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We have calculated the third- and higher-order (multitime) cumulants of the intensity of
single-mode laser light using the rotating-wave van der Pol (RWVP) model. Our results in-
dicate a distinctly nonexponential time dependence of the cumulants s1ightly below threshold
and an oscillatory time dependence somewhat above threshold. One can interpret this oscil-
latory behavior as showing that the larger fluctuations above the mean decay more rapidly
than those below the mean. Measurements of the third-order intensity cumulants above thresh-
oM would be desirable to check for this behavior and to provide a more rigorous test of the
HWVP model than the second-order intensity correlation.

I. INTRODUCTION

The statistics of single-mode l,aser light in the
threshold region have been the subject of con-
siderable experimental Rnd theoretical study. The
steady-state statistics are found to be well de-
scribed by essentially the simplest physically rea-
sonable model, 'the x'otating-wave van der Pol
(RWVP) model. However the time-dependent sta-
tistical behavior of a laser, as it relaxes towards
equilibrium from a fluctuation, involves considex'a-
bly more details of its dynamics than does the
time-independent steady-state behavior. Experi-
mentally, the relaxation processes are revealed
in the time dependence of the multitime coxrela-
tions of the intensity such as &I(ti)I(t,)& and &I(ti)
&&I(t,)I(t,)&. ln this paper we shall calculate the
third- RDd hlghex' ox'der intensity correlations~
which are more sensitive to the higher decay rates
of the laser than the mell-studied second-order
intensity correlation. This will provide a more
detailed understanding and test of the RSVP model.

A tx'1ple-photoelectroD-co1DcideQce expex'1meQt

has been performed by Davidson and Mandel on a
He: Ne laser at and below threshold. These mea-
surements Rx'8 consistent with R simple exponential
time decay, with a third-order coherence time
which (below threshold) is distinctly shorter than
the second-ordex' intensity correlation time. Ac-
cox'ding to our cRlculRt1ons the decRy slightly below
threshold departs significantly from simple ex-
ponential behaviox, and the times characteristic
of this decay are longex' than those found by David-

son and Mandel. Above thx'eshold, the decay be-
comes oscillatoxy. Haake has predicted a damped-
oscillation time dependence for the intensity cor-
relation functions of lasers where atomic "memory"
effects i.nvalidate the Markoffian assumption of
the R%'VP model. However, me find damped
oscillatory behavior even in the RWVP model; that

is, on the lo-p, sec time scale, rather than on the
nanosecond time scale needed to observe non-
Markoffian effects.

The additional complexity of an oscillatory cor-
relation means that the experimental results are
sensitive to some of the higher eigenvalues (decay
rates) of the Fokker-Planck operator in the RWVP
model. Thus, in contrast to the second-order
intensity correlation, it is not possible to describe
the expected third-ordex correlation results in
terms of a single correlation time. Mox'e precise
measurements mould be desirable.

II. CALCULATION

It is convenient to express both experimental
and theoretical results for Nth-order intensity
correlations in terms of quantities which contain
only the txue Nth-order correlation, with all lomer-
order effects subtracted away. The quantities
which fulfill this criterion axe the cumulants
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where

—(Tg(tl Iln I3)) (TN(n joe I4))

—( TN (tl Il I2 I4)& (T~(n IotlI3)),

DID = bq bs —(b) b));

b&
——b(tz) is the positive-frequency (destruction)

part of the field operator at time ti, and T„places
the operators in normal order (creation operators
to the left) and in the apex time sequence (e. g. ,
b, b2 b, b, b2 b,). Experimental results for the in-
tensity cumulants are proportional to the average
intensity, solid angles, and other efficiency fac-
tors. These can be eliminated by comparing ex-
periment with theory for the dimensionless ratios

K„(tl, . . . , t„ 1) = (I) "Kl1.~.1 (I(tl + t2+ ~ ~ ~ + t„ 1),

BP =- LP,
Bt

where L is a general linear operator. In the Fok-
ker-Planck (or diffusion) approximation, where L
is a non-Hermitian second-order differential op-
erator, the conditional probability [or Green's-
function solution of (t)] can be written in the form

I'(p, t
I po to) = ~ s '"""'I'.(p) 4.(po)*

n220

where I'„nad P„are the eigenfunctions of L and its
Hermitian adjoