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Previous theories of laser radiation have described the electromagnetic field in terms of a discrete set pf
quasimodes (Fox and Li "modes") of the laser cavity. Each quasimode was assumed to have a finite

quality factor Q. In steady state (when gain due to lasing atoms cancels the losses) and in the

absence of noise sources, the semiclassical theory predicts a b-function line shape. In the present

semiclassical analysis (fluctuations are ignored), this theory is generalized for a maser with a cavity
having a semitransparent wall as one of the mirrors so that there are now many modes of the
universe corresponding to each Fox-Li-type quasimode. It is demonstrated that the normal modes of
the universe associated with a single Fox-Li "mode" may, under proper conditions, lock together and

the 8-function laser line shape may be regained. Specifically, we investigate the conditions under
which the coupled multimode equations associated with laser oscillation can be reduced to an

equation of the form found in the usual single-quasimode theory.

I. INTRODUCTION

Theoretical investigations dealing with the be-
havior of the optical maser have been based on a
model of a Fabry-Perot cavity' ' described by a
discrete set of quasimodes. Normal modes of
such a cavity cannot be rigorously defined, because
of diffraction losses and imperfect mirrors. This
resonator problem was investigated numerically by
Fox and Li. ' They showed that in the case of a
Fabry-Perot-type cavity with perfectly reflecting
mirrors, there exists a discrete set of quasimodes
for which the diffraction leakage from the cavity is
small. The usual laser theory begins with these
Fox-Li modes and adds a phenomenological loss
mechanism (e. g. , ohmic currents smeared through-
out the cavity) to represent the losses at the mir-
rors ~

In the present paper "we consider the theory of
an optical maser based on a model of the cavity
which is coupled to the outside world by means of
a dielectric mirror. In this model there are a
large (infinite) number of modes of the universe
corresponding to each of the Fox-Li modes of the
lasing cavity. In this way, the coupling to the out-
side world replaces the usual phenomenological
loss which is introduced in order to represent the
leakage of radiation from our lasing cavity. The

motives for this work are as follows.
(i) The sense in which the present multimode ap-

proach reduces to the usual quasimode treatment,
and therefore the sense in which the quasimode
treatment has a rigorous foundation, is a problem
of current interest. For example, in the quantum
theory of the laser one begins by assuming that the
modes of the Fox-Li cavity may be quantized, and
at a later stage a loss mechanism is introduced in-
to the calculation in order to simulate the leakage
mentioned before. This approach is a good ap-
proach for most laser calculations but is not the
most fundamental imaginable procedure, i.e. ; the
atoms in the mirrors have been ignored in the pre-
viously outlined calculation. They are taken into
account by means of an explicit boundary value
problem and in this sense we are not treating the
radiation in free space but rather are treating the
radiation as it is bounded by the atoms and elec-
trons in the mirrors. A more rigorous calculation
would involve the quantized field in vacuum and sub-
sequent detailed consideration of these free field
modes and their interaction with the atoms and
electrons in the mirrors. This is a very compli-
cated problem and so we have previously been sat-
isfied with a less ambitious approach involving only
the Fox-Li quasimodes and the subsequent quanti-
zation of these modes.
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(ii) By understanding the sense in which the mul-
timode approach reduces to the single-Fox-Li-
mode treatment we hope to understand the mech-
anism leading to the extreme monochromaticity of
the laser radiation. One often hears the argument
that laser radiation is monochromatic as a conse-
quence of gain narrowing. We regard this argu-
ment as incomplete6' at best, and a more funda-
mental approach involving many modes (of the
universe) is desired. The present calculation in-
dicates that the narrowness of the laser linewidth
should be regarded as a consequence of a locking
phenomenon between these modes.

(iii) It is of interest to investigate the sense in
which the present calculation, which does not in-
clude the cavity dissipation as a phenomenological
loss mechanism, still leads to and implies a fluc-
tuation-dissipation theorem. That is to say, if we
no longer consider the equation of motion for a sin-
gle Fox-Li mode as being damped by a phenomeno-
logical damping mechanism (in addition to which
there must be a Langevin noise source), then in
what fashion do we recover the corresponding fluc-
tuation-dissipation theorem? This point will be in-
vestigated in a future publication and the present
work forms the foundation for that analysis.

(iv) The fully quantized theory of laser oscillation,
as mentioned earlier, could be reasonably and

readily carried out by quantizing a radiation field
in the entire space. This approach has been car-
ried out and will also be published elsewhere.

