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Electrons injected into structurally disordered materials may occupy free-electron-like states in a
conduction band, band-tail states, some of which will be nondiffusing and are thus localized in the Anderson

sense, and, finally, self-trapped states. Eggarter has recently described the first two types of states with

specific application to He gas. In the present work, the self-trapped states are discussed. Specific calculations
are carried out for He, H2, N2, and Ne in the ideal-gas approximation. Virial corrections are demonstrated
for He gas at 4,2 K. Available experimental results, for the four materials mentioned, are discussed in the
context of the theory presented and it is shown that for certain regimes of density and temperature
self-trapped states exist and play an important role in determining the observed transport parameters.
Further calculations and experiments are suggested to probe in detail the characteristics of all the states
available to electrons in the type of disordered materials discussed.

I. INTRODUCTION

Gases and liquids whose constituents repel elec-
trons are examples of structurally disordered ma-
terials. The states available to electrons in such
materials encompass a spectrum which includes
delocalized states in a wide conduction band and
states localized, in the Anderson sense, '

by poten-
tial fluctuations (due to density fluctuations).
These states have been recently discussed by Eg-
garter, with specific application to He gas. A
third class of states also exists which will be dis-
cussed at some length in this work: These states
are due to self-trapped electrons. They have been
called 'electron bubbles, " in the context of He, H&,

and Ne, and it will be shown that they are also ex-
pected in liquid N2. Associating these states with
the word polaron" might be helpful in understand-
ing their properties in a wider context.

Experimentally, gases and liquids whose constit-
uents repel electrons (the common ones ares's He,
Ne, Hs, and Ns) offer quite attractive properties
since they can be obtained with a high degree of
purity. The equation of state of these materials
and the interatomic (intermolecular) interactions
have been deeply studied so that they are excellent-
ly characterized, in contrast to some other amor-

phous materials where the characterization is
much more difficult. Variability in density, tem-
perature, and the strength of the interatomic in-
teractions afford the opportunity of being able to
control which electron states, in these materials,
will play a dominant role in determining transport
characteristics. Some measurements of electron
drift velocity have already been performed in ex-
periments to be discussed in some detail later.
Information can be obtained not only from zero-
field drift-mobility measurements but also from
higher-field effects and Hall-mobility determina-
tions.

This paper will briefly review the formalism due
to Eggarter suggesting one change in his methods.
Self-trapped electron states will be introduced and
integrated into the above treatment. Zero-field
drift-mobility formulas will be developed for a
system in thermodynamic equilibrium including
fluctuations which characterize the disorder.
These formulas admit generalization to the case of
non-negligible external fields. Calculations will be
presented for specialization of the formalism to a
virial fluid which interacts with electrons as a
collection of hard-core scatterers (this character-
ization is probably quite appropriate in part of the
region available experimentally for He, Ne, H2,
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The material of interest is a structurally dis-
ordered one. Following Eggarter, the material is
imagined to be divided into ce1.1s of volume I', such
that if an electron were added to the material it
would interact within one cell with the remaining
volume of the material (0 —L ) being unaware of
the presence of the electron for all practical pur-
poses. The L localization is due to the fact that
scattering forces the electron into a wave packet.
Intrinsic potential fluctuations are taken into ac-
count by specifying a distribution of the number of
cells with a given potential; by assumption the
electron does not influence this distribution. With-
in a cell, intrinsic fluctuations are neglected on
the assumption that the electron will adiabatically
average over them and the only inhomogeneities
will be due to electron-material correlations.
However, it will be assumed that L' is large
enough so that correlations within the cell are not
apparent to the material outside the cell. The
above model has decoupled the electron from the
intrinsic fluctuations for purposes of finding the
states of the electron, though the decoupling does
not hold in calculating transport parameters where
the cell environment may influence the transport.

The states of the electron-material system can
now be specified by a list consisting of the cell
(i), containing the electron, characterized by L and
the interaction potential (V;); the configuration of
the material within the cell (labeled by R) which
depends parametrically on the electron probability
distribution (labeled by its energy E); the quan-
tum numbers (K), if any, of the {E,R]; system,
such as any center-of-mass motion; and the speci-
fication of the state of the material outside the sth

cell, labeled by e.
By assumption e and V; depend on the material

properties only, and are uncorrelated; {E,R); are
to be determined self-consistently in the Born-
Oppenheimer approximation,

'
while K are to be de-

termined by treating the {E,R) system as an entity.
Appropriate averages must be performed to cal-
culate specific properties.

Assuming thermodynamic equilibrium, the den-
sity of states ~ will be populated in proportion to
a Boltzmann factor B. Thus the partition function
ls

Z = Z n(i, K, E, R, e)B(i,K, E, R, e)
f', , e,K,R, E

and, using the decoupling assumptions,

(la)

and Na). Specific results are obtained for these
four materials in the ideal-gas approximation, and
improvements are examined in He gas as a particu-
larly appropriate case. Finally, the available ex-
perimental results will be discussed in the context
of the formalism developed.

