
calculations. In this paper, however, we are pri-
ma, rily interested in pointing out this effect due to
charge exchange, and showing that it is the right
order of magnitude.
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and Two Electron Atoms (Academic, New York, 1957), p. 45.
The normalization given there is not that of a unit-amphtude
wave at infinity, Their result has to be multiplied by the wave

function at the origin in configuration space.
'The Born approximation, or any calculation which ignores

charge exchange, may be used for cr'",
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Magnetic hyperfine splittings of rotational levels in muonic deformed nuclei are calculated microscopically

within the self-consistent cranking model, taking into account the finite extension of the nucleus. A previous

oversight in the theory of the magnetic interaction between the muon and the nucleus is corrected. The

splittings are found to be about 25% larger than the earlier estimates. These new values seem to remove the

discrepancy between muonic and Mossbauer isomer shifts in the rare-earth region.

The change of nuclear charge radii &&r~a& owing

to collective rotation has been measured by two
different techniques: (a) Mossbauer effect, ~ and

(b) muonic atoms. ~'3 In both cases one observes
the isomer shift b, E""""'of a nuclear y transi-
tion. Whereas the measured shift in a Mossbauer
experiment is directly proportional to the change
of the nuclear charge radii, the nuclear y transi-
tion in a muonic atom is shifted due to the Cou-
lomb interaction (isomer shift) and to a magnetic
hyperfine interaction between the bound muon and

the nucleus4'5:

b E exyt b Eis (exyt) bEmagn
P P

In order to derive the muonic isomer shift
b,E" '"~) from the measured shift bE'„"",one
needs to know the magnetic contribution AE„~'.
These magnetic shifts have not yet been measured
for deformed nuclei and there exists only one
theoretical estimate5 of this effect. Using this
earlier estimate and comparing the values 5&r~~&

as derived from muonic isomer shifts with those
derived from Mossbauer experiments, one ob-
tains large discrepancies. In some cases even
the sign is different. These differences have
stimulated speculations about the charge distribu-
tion of excited 2' states and the importance of
polarization effects.

In this paper we report new microscopic calcu-
lations of the hyperfine splitting of 2' rotational
levels in deformed nuclei where we take into ac-
count, in linear response, the residual. interac-
tion. v We find larger values of the magnetic hyper-
fine splitting than reported earlier; this result
removes the discrepancy of the isomer-shift mea-
surements.

The magnetic-energy shift is determined by

dr~~ = -.'[E(E+ I) - I(I+ I) ——,']~, . (2)

This formula holds for the muon in its 1s state,
nuclear spin I, and total spin Il. When the f inite
extension of the nucleus is taken into account, the
hyperfine splitting (hfs) constant aI is given bys'9

ny= se&~EO&+s.~=r I
~ (R) I+. M=F&ff

and

M (R) = Q {g'g'1)[Eg(R)+EgR)]

+g,"'s, E,(R)+g&'& a, E,(R)).

Ez(R) =
q J rfgdr,

0 0

with the muonic wave functions f and g. In the
limit of a point nucleus, M(R = 0) is the usual mag-
netic-moment operator. The R dependence of M
takes into account the spatial distribution of the
magnetic moment in the nucleus, as tested by the
muon.

The nuclear matrix element in Eq. (3) has to be
evaluated with the wave function 4~ of the rotating
nucleus. As shown in Ref. 10, this can be done
for well, -deformed nucl. ei in the form

Here, l, s, g„andg, are the orbital and spin
angular momenta, respectively, and the correspond-
ing g factors; a stands for the tensor part, p~
is the nuclear magneton, R the radial coordinate,
and

E = —dr E (R)= —
~l

—dr
""fg I f'" fg

y~
w 0 R