(v) Finally, there is at present interest in under-
standing the extent to which the laser threshold is
related to the physics of phase-transition phenom-
ena. It has been asserted by other workers that
the Bose condensation of liquid helium below its X

point is analogous to the condensation" of radiation
into one mode in the case of laser behavior. It is
clear that such a question can be analyzed only in
the context of a many-mode laser analysis of the
present variety. ""

In Sec. II and Appendix A the normal modes of
the combined system of a maser cavity and the out-
side world to which it is coupled are obtained. In
Sec. III and IV, equations for the field interacting
with lasing atoms are derived. In Sec. V, linear-
ized equations for the field are investigated. In
Sec. VI, it is demonstrated that the nonlinear cou-
pled multimode equations can be reduced to an

E(z) = ep[l+ Y)5(z)], (2. I)
where q is a parameter with the dimensions of
length which determines the transparency of this
wall.

The normal mode functions of this system can be
obtained by solving Maxwell's equations with the
proper boundary conditions. The details of the cal-
culation are given in Appendix A. For those nor-
mal modes having frequency &~(= ck) close to a Fox-
Li resonant" frequency Q(=ckp) the eigenfunctions
of the entire cavity are found to be

Uq(z) = M& sink(z —I )

= $& sink(z+L)

(z &0)

(z &0),

(2. 2a)

(2.2b)

where g„ is a phase factor which alternates between
1 and —1 as k increases from one value to the next.

The coefficients M~ in (2. 2a) are defined as

M„= I'W [(a, n)'+ I'j (2. 3)

where I" is the bandwidth associated with the mir-
ror transparency and is given by

and

I = c/q'k'p I = c/~'I

A = q0/c = gkp,

(2.4)

(2. 5)

while the frequency 0 of the nth Fox-Li quasimode

equation of the form found in the usual quasimode
theory.

II. NORMAL MODES OF COMBINED SYSTEM

Let us consider the normal modes for the com-
bined system of a maser cavity coupled to the out-
side world. We represent the universe (in which
the cavity is imbedded) by a much larger cavity
having perfectly reflecting walls. A simple one-
dimensional model which carries the essential fea-
tures of such a combined system is illustrated in
Fig. 1. The mirrors at z = L and —L are complete-
ly reflective, while the one at z = 0 is semitrans-
parent. Region 1 corresponds to a maser cavity
and region 2 the rest of the world. The length L
is allowed to go to infinity at the end of the calcu-
lation.

We represent a semitransparent mirror by a
very thin plate with very large dielectric constant.
As an idealization of such a mirror we choose the
dielectric constant around z = 0 to be

REGION 2 REGION 1

~ + ~ e ~~ ~ e ~

~ ~ ~ ~ + ~
~ ~ ~

~ ~ ~ ~ ~ ~ ~
+ ~ 1 ~ ~ ~ e e
~ ~ ~ + ~ ~

~ ~ ~ q~ e ~ ~ ~

FIG. 1. Laser cavity with semi-
transparent wall imbedded in large
ideal cavity.

-L
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is given by

Q=cko= (n~+ I/A)c/l . (2. 6)

The density of states p in 0k space is found to be

p=L/cw . (2 '7)

An arbitrary undriven field in the entire cavity
can be expressed as the real part of the complex
field

(2. 2) rather than the Fox-Li quasimodes. The
treatment here is semiclassical, as the radiation is
described by Maxwell's equations (while the atomic
states are to obey the quantum mechanical Schro-
dinger) equations of motions.

The atomic medium can be regarded as producing
a macroscopic polarization P(z, t). In the presence
of such a polarization, Maxwell's equations may be
combined to give an inhomogeneous wave equation

E(z, t) =&E (0)U (z)e '""= &E (t)U (z), (2 3)
2E &2E 82P

ez 2, + p060 et2 ~0 ~f2 (3. I)

which is to be understood as a sum over modes of
the large cavity, i. e. , the universe. "

We now demonstrate that the semitransparency
of the mirror leads to a damping of free oscilla-
tions in the laser cavity. Let us assume that, at
t = 0, the laser cavity (region 1) contains a field
(in the complex notation) of the form

To simplify the problem, we have neglected the x
and y dependence of the field, and the radiation has
been assumed to be linearly polarized.

The field and the polarization can be expanded
in terms of the eigenfunctions (2. 2) as

E(z, t) = Za, (t) U, (z), (3.2)
k

E(z 0)= ~Eo~e "sinko(z —l) (2.9) where

while no field exists outside the cavity, i.e. , in
region 2. The coefficients E»(0) for this case are
obtained in the usual fashion by multiplying (2.9)
by U, (z) defined in (2. 2a) and integrating over z.
We find

A»(t)= (2/L) f dzE(z, t) U» (z)

and

P(z, t)=ZP, (t) U, (z),

(3.3)

(3.4)

E»(t) =
(~ E,

~

m»l/L) *e'"»'"' .
Therefore at later times, f, &0,

E(z, t) = (~ E,
~

l/I. ) Zm, U, (z) e-""»'"'.

(2. 10)

(2. 11)

with

(3.5)P»(t)= (2/L) f dz P(z, t) U»(z) .
Inserting (3.2) and (3.4) into (3.I), we easily ob-
tain the following equations for each normal mode:

~I/0=2(1'+y) . (2. 13)

III. ELECTROMAGNETIC FIELD EQUATIONS

Let us proceed to derive the equations of motion
for the field interacting with an active lasing me-
dium. We follow the usual prescription except
that we must expand the field in terms of the eigen-
functions of the combined system (Fabry —Perot
cavity imbedded in the universe) as given by Eq.

The summation can be approximated by an inte-
gral if the frequency separation between the normal
modes is small compared to I". Upon carrying out
the integration over k in (2. 11), the explicit form
of E(z, t) in the maser cavity turns out to be

E(z, t)= ~Eo~sinko(z —l)e' "'"' ' . (2. 12)

The approximation involved in the passage from
(2. 11) to (2. 12) is discussed in Appendix B.

Equation (2. 12) indicates that the field localized
in the maser cavity decays exponentially owing to
leakage through the mirror at a rate I". In addition
to the mirror losses, there may exist some other
damping mechanism (e. g. , scattering from dirt or
finite mirror conductivity); we must then add to I"

an extra contribution y. The quality factor Q of the
cavity is then defined by

k @2' ~1 d
d)2

+ k k 0 d] 2 (3.6)

Let us concentrate on the case where only one of
the Fox-Li quasimodes is appreciably excited. We
write Pk and Ak as

P„(t)= ,'[&»(t)e '"'+ c. c—.I,
A»(t) =

& [E»(t) e '"'+ c.c.j,
where

(3. 'I)

(3. 8)

Using the above expressions and making the usual
slowly varying phase and amplitude approximation,
we obtain

E,(t)+ i(Q» —v) E»(t) = (iv/2&o) (P»(t) .
IV. POLARIZATION OF MEDIUM

(3. 10)

When the excited atoms are injected into the
laser cavity and allowed to interact with the elec-
tromagnetic field, the atoms acquire a time-depen-
dent dipole associated with the off-diagonal ele-
ments of the atomic density matrix. The collective
effect of many atoms produces a macroscopic po-
larization which acts as the driving force for the
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ab = ——,(i & /ft) N(k —p) Dbb(ur —v), (4. 2)

bb„, =~a(it /ft')[N(p-o+ p, —k)+N(p —v —p+k)

+N(p+ a —p, —k)] &,b((z —v)[X),(0)+Sb(0)]

x[&„(g—v)+c. c.], (4. 3)

radiation field.
The projection of the macroscopic polarization

onto the kth mode has the following form '.

~„(t)=Za„E,(t)+ Z t,„,.E„E,*E.+
(4. 1)

The coefficients a» and b»„depend on properties
of the lasing atoms and (in the case of no atomic
motion) are given by

the Fabry-Perot cavity through the semitranspar-
ent wall will be reflected at z= -L and eventually
come back into the laser cavity, if there were no
loss in region 2. However in the limit L -~ the
escaped radiation will never return (within the life-
time of the experiment). In order to simulate the
situation of an infinitely long cavity, when L is
finite although large, we put some lossy material
in the cavity: this we do by injecting nonresonant
two-level atoms in their lower state uniformly over
the entire cavity. The density of the damping
atoms required is such that the cavity decay con-
stant y due to those atoms satisfies the relation

-'2yL /c (( g

where p is the dipole matrix element and
or

y»c/2L .
(4. 11)

1y.b= 2(y. +rb)

&o = (E. Eb)/@,-
(4.4)

(4. 5)

with y„E, and y&, Et, the decay constants and the
energies of the upper and the lower states of the
two-level atom.

Also we have

&.b(&)= (r.b+i&) ', & (&)=(r +») ',
N(k —p, ) = (2/L) f dz Ub(z) U„(z)N(z)

= (MbM„/L) f dz cos[(k —p) z

(4. 6)

—(k —p)l] N(z), (4 ~ 7)

where N(z) is the population inversion density as-
sumed to be time independent. The last expression
has been obtained noting that the active medium
exists only in the laser cavity and that terms which
oscillate rapidly in space give negligible contribu-
tions to the integral.

Since Ik —p II is small compared to unity, (4.7)
can be integrated to give

The effect of damping atoms can be described in
terms of a polarization, whose dependence to the
field is again expressed by (4. 1). Noting that these
damping atoms are predominantly in their ground
states, we may use (4. 2) with the sign reversed,

ab, = 2 i(N'(k —p, ) b'
' )/ky, 'b, (4. 12)

where we made use of the fact y,'~»
I
ur'- v I for the

damping atoms. Because of uniform distribution
over the entitle cavity, the orthonormality of Ub(z)
implies N'(k —p, ) = N', where N' is the number
of the damping atoms per unit length. Hence (4. 12)
has the form

l
Qyg = 2Q Uyg ~ (4. 13)

The nonlinear polarization of the damping atoms is
neglected. Using (4. 1), (4. 10), and (4. 13), the
field equation (3. 10) can be written as

Eb(t)+i(Qb —Q)Eb(t)+ yEb(t) = OMbZM„E~(t)

—PMbZM„Mp M, E„(t)Ep~(t)E,\t), (4. 14)

where
N(k —p, ) = (I/L)NMbM„ (4. 8)

where N is the space average of N(z). Similarly,
o.'= va/eoL, P= vb/eoL, y= va'/eoL . (4. 15)

N(k —p+ p —a) = (2/8L)MbM~MpM,

x f cos[(k —p, + p —v)z —(k —p, + p —o)t)N(z)dz

= (I/4L)MbM~ MbMbN. (4.9)

In view of (4. 8) and (4. 10), the coefficients (4. 2)
and (4. 3) simplify to the following when the Fox-
Li frequency G is tuned to atomic resonance:

abg 2 iMbM (N & l/y, b@L) = —iaM, M,
(4. 10a)

kb/lpb 32 ™„M„MpM,(N P I/y, y, y, b 0 L )

=—2bMq M~ Mp Mc . (4. 10b)

So far we have kept L (the length of region 2)
finite. In this ease, the radiationwhich escapes from

It is to be noted that the range of k as well as p. , p,
and 0 has been restricted to the neighborhood of
one Fox-Li mode corresponding to the single-
quasimode laser operation. Equations (4. 14) con-
stitute our working equations for the rest of this
paper.

V. LINEAR THEORY

In Sec. VI, it will be shown that the coupled
multimode equations (4. 14) can be transformed in-
to a single equation which corresponds to the con-
ventional quasimode theory of laser behavior. In
order to motivate the analysis of Sec. VI and to
gain some physical insight into the underlying
physics, let us first discuss the solutions of the
equations (4. 14) neglecting the nonlinear terms.
The solutions so obtained describe the transient
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of particular solutions

E (t)=C e»' ~

Equation (5. 1) now becomes

(5. 8)

(p+i50»+ y) C»= n M»Z M~c„, (5.4)

where 6&= Q& —~. The usual procedure for solv-
ing Eq. (5. 4) would involve writing down its sec-
ular determinant. In the present case it is simpler
to obtain an equivalent solution by the following
procedure. Solve (5.4) for C~, multiply by M~, and
sum over k to obtain

ZM, C„= ZyM', /(p+i60, +y) QM„C„., (5. 5)

Dividing both sides of (5. 5) by Z»M»C», we obtain

Q[o.'M /(p+i60 +y)]= 1 . (5.6)

It is convenient to write Eq. (5. 6) in the form

S= Z nM2/(p+ist»0+y)=1,

state of the laser.
As is seen from Eq. (4. 14), the linearized multi-

mode equations take the following form'.

E»(t)+i (0» —0)E»(t)+ yE»(t) = nM»QM„E„(t) .
(5. 1)

The most general solution Eq. (5. 1) can be written
as the superposition

E»(t) = Z C»„e " (5.2)

= )""'' ""uM,Co/(~M —2 I'+i50, ) . (5. iS)

Equation (5. 13) implies that all the A»(t) of (3.8)
oscillate with the same frequency v(= &o = 0), and the
phases of these modes are fixed in such a way that
the phase relative to the center mode (60» = 0) is

y» —yo = —tan '[50» /(nM —I')]; (5. i4)

hence, a phase locking" has occurred. The re-
lation of the present treatment to the usual theory
of mode locking is further discussed in Sec. VII.

Looking at the denominator of the equation (5. 13),
we find that only the modes which satisfy the in-
equality

which we refer as pp. The other roots have nega-
tive real parts which approach —y as the frequency
separation ~ decreases. In the case ~ &I', all
the roots have negative real parts and approach
—y as &~ approaches zero. The complex ampli-
tudes E»(t) are expressed in terms of these normal
mode solutions as

E»(t)= aM» Zc„e»"/(p„+i50»+ y) . (5. 12)
r

where the C„are arbitrary complex constants to be
determined by initial conditions.

If the real root pb is positive, the term in (5. 12)
proportional to e~P' grows in time, while the rest
of the terms are damped out. Neglecting those de-
caying terms, E»(t) can be written as

E»(t) = eM»co e»o'/(Po+ i60 + y)

s=-E
o.M' —I' & 50„&—(o.M' —I') (5. 15)

where we have renumbered the modes such that

0, —0= sb, Q= s(co/L),

with 40 defined as
60= c /Lo

(5.8)

(5.9)

M'= Z M', .
$ wOO

(5. 11)

As shown in Appendix C, the roots of this tran-
scendental equation have the following properties.
If eM &I', there is a root equal to nM —I' —y,

being approximately the very small mode spacing
of the entire cavity. The number of modes coupled
is taken to be 2K+1, where N is an integer suffi-
ciently large so that frequencies (5.8) cover the
cavity bandwidth.

Since M', rapidly decreases as (0, —0) increases,
we calculate S by extending the limit N to infinity
and using Poisson's sum formula. The result is

; I'r (;,y, ))1 —(p+ y) I, 60

(P'y) cot(" =1 (5. io)I ""(~0
where

are appreciably excited. Furthermore as we are
interested in the region 0 &z &l, we may write

E(., t) = &It»(2')A»(t)

=EM»E»(t)e "'sinko(a' —l)

=C &nM» r ~)g &~s i k -(-—-l),pe s~n p g— (5. 16)

where ko is given by (2. 6). The last equality in
(5. 16) suggests that the quantity

A(t) = ZM»E»(t) (5. 17)

can be identified as the complex amplitude of a
Fox-Li quasimode growing at a rate n~'- r-y.

VI. NONLINEAR THEORY

Once the intensity of the radiation becomes large
enough, the nonlinear terms in Eq. (4. 14) are im-
portant. As shown in Sec. V, the modes are

locked" by this time, and the quasimode approx-
imation might be expected to continue to be good
even in the nonlinear problem. However, it is
necessary to show that our coupled differential
equations for the multimode field can be recom-
bined to give a single equation when nonlinearities
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are important.
In order to show this, let us begin by using (5. 17)

to rewrite equation (4. 14) as

('t(t)= 8 (0)e "' —f dt'I(t') e ""'' .
Using (6.10), we find

(6. 12)

E„+(i5Q»+ y) E„=M„G(A), (6. 1) A(0) = 8(0) . (6. 13)

where

G(A)=~ PEA~A. (6. 2a. )

%'e could include higher powers of the electro-
magnetic field in the definition above, since the
following derivation does not depend on the struc-
ture of G(A). In fact, after summing up all powers
of A, (6. 2a) becomes

G(A) = ~/[I+ (P/~) ~A ~'] . (6.2b)

+ P f dt'(i5Q)M 'G(A(t'))e '*'"'"'"

where

I(t) + H(t), — (6.4)

I(t) = Z (i5Q»)M„E, (0)e (6. 5)

depends only on the initial values of Ek's, and

H(t) =Z f dt'(i5Q )M G(A(t'))
k (6.6)

Exchanging the order of the summation and inte-
gration, and replacing the summation by an inte-
gration, we obtain

A formal solution of (6. 1) can be written as

(t) E (0)e-((6(&»+&'&t f dt M G(A(t ))
-((5(&»+&'&(t (&-

(6.3)
Using this expression for E»(t), let us calculate the

following quantity:

Z (i5Q, )M„E,(t) = Z (i5Q„)M~,(0)e '*'"'""

Combining expressions (6.9)-(6.13), we obtain

A(t) + (y+ I")A (t) = M G (A (t)) + I'A (0)e "'

—I"f dt'I(t')e "" "—I(t) . (6 14)
0

Using the explicit form of I(t) given by (6. 5), the
integral on the right-hand side becomes

rZM»[E»(0)e '""»'"' —E»(0)e "
] . (6.15)

~A~'=[ M'-(r y)]/PM', (6. 18)

which is the familiar result of the quasimode
theory.