II. MODEL

f(A)A=Z ~~ y~Ayn By—=
~ )y

(2b)

The sum over cells (i) can be transformed into an
integral over the interaction potential (V) between
the electron and the average material in the cell,
if we assume a distribution function P(V) for the
probability of finding a cell with potential V:

Z- dVP(V) ~0
where 0 is the total volume of the system. Along
with Eggarter, we shall assume a Gaussian dis-
tribution for P(V) about the average potential for
the entire system (V) with a mean deviation c~,

P(V) = (I/2m')'~' exp {--'[(V —V)/&v]') . (3)

In the specific case where the material is a virial
fluid, Eq. (3) corresponds to a Gaussian distribu-
tion of the number of particles (N) in the volume
L . Then

-1 —
L 3

P FAT + vP

where N/L is the average system density p, P is
the pressure, and B& the virial coefficient. There-
fore

9V BV i p
sp - ' sp - &I+»vP

where V is the potential appropriate to the density
p. It will be later shown that ov/AT is the crucial
parameter. Clearly, it is necessary to choose I.
judiciously. It is in the choice of J that a change
in Eggarter's treatment will be suggested.

Eggarter chose an energy-dependent function for
L consisting of a constant times the de Broglie
wavelength of an electron with energy E. The con-
stant (c), assumed to be of order one, had to be
varied with temperature in order to fit the experi-
mental mobility measur ements. This variation

Z =Z n(i, K, E, R)B(i, K, E,R)Z n, B,—=Z„„Z,„, .
e

(lb)
The Boltzmann factor would also contain non-

negligible external fields, if any. ' To calculate
some observable property (A), such as the zero-
field drift mobility, an average must be performed
over all quantum numbers y'.

A.= Z Z Ar'nyiB), i ——Z~ogg Q Zo„t~ A

(2a)
The dependence of A, on e will account, in the case
of the mobility, for percolation and such. Since
the cell i and its environment e are uncoupled, the
sum over e may be in principle performed so that
y' contains e but y does not. So that, with an ob-
vious definition,
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TABLE I. Density-dependent characteristics for He
and N2. I&(V) = A~(V); L (p) = (po); V is the Wigner-
Seitz potential for the quoted density (p). gv are the rms
variances of the potential fluctuations obtained using the
two sampling lengths. A scattering length of 0.62 A is
used; see Ref. 3.

p
(102'/cm3)

1
1.6
2
2.6
3

5
6

V L~(V) L(p) pL (p)
(K) (A) (A)

422 64.4 207 8870
702 49.9 129 3440
896 44. 2 103 2180

1200 38.2 79.6 1310
1400 35.3 69.0 986
1940 30.0 51.8 554
2500 26.4 41.4 335
3092 23.8 34. 5 246

.,(v)/v
(lo-')

2.89
3.40
3.67
4.05
4.27
4.79
5.25
5.67

~,(p)/v
(lo 2)

0.503
0.815
1.03
1.35
1.57
2. 12
2.67
3.25

can be reinterpreted as a weak dependence of c on
fluid density. The important length is L (V) since
the energy range of fluctuation is of order 1% V

for the cases considered. For reasons to be dis-
cussed later, it seems more reasonable to choose
as a sampling length one which depends on the
scattering of the electron, rather than on its de
Broglie wavelength. Such a length is the momen-
tum-exchange mean free path L(p) = (po) ', where
the length at the average conditions would be the
important one. For densities of interest in He at
4. 2 K, L( p)- 25L (V) (c=1)with a slightly differ-
ent p dependence. Some specific numbers are giv-
en in Table I.

A. Density of States

Within a cell of volume I- a space-average po-
tential ( V) is felt by an electron. In the sense
of the adiabatic Born-Oppenheimer separation, the
average electron wave function will determine the
configuration of the material within the cell (R).
In turn, this configuration gives rise to a potential
V~(x), which can vary as a function of position
within the cell, which is felt by the electron. This
description calls for a self-consistent adiabatic
solution of coupled equations for the electron and
the material within the cell, which shall be dis-
cussed later in a specific case. For now, assume
that an envelope wave function for the electron can
be found, (~(~), with eigenenergy E which depends
on the equilibrium material configuration R.

As far as the electronic density of states is con-
cerned, there are three interesting regimes.

(i) E» ( V): It is reasonable to assume, sub-
ject to later verification, that the material con-
figuration corresponds to the average one in the
absence of the electron. Thus, the electron is de-
localized within the cell. If L is large enough, the
potential on any atom owing to the electron is
weak. Hence, for this energy regime, the electron
density of states, within the ith cell, is taken to
be the one appropriate to a free electron:

3/2, (2m)
(E V)2@3

As shown by Eggarter averaging the above over
all cells gives rise to a conduction band with a
low-energy tail. Then, invoking percolation"
theory, he shows that some of the states in the tail
will not diffuse, so that they are localized in the
Anderson sense. The extent of the band tailing
depends on the mean intrinsic potential fluctuations
from cell to cell as compared to kT; i.e. , v~jkT
is the crucial parameter.

(ii) E «(V): As will be shown, the equation for
the electron in the cell demands that if states exist
then they must be localized within the cell. It
shall be assumed, in accordance with specific re-
sults to be obtained later, that the size of the lo-
calization region is small compared to I-, but en-
compasses a region normally occupied by several
atoms. Then, the envelope function and adiabatic
potential concepts are still tenable with some res-
ervations. This energy regime belongs to the
self-trapped electrons ("bubbles" or polarons also
being appropriate concepts). The density of states
appropriate to this regime must take into account
not only the electron, in a discrete eigenstate, but
the fact that the localization may take place any-
where within I . If the localization region is
small, then the entity may be characterized by a
total effective mass I*and a center-of-mass ki-
netic energy K. This characterization leads to a
density of states within the ith cell of

, (2m*)'~'
2LS 2 ~

K~~25(V —E —F„—nR) .

Where the center of mass is treated as a point
particle, E& is the extra energy of the material
due to the local distortion, and n& is the total
binding energy due to an electronic binding: n&

+&R, which must be positive by definition. +& &0

corresponds to a stable self-trapped state, and

e~ & 0 to a metastable one which may be populated
thermodynamically since it is, by definition, a
self-consistent solution of the adiabatic equations
if it exists at all. It shall be assumed, for sim-
plicity, that there is only one bound state; other-
wise, a sum over the possible values of e& should
be included. This part of the density of states,
when averaged over all cells, gives rise to a dis-
tribution of states, since the 5 functions are
smeared by fluctuations over an energy range

+V~

(iii) E=(V): This is a difficult regime to treat
since, taking into account the motion of the atoms,
the separation of electronic states into bound and
unbound ones is not sharp. It will be assumed that
this regime is narrow in energy, and thus that the
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errors introduced by its neglect will not cause
serious error to properties depending on aver-
ages.

B. Formal Averages

In summary, the product of the cell density of
states and the Boltzmann factor is

(2 g )3/2
n„B =8(E —V)2I ' (E —V) 6 6 +8(V —E)2I. ' ' K

&& 6(V E E ) e-(2+ PK+ K&/ 2T6

The Kronecker 5's in the first term indicate that
the material configuration g is the uniform one and
that the quantum number K is not applicable; in the
second term, 8 is to be the self-consistent config-
uration having binding energy z.

To calculate averages one needs

I(A) =Z A„T(„a„= dE, d VP(V) Z A„~II„,
0

U 0 R, K

where E includes I"
R as well as the electronic

y2/2

1(A) =(20 g'
3 (kT) i 8 ) Z(A)

with

(8a)

energy. To do the algebra for the self-trapped
states, a potential V, = E+ zv may be defined such
that it gives rise to a state bound by V, —E. Fur-
ther, since we are only interested in V close to
V because o~/V«1, a„may be expanded about V

to terms linear in the deviation. The integral over
V is used to eliminate the g function and appro-
priate changes of variables yield a final result

Z(A) =

"0

E —V
" o(l E V'ty"'e 'A y= dy+ v e "'v'"G xA x= dxk7'

I kT& 0'v )

, ; (( —,", ). (—;.
..—,

'
(( ,'; ); Iz,-. (8b)

The G(x) describes the redistribution of states
owing to intrinsic fluctuations,

G(x) (I/2&)1/2 J' &1/2 e-(z-z) /2d& x1/28(x) .
0 7

(9)
it is shown in Fig. 1. Naturally, f „G(x)dx=0.

HR is an average due to fluctuations of the prop-
erties of the self-trapped states:

H-= (I/2(()"' f I (m*/m)"'A ] (,-""dz
(10)

where R indicates a self-trapped state in a cell
average potential V and

&vV- V=0 z —1-—— v ~& v k

It has been assumed that AR is independent of K
and that V/o~-~.