Putting (6. 15) into (6. 14), we finally obtain

A(t)+ (y+ I')A(t) =M G(A(t))

+ Z (r —i5Q)M E,(O)e '""»'"'. (6. 16)

The second term on the right-hand side of this
equation decays exponentially independent of A(t).
It will be shown in a future publication that this
last term acts as a noise source associated with
the mirror transparency. The mean motion of A(t)
may be examined by neglecting this term. Using
the explicit form of G(A), (6. 16) is then reduced to

A (t) + (y+ r)A (t) = o.M'A (t) —pM

(6. 17)
Separating real part from imaginary part, we get
the usual equation for phase and amplitude of single
quasimode operation. From Eq. (6. 17), we have
the steady-state intensity

H(t)=I'f dt'M G(A(t'))e '"' '" ' ' (6.7)
VII. DISCUSSION

A. Condition for the Quasimode Approximation

A(t) = f dt'M G(A(t'))e "' ' ' ' '+ 8 (t) .
0

Putting (6. 10) into (6.9), we find

&(t)+ye(t)= I(t), -

(6. 10)

(6. 11)

Next we multiply both sides of (6.1) by M» and sum
over k,

A (t) + yA (t) + 2 (i6Q») M»E»(t) = M G (A (t) ) . (6.8)
k

Replacing the third term in the left-hand side of
the equation above by (6.4), we obtain

A (t)+ yA(t)+ rf 'dt'M G(A(t'))e-'"'"'"

=M G(A(t)) —I(t) . (6.9)

Let us write A as

In Sec. VI we have seen that the coupled multi-
mode equations (4. 15) can be rigorously reduced
to a single quasimode equation (6. 16). Let us now
summarize the conditions which allowed us to re-
duce the multimode equations to an equation for a
single quasimode. First, the conditions for the
atomic decay constants

(7. 1)

have been implicitly utilized in writing expressions
(4. 2) and (4. 3). Secondly, approximations are
made in (4. 9) and (4. 10), which are of the form

l

f, de V»(e) II„(e)= MPS„x (const) . (7. 2)

This approximation is valid since, for any k and k'
of interest

which is easily integrated to give ~I -)a~t«I (7.3)
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so that in the integrand we could approximate U~(z)
as

U„(z) = i', sin[A(z - l)]=M„sin[A, (z —&)] . (7.4)

In addition, the fact that

ZM' "'&= (Z~') e" (V. 5)

has been utilized in the passage from (6. 6) to (6.7).
It is to be noted that the derivation of the quasimode
equation (6. 16) depends only on the relations (V. 1),
(V. 4), and (V. 5). Similar relations are expected
to hold in a wide range of practical lasers. How-
ever, the calculation does not depend on the de-
tailed structure of the mode function or of the
laser cavity.

B. Mode-Locking Aspects

We have seen in Sec. V that the dominance of a
single exponential term in the general solution
(5.2) leads all the modes to oscillate at a single
frequency with a definite phase relationship between
them. The close analogy between the "mode lock-
ing" here and that in the conventional sense can be
demonstrated in the following rather unphysical
but illuminating example of two-mode interaction.

Consider a case where only two modes are cou-
pled by Eq. (5. 1). To simplify the problem, we
further assume

these equations

—P, 6, + (2&Q)Si = nsR'8, sinai

—Pzg, —(-,'b, Q) 8,= —nsR'8, sinn, y

where

(V. 1Sa)

(v. isb)

d(&v ) = +Q —2~='R sl~p (V. 16)

This is a basic equation encountered in the theory
of mode locking. The solution of this equation is
well known, and the condition for locking is

~~Q~, (V. iV)

which is exactly the same as (7. 11).
APPENDIX A: NORMAL MODE ANALYSIS OF

EMBEDDED CAVITY

(V. 14)

As we have seen in Sec. V, E, may be approximated
by a single exponential term which grows rapidly
in time. Because of the symmetry of the problem
as expressed by Eqs. (7. 6) and (V. 7), we find
through (5. 12)

(V. iS)

Dividing (V. isa) and (7. 13b) by 8,. and subtracting
one equation from the other, we obtain

and

Qi —Q= Q —Qz—= AQ/2

Mg= Mp =~
The Eq. (5. 1) can be written in this case as

Ei+ (2ib Q+ y) Ei= nSK (Ei+Ez)

E,+(--,'WQ+y)z. ,=nsR'(E, +E,) .