To recapitulate, the meaning of the three terms
in J(A) is physically interpretable. The first is
the usual one for free electrons in a wide conduc-
tion band; the second is the result of a redistribu-
tion of states by intrinsic fluctuations —it gives the
conduction-band "tail"; the last is the result of
self-trapping appropriately averaged over intrinsic
fluctuations. The first two terms are those ob-

tained by Eggarter and it can be seen that the in-
fluence of the second term depends very strongly
on o~/kT as the crucial parameter. The term due
to self-trapping depends on the self-consistently
obtained binding energy ~v which we proceed to
discuss. An observable is to be calculated with the
above expressions:

A = J(A)/J(A = 1) .
III. SELF-CONSISTENT EQUATIONS

The coupled material-electron equations, within
a cell, will now be discussed. The discussion will
be restricted to a virial fluid whose constituents
interact with the electron as a system of hard-core
scatterers. The Schrodinger equation for the
envelope function of an electron in a system of
number density p(T) is

& + =k(~)) k(~) = zk(~) .A 2 V„
2&i p~

p„ is the density far from the electron and V„ the
interaction potential corresponding to that density
(we shall use the Wigner-Seitz potentj. al deter-
mined by the scattering length of the material). It
should be noted that collective polarization terms
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G(x)

0 5--

'
X

-0 ]--

-0 2--

FIG. 1. Function G(x) describing the redistribution
in energy of unbound states, within cells, due to fluctua-
tions.

have been neglected for simplicity, which should
not be a serious omission if the density and po-
larizability of the material are small. With the
electron now specified, the potential energy of an
atom at z, due to the electron, is given by
(V„/p„) I gs(r) I'. The equation of state for the ma-
terial is taken as the virial one,

I (r) = p(r)br[I+a„p(r)) .
So that requiring that the chemical potential be con-
stant yields

p, (r) 1
C

p„cosh2br (17)

This choice has the great advantage, aside from
an intuitive density profile, that the Schrodinger
equation can be solved, for all C and b, in closed
exact form. ~ For the ground state, defining

Solutions to the equations may now be investi-
gated. (a) Z & V„: The wave function is delocal-
ized over the cell, I g I

3-L s, and the potential felt
by an atom is V„/P„L~. If this potential is small
compared to kT a uniform fluid density results,
in agreement with that assumed to obtain g. The
sampling length I. is clearly important here as
well as in determining the importance of fluctua-
tions [see Eqs. (5) and (8)]. Using the numbers
in Table I, it can be shown that for He at 4. 2 K
this energy of interaction per atom (in K) corre-
sponds to values of 1.6-5. 2 K for p=10 to 2
x10~'/cms if L(V) is used, but has values of 0. 05-
0.41 K if L (p) is used. The quoted density range
is the important one in dealing with the observed
mobility edge. Thus, the choice of the de Broglie
length leads to interactions which are not negligible
with respect to kT. This is inconsistent with the
neglect of interactions in writing a free-particle
density of states. There is no such objection in
using the somewhat larger sampling length L(p).

(b) F. & V„: The approach followed was to choose
a two-parameter trial function for p(r):

8m y 1/2 g2b2
s= — 1+ ~2" C —1; p=

m oo

(18)

V„ I' gs(r) I+B p„1—expce p„kT (14)
[note C= ps(s+1)], the eigenstate and its energy are
given by

with the virial corrections assumed small. This
equation states that the ratio of the number of
atoms in two small volume elements is given by
the Boltzmann factor.

The density far from the electron is not the same
as the average density in the cell in the absence
of an electron (a similar remark applies to the po-
tential),

(p)=p (1 —ii); 6=L Sf [1—p(r)/p„]dr .
(i5)

But it shall be assumed, and verified later, that
5 «1 in the cases of interest. The excess energy
of the material due to the density distortion,
caused by the electron, is

p(r) I p(r)
1

p(r)'
dI' R p„T ln +1 ~dr,

P P P i (18)

which does not include any collective terms other
than those implicit in the equation of state.

b~C, i ~3 1 sinhbr
4v I br cosh'br

=1 —p(s-1)
V„

with

sinhx

"0

The two parameters (p, s) can now be chosen by the
self-consistency requirement, i.e. , by demanding
that the equilibrium equation (14) for the density
of the host material be exactly satisfied at two
points (br=0, 1 were chosen). The solutions ob-
tained in this manner can be examined to determine
the adequacy of the self-consistency for all z. In
the cases examined the self-consistency for all z
was quite good. It is now fairly trivial to improve
the electronic energy by first-order perturbation
theory. It is also fairly trivial to calculate the excess
energy of the host material using the model den-
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TABLE II. Wigner —Seitz potential T (K) for various
densities (10 /cm ). For H2 two values of a were used,
af =0.85 A and a2=0. 74 A (Refe. 8 and 8); for Ne the
value a=0.21 A was used (Refs. 4 and 8). See Table I
as well.

631
1380
2210
3120
4090

H2

002

526
1140
1800
2510
3270

15
20
25
30
35

Ne

2070
2810
3560
4340
5130

C,k T "
p Pg(g+ 1))+ V'(0) dxx y 1 —

2 ) +e ~ —1, (20)
ol 0

where

Vp(0) 1 sinhx
kT x cosh'g

Vp(0) V„
i ( )~p

uT p„
and (P, g} are to be determined from solving the
transcendental equation (14),

ln 1 —
a = X& ++vp„ 1pg(g+ 1) - y(e)

cosh g

at g=0, 1. It should be noticed that y also depends
on g and P, that Vp(0) is the electron-atom inter-
action potential at the origin while y(x) is the posi-
tion-dependent electron-atom interaction energy
divided by kT (where x= bz) The above .expres-
sion for &v includes corrections due to Bv only
implicitly, through the values of P and s.

A. Ideal-Gas Results (B& =o)

The model does not admit consistent solutions
for p„smaller and/or T larger than a line in (p, T)
space specified by

T„(T„/nT) = l. 12x10 (21)

sity (17) in zero order, or, as an improvement, the
better density obtained byusing the electronic wave
functions in Eq. (14) which defines the densityvari-
ation. In the cases examined, the corrections to the
model were all small, indicating that the lowest
order of perturbation theory is quite adequate.
The host material is specified in relating V„ to p„
and by specifying Bv. It is the virial coefficient
which makes the calculations tiresome since its
variations prevent one calculation from having
wide applications. The binding-energy result us-
ing the corrections is

V- —& —&g
p( 1)2V„V„

where n is the number density, in molecules/cmP
F10 ~~, and kT„= V„. This limit line has solutions
g= 1.728, pg(g+1)=1 —e . Using the model den-
sity dependence leads to Fp/V„= 1 —0.0710,
E„p/ V„=0.0972. The first-order pe rtu rbation-
theory correction to the electronic energy is
+0..0040V„, and using the density profile defined
by the wave functions decreases the extra free en-
ergy of the gas by 0.0027 V„ from that calculated
in zero order. Thus the zero-order Q, v is
—0.0262 V„and the improved one is —0. 0275 V„.
The gas density at the origin is 37% of that far
from the electron. The above results only depend
on the host material through the scattering length
in V„. A modest table (Table II) of V„versus p„
is given for He, N~, H2, and Ne ' in regions
accessible to experiment (see also Table I).
Graphs of the limit lines for these materials are
given in Fig. 2.

For lower densities or higher temperatures than
the limit line, the two-parameter model is too
inflexible to admit solutions. However, it is a fair
inference that in that: region the binding will be
weakened from that at the limit lines (which are
already metastable since a is a negative al-
though the electronic part of the system is well
bound).

Continuing the discussion of the model, deeper
binding than that at the limit line can be examined.
Such increased binding results from using higher
densities or lower temperatures. Table III lists
five curves, plotted for He and N2 in Fig. 3,
specifying their definition, the potential felt by an
atom at the origin divided by kT for all points on
each curve, the gas density at the origin relative
to infinity, zero-order electronic binding energy,
perturbation-theory corrections to it, zero-order
extra energy of the gas due to the density change,
corrections to this energy, and total binding ener-
gies. It can be seen that as the binding increases
the atoms are increasingly excluded from the re-
gion in which the electron is localized. For the
five curves quoted, one can compute the number of
atoms displaced by the correlation. This number,
divided by the ratio of V„/&T, along the entire
curve 1 is given by 0.85 and slowly decreases, be-
coming 0. 57 on curve 5. Specifically, for He at
4. 2 K, - 100 atoms are displaced on curve 1

(p=1.28&&10 /cmp) and this number slowly in-
creases, becoming- 140on curve 5 (p = 2.25x10pi/
cmP). Also for He, by 30 K the above numbers of
atoms are approximately halved, i.e. , -50 on curve
1 (p=3. 65x10"/cmp) and -65 on curve 5 (p=6. 55
x10 /cm ). It should be remarked that, consis-
tent with the assumption (6 « I), those numbers
of atoms are quite small compared with the num-
ber of atoms in the cell [pLP(p); see Table I].
Also, the distance over which the density varies
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TABLE III. Characteristics of five curves in (p, T) space (B&=0). T„(K) is the Wigner-Seitz potential for the density
n && 102~/cmp; it is obtained from using the scattering length. Row 1 is the limit lines. See text for details.

Vp(0) /kT 1 —p(0)/p P(s —1) ~/V Esp/V J5E/V

11200
13 500
16200
19200
22 800

1.728
2.200
2.500
2.735
3.000

0.1341
0.1282
0.1100
0.096 30
0.082 91

1.00
2.33
3.28
3.63
5.28

0.632
0.902
0.962
0.973
0.995

0.0710
0.1846
0.2475
0.2900
0.3311

+0.0040
—0.0050
—0.0219
—0.0129
—0.0675

0.0972
0.1720
0.1862
0.1900
0.1811

—0.0027
—0.0031
+ 0.0065
+ 0.0164
+ 0.0264

—0.0275
+ 0.0207
+0.0767
+ 0.0965
+ 0.1916

because of the correlation is correspondingly
small compared to L.