(V. 6)

'7. V)

(V. 8a)

(7. 8b)

BEE
Bzz —p,,c, [1+ti5(z)] ~ = 0ef (A1)

We may separate the variables by writing E as

Z= U,(z) e-'"&' (A2)

The electromagnetic field in the entire cavity
(regions 1 and 2 in Fig. 1) is governed by the
Maxwell wave equation

These equations can be solved directly by applying
the method used in Sec. V. The secular equation
(5. 7) for these equations is

to find for U, (g)

+ iioq, [1+ti6(z)]Q„U,(g) = 0 (As)

2, n9R (P+y)/[(p+y) +(—,'AQ) ]=1
with eigenvalues p, given by

P nsR2 y+ (n23R4 I PQ2)1/2

(V. 8)

(V. 10)

We find that the condition for appearance of the
dominant exponential term is

n 3R ——,'&Q &0 (V. 11)

E,'=8;8 '"~, j=1,2 (7. 12)

Inserting the expressions (7. 12) into (7.8a) and
(V. 8b) and multiplying them by e'"i and e'"2, re-
spectively, we obtain as the imaginary parts of

Let us now examine the time change of the phases
of the individual modes. For this purpose we in-
troduce the real amplitudes $,. and y& by writing

The mode functions are found by solving (As) with
boundary conditions U„(z) =0 at z= f, —L. The 5(z)
function in (As) can be eliminated by integrating
(A3) over a small interval around g = 0 to give an
additional boundary condition

U', (0') —U', (0 ) = —p, ,eotiQ'U, (0) . (A4)

In deriving this equation we have used the contin-
uity condition at z=0; i.e. ,

U„(o)=U„(o } .
We have replaced Q, on the right-hang side of (A4)
by the "resonance" frequency 0 to be defined later.
This approximation is made possible because the
thickness parameter tl is small (-10 g cm to ac-
count for v/Q-1 MHz) and, as we shall see later,
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U,(0) is appreciable only in the vicinity of
k = kp = 0/c.

The solutions of (A4) have the form

Noting that

0»= ck= (no+ 8»)c/l (A18)

U»(z) = A» sin [k(z —l) ] in region 1

U»(z) = b»sin [k(z+ L)] in region 2

where

(AGa)

n = ck, = [nz+ (1/A)]c/l,
we rewrite (A1V) as

(A19)

and introducing Fox-Li "resonance" frequency 0
as

k= Qjc (A7) X'/b'= I'A'/[(n —n)'+ I '] (A20)

The conditions (A4) and (A5) with the form of U»(z)
given by (AGa) and (AGb) result in a secular equa-
tion for the wavenumbers of the form

tankL = tankl/(Atankl —1)

where

A= ppepqQ'/k =qk

(AG)

(A9)

is a dimensionless parameter of the order of 10
(for rl-10 ' cm, Q-10' Hz) associated with the
ref lectivity of the wall at z = 0. The transcendental
equation (A8) determines the discrete wave num-
bers 4 of the normal modes. In the limit J.-~,
however, k becomes continuous.

For each allowed value of k, the ratio of the
amplitudes A» and b„ is found from (A5) as

where

r = c/A'l (A21)

(0„—Q, )f dz U„(z)U„.(z)»(z) =0 .
Hence, it is convenient to normalize the eigen-
functions by

f dz U, (z) U, ( )Ez( )/z, »= ,'L . —

Substituting (AGa) and (A6b) into (A23), we obtain

(A22)

(A23)

~XI,l+ —,
'

bI,L+A„g sinful = ~L (A24)

plays the role of the bandwidth of the laser cavity.
The normalization condition gives another rela-

tionship between A» and b». The orthogonality con-
dition for the eigenfunctions is found directly from
(A3) to be

Agb» = —sinkL/sinkl

Combining (A8) and (A10), we find

Rgb, =[tan kl+1]/[tan kl+(Atankl —1) ]

(A10) where we have made use of the facts )pl»1 and
kL»1. Assuming L» l»g and notingthatthepeak
value of Agbz»is finite and L independent, we find
from (A24)

(All�)

Examining the equation above, we find that, as a
function of a (almost) continuous variable tankl,
the ratio Az»/bp» has a very sharp peak at k= kp,
where

bI' =1 ~

Combining (A20) and (A25), we obtain

X»=rA/[(n» n)'+r']'—"=~, .