B. Inclusion of Bz (Helium 4.2 K}

To estimate the virial corrections, the densi-
ties appropriate to the first three curves examined
in the ideal-gas case were reexamined for He gas
at 4. 2 K. The method used was to begin with the
ideal-gas values of (s, P) and to iterate the self-
consistency transcendental equations (for s and P)
which include the virial corrections. Three itera-
tions were needed in the cases examined to obtain
self-consistency to four figures. The results are
quoted in Table IV. It might be noted that the ef-
fects of B& tend to cancel somewhat in computing
Qp.

Given the uncertainty in m* discussed below, it
was not felt it would be fruitful to further pursue
virial corrections.

C. Return to Fluctuations and Calculation of Averages

Having quoted the results of calculating &~, the
points which remain to be discussed are eo/0 V,
the variation of binding with density; o'~/kT, the
crucial parameter for fluctuations; and nz*, the
effective mass of self-trapped entity. All of these
points have already been touched on either explicit-
ly or by implication. The reader should refer to
the expression derived previously for I(A), Eq.
(8), which is to be used in the calculation of aver-
ages.

The density variation of the binding energy for
helium can be obtained from the quoted results.
It was found that the binding increases with den-
sity at a fixed temperature. From examining
curves 1-5 for He (Fig. 8 and Table III), so/8 V
was of order 0.3 at the limit line with very
small temperature dependence. By curve 4 it had
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approximation. See Table II and row
1 in Table III. The density of the
saturated vapor in these materials
is also shown, as is that of the liquid
of Ne and N2 under the saturated
vapor pressure. Density measure-
ments are from. Ref. 17. Observed
drift mobility divided by the semi-
classical value expected for He gas
is shown from Refs. 9- and 10.
The four isotherms noted for H~
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bility was measured, from Refs. 14
and 10. The mobilities were mea-
sured in Ne, Refs. 4 and 12, along
the saturated liquid and vapor lines.
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for L, allows the good agreement between theory
and experiment obtained by Eggarter to stand
by decreasing (though not denying) the role of fluc-
tuations in the mobility drop observed experimen-
tally. The burden of returning the theoretically
predicted mobilities to the experimental values is
then passed on to the self-trapped states.

To calculate mobilities in a system in thermo-
dynamic equilibrium, for He, for example, the
partition function previously described is to be
used. The mobility to be averaged has already
been discussed by Eggarter for the unbound
states including "pseudobubbles, " localized states
due to intrinsic density fluctuations rather than
self-induced trapping. For the self-trapped elec-
trons a mobility formula also exists:

1 9ng
p,g=

strqB 4pR(2trMITl ) '1+ (22)

4 5

p (l0 /cc)

I IG. 3. Curves 1-5 from Table III are shown for H2

(N2 also) denoting increasing binding as specified in the
table. Calculations were in the ideal-gas approximation.

typically changed to 0.2. Thus the parameter of
importance, namely, I —se/a V~v, is 0. 7-0. 8 and

increasing towards unity with density.
The importance of fluctuations, then, depends

only on o„/kT which, in turn, only depends on the
choice of L since ay~L . It has already been
implied that choosing the de Broglie wavelength of
an electron of an energy equal to the average poten-
tial (gV for I. seems too small since it is the lower
limit specified by the uncertainty principle; this
choice also seems somewhat inconsistent with the
free-electrondensity of states within the cell; its
choice leads to correlation energies, for unbound

states, which are comparable to kT at the densi-
ties where the mobility edge is observed, which in
turn implies that density variations within a cell
are not negligible. All of the above objections can
be removed if L is chosen as the mean free path
for momentum-exchange scattering at the average
density for the system. This mean free path choice,

where g is the viscosity of the host material, p
the effective radius of the entity, and M a reduced
mass:

1 1 1
+

M m+ Mb

In the case of strong binding, a hydrodynamic re-
gime, rn* is half the mass of the excluded atomss;
thus m~ » M„„„M= M„„and 8 might be taken as
the classical turning point for host atoms (i.e. , the
z at which a host atom would feel a repulsion of
24T due to the localized electron; for He at 4. 2 K

the ideal-gas curves 3-5 yield R-15 A using this
prescription). In the case of weak binding, the
above interpretation of R is not tenable since, for
example, on curve I (our limit line) the maximum
repulsive potential felt by a host atom is kT (at z
=0), so that there is no classical turning point for
an atom with the average kinetic energy. A second
problem is ~~ at small binding, which may not be
large compared to M„„,since for very weak bind-
ing one should expect that m* goes smoothly to the
electron mass.

To obtain an estimate for rug*, experimental
resultss ~ for an isothermal mobility edge (He,
4. 2 K) and theory can be compared. Let us as-
sume p,„is small compared to the semiclassical

TABLE IV. Role of the virial coefficient By in He gas at 4.2 K.

p

1.2p x 1p"

1.38 x 1p"

1.65 x 10

ideal gas
with By

ideal gas
with By

ideal gas
with By

V(0)/A T

1.000
1.544

2.328
2.293

3.283
3.199

1 —p(0)/p

0.6321
0.8102

0.9025
0.9135

0.9625
0.9665

p(s —1)'

0.0710
0.1385

0.1846
0.2078

0.2475
0.2866

—P. 0275
—0.0212

+ 0.0207
+ P. 0166

+ 0.0767
+0.0750

—3.36
—2.59

+2.94
+2.36

+ 13~ 2
+13.0
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free-electron mobility g„. Further, neglect
fluctuations, which can only reduce the mobility
from the semiclassical value. With these assump-
tions the mobility drop is due to self-trapped elec-
trons and an upper limit for (m*/m)3~, the only
unknown parameter in the partition function, can
be obtained. To fit the experimentally observed
mobility at p= 1.38x10~'/cma (curve 2, Fig. 3) in
He for 4. 2 K (a value of 10 ~&& p.„)~0 a maximum
value of m*/m = 6 is required. Hence, for weak
binding (a few kT) the effective mass of the self-
trapped electron is of order 10m and not 50M„,.
This value will change rapidly with increased bind-
ing since the hydrodynamic regime must be ap-
proached (again for He, m*» M„, for the liquid" ).
Thus nz* will vary by -10 between weak and strong
binding. Concurrently the fraction of electrons in
self-trapped states, which is already non-negligi-
ble at the weak binding of a few AT, will increase
by 10' [(rn*/I, ) ~'] due to the mass factor alone.

In the absence of detailed knowledge of I* it
seems fruitless to attempt a detailed comparison
of theory with the mobility-edge experiments. At
this time it might also seem indicated to again
make the reader aware of other problems that
exist for quantitative purposes. In each cell, when
the electronic energy E=( V), the density of states
and mobilities being used are hardly exact because
the separation of electrons into bound and unbound

ones is not sharp. It has been assumed that er-
rors introduced are not serious in computing
properties which depend on averages, but quanti-
tatively this is not precise. Further, in the case
of self-trapped electrons, when the linear dimen-
sion of the localization region is only a few average
interatomic distances the replacement of these
atoms by a potential depending only on the local
density is an approximation of uncertain precision.
However, since the detailed comparison of theory
and experiment is being abandoned, the experi-
ments will be examined in the context of the theory
taken at face value.

IV. DISCUSSION OF EXPERIMENTS

For He gas, ~ the mobility experiments seem
to fit quite well into the framework developed in
this paper. At constant temperature, for low

helium density the observed mobility is due to
free electrons. This is as expected since, in this
regime, V and o~/kT are quite small (see Table
I) and n~/kT will also be negligible. As the helium
density is increased, &r„/kT increases and the low-

energy states brought about by the fluctuation-in-
duced redistribution of states begin to trap a
non-negligible fraction of electrons in nondiffusing
states (whose mobility must be very small). The
net result is that the observed mobility, while
remaining fairly high, steadily falls with increas-

ing density below the value calculated semiclassi-
cally for free electrons. The steepness of the
drop in mobility with density decreases with in-
creasing temperature as expected. Eventually
self-trapping will begin to play a significant role
leading, after a sharpened drop of mobility with

density, to mobilities of order 10 ' cm /V sec
rather than the value of -10 expected for free
electrons. Measurements in helium gas are also
indicated in Fig. 2. This general behavior is also
to be expected in the other materials discussed
below. Measurements at constant density and de-
creasing temperature should show the same type of
behavior.

As indicated by Fig. 2, self-trapping in neon is
expected at densities above the critical density,
i.e. , in the liquid for the saturated vapor pres-
sure. Measurements in Ne gas4 and liquid4 ~2 are
also c6nsistent with the picture developed here.
The high mobilities measured in the saturated
vapor fall below the free-electron values and the
low mobilities found in the liquid are typical of
self-trapped electrons. More detailed calculations
should probably include polarization effects and

density-dependent atom-atom interactions which
were neglected in plotting the appropriate curve in

Fig. 2. Miyakawa and Dexter obtained results in
substantial agreement with experiment for liquid
Ne. They considered a square well for the elec-
tron-induced density disturbance and neglected un-
bound electrons and fluctuations.

For N2, Fig. 2 shows that self-trapped electrons
are to be expected quite close to the critical den-
sity at the saturated vapor pressure. The avail-
able mobility measurements in the liquid~~ indeed
show that the negatively charged species has the
expected low mobility. However, the experimen-
tal results cannot be unambiguously identified with

self-trapped electrons though the possibility exists.
A substantial amount of both detailed calculations
and extended experimental measurements remain
to be done.