(A25)

(A26)

tankpl = 1/A,

with the peak value

(A12)

(A /b„)„=A +1 (A13)

The values of tanjpl at half-height points are

tankl = (1/A)+ (1/A') . (A14)

Equations (A12) and (A14) indicate that, for those
wave numbers with the ratio Az»/b»»appreciably
large compared to unity, we may write kl as

kl = nw+ 8»(
~

8»
~

« I), (A15)

where n is an integer fixed for those 0 in the neigh-
borhood of kp. Equation (A15) may be expressed
as

kL= (N+»)m' —y» (A27)

where N is a large integer that labels the modes
of the entire cavity. As seen from (A8), ly»t is
small compared to unity for those 4 close to ko.
Using (A16) and (A2V), (A8) is written as

coty„= 8$(A8 —1) = 1/A(A8» —1)

Noting (2. 3), we obta. in from (A2V)

(A28)

&N (&N/&k) L (sX» /&0»)
Qg C 3'C

The last term in (A29) can be calculated through
(A15), (A27), and (A28) and is found to be

(A29)

In calculating the density of states, it is conve-
nient to write kL as

ta ul=e, . (A16)

&„/b = 1/[(A8 —1) + I/A~] . (A17)

Inserting (A16) into (All), and noting the narrow-
ness of the peak at 4=40, we find approximately
for those modes around the peak

By»/BA» l/p'c
8„+(A8» —1) p'c

Hence, we find the density of states to be
eN L

p=

(A30)

(A31)
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The average mode spacing is

&Q = mc/L (A32)

Finally, by substituting (A15) and (A2'7) into
(A10), and noting (A25), we find

5 ( 1)n-N-1

x sin[k(Z —l)] e '"~" ' . (Bl)

Because of the Lorentzian factor in the curlybrac-
ket, only those terms in the summation for which

ln-n,
l
&r (B2)

have appreciable contribution. 'We find for these
modes

ko I
I =

I na Q
I
I/c «1,

since mc/I, the frequency separation between two
neighboring Fox-Li modes, is usually large com-
pared to the cavity bandwidth. Hence we may re-
place sink(z-l) in (Bl) with sinko(a —l). Taking
the limit of L- ~, the summation can be trans-
formed to an integral:

l I Eoi, 8N I' /A
I, „Bn' [(n —n')" r']

BN
80 cm

x sink() (z —l) e ""'"", (B4)

(B5)

Because of the factor e '" ', (t&0) we may close
the contour in the lower half of the complex 0'
plane, and obtain

E(z, t) = (l
I
E, I

I'A'/c) sinko(e —I) e ' '"""'
(B8)

Using the expressions (A21) and (A9) for 1 and A,
we finally obta. in Eq. (2. 12).

APPENDIX C: ROOTS OF EQ. (5.10)

In this appendix we investigate the roots of Eq.
(5.10). Introducing a new variable y,

APPENDIX B: DERIVATION LEADING TO EQ. (2.12)

Using the explicit form of U„(z) and M, given by
(2. 2a) and (2. 3), Eq. (2. 11) can be written in
region 1 as

E(e, t) = ( I Eo I
I/L) Z (r A /[(n —n„) + 1 ]]

S= [i~M'r/(r' -y')] [ cot(i~y/t n)+ ty/r] =1,
(c2)

where we used the approximation

cot(+tl "I)=+i for I" I
~~1 ~

Let us first seek the root yo for which

IRe(yo)l »n

(c3)

(c4)

y = i(nb n + b „)+ G„=in', n + 6p„ (c8)

In view of the assumption (C4) and the consequence
(C5), we conclude

(cv)

In addition we may choose

——Z'~n «~„& —Z'~n (c8)

without loss of generality. Conditions (CV) and
(C8) guarantee us that

g„l «r and la„l «r or lap„ I
«r, (c9)

and hence (C2) is now simplified to

ieM I t &P 7I' n&n
1 (C10)ra+ (nb, n) ' &Q I'

l. e. )

t g n&n i [1" +(n&n) ]IAP =jg —6 =
n n n

cot-'
2nM r

(C 11)
The right-hand side of this equation can be sepa-
rated, after tedious but elementary calculation,
into real and imaginary parts, and we find that
for small n(nb Q« I'):

(c12)

Recalling the condition (4. 12), (C2) can be now

simplified, using (C3), to

S= [tnM'r/(r'- y')] (~ t+ ty/r) =1,
which yields

y= nM+ r, (C5)
where the sign in front of I should be chosen op-
posite to the sign of Re(yo) assumed in (C4).

Checking the self-consistency of the assumption
(C4) and the roots (C5), we find that there is one
root which satisfies (C4), if oM2 —r&0, but there
is none if otherwise.

Let us now seek the remaining roots for which
Re(Yo) & b.n by writing

x=P+r (cl) and for large n(nb Q-' I'):

and noting r/hn» 1, we can rewrite (5. 10) as (c13)
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