Measurements in H, gas and higher-temperature
He gas are quite interesting and are discussed
below.

Nonequilibrium Cases

There have been mobility measurements in Hz
(- 30 K) ~0 ~4 (for the isotherms denoted in Fig. 2)
and in He (77 and 160 K)~' where two coexisting
mobility branches have been observed, indicating
a lack of thermal equilibrium. The high-mobility
branch seems excellently described by the semi-
classical treatment augmented by fluctuations
(trapping by intrinsic density fluctuations or
"pseudobubbles"). That is, the observation on the
high-mobility branch shows the semiclassical val-
ues at low densities, dropping slowly from those
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values with increasing density by factors of as
much as 2 or 3 at the highest density where
the high-mobility signal is observable. This be-
havior is completely consistent with some of the
electrons being trapped by intrinsic fluctuations,
a process which is not extremely effective at
these high temperatures.

The low-mobility branches show all the charac-
teristics of self-trapped electrons where the trap-
ping time is comparable to the transit time of free
electrons under the experimental conditions (-10 ~

sec). Owing to the measurement method, trapping
almost anywhere in the drift space leads to the low-
mobility value since the inverse of the drift time
is measured and the fast and slow times are in
ratio of -103. The influence of impurities can be
ruled out in both experiments. The low-mobility
signal strength is transit-time dependent' indicat-
ing a lifetime effect, and is also density depen-
dent' ' as would be expected for an increasing
trapping probability. The time required for an
electron to self-trap must be extremely long for
very low gas densities (m* - m and o. & 0) and is
known to be quite short (-10 ~2 sec) for liquid He~8

at -4 K. There must be a temperature- and den-
sity-dependent transition regime where the trap-
ping time is comparable to the experimental tran-
sit time. This effect is dynamic and thus cannot
be probed in detail with the formalism which has
been developed —it can only be made plausible.

The observation of a low mobility occurs at
lower density for Hz gas (30 K) than for He gas
(77 K) and at yet higher densities (for the same
transit time) for He at 160 K. This is as expected
in the context of this work since the limit line,
Fig. 2, for H2 at 30 K is at lower density than for
He at VV K and is at higher densities yet for He at
160 K. It should be noted that Fig. 2 would pre-
dict a higher density ratio between He (77 K) and

Hz (30 K) than that observed experimentally for the
stable existence of self-trapped electrons. How-
ever, the double-gate technique used for He is
more sensitive to a low-mobility species than the
single-gate technique used for H~.

To further uphold the interpretation given here,
it should be noted that measurements for H~ were
made along four isotherms (noted in Fig. 2). The
isotherms terminate at the density of the saturated
vapor and density fluctuations beyond this point
cannot be expected because of the liquid-gas phase
separation. The two higher-temperature isotherms
terminate at higher densities than the limit line;
these were the isotherms on which a low-mobility
branch was observed. No low mobilities were ob-
served on the two lower-temperature isotherms.

It is assumed that density fluctuations play a role
in this experiment, not because intrinsic fluctua-
tions trap electrons (to account for the low mobil-
ities) but because density fluctuations wi. ll provide
a few cells where conditions are favorable for self-
trapping even when the average density is below
that at which self-trapped electrons will be stable
on the average. The observations of low mobilities
are at average densities lower than the limit lines
of Fig. 2. Favorable conditions for self-trapping
are high-density regions which would lead to a
reasonable binding (not too small o) and a reason-
ably high m~ (large density of self-trapped states
within the cell). The above discussion shows that
all expectations, within the context of this work,
are fulfilled if the low mobilities observed in H2
and He are interpreted as due to self-trapped elec-
trons.

V. SUMMARY

A formalism has been developed for electrons
in some structually disordered materials. It in-
cludes a wide conduction band, band-tail states
which include localized states owing to random
potential fluctuations, and self-trapped states.
Specific results have been obtained for an ideal gas
interacting with electrons through a potential lin-
early dependent on the local density. Appropriate
parameters to represent He, H2, N2, and Ne were
introduced (the scattering lengths) and predictions
resulted. Corrections were examined due to the
virial coefficient and they were estimated for He
gas at 4. 2 K. The effective mass of a self-trapped
electron was introduced and shown to be important
and quite sensitive to the experimental situation.
Semiquantitative comparison of the theory and the
available experimental results showed good agree-
ment for the four materials considered in the
regimes where measurements are available. More
detailed calculations should be made for Ne and N~.
Also, further experimental measurements should
be quite rewarding, especially if they chart the
regions near the limit lines, where the mobilities
will drop, and investigate the effects of high fields
in influencing the distribution of electrons among
the available states.
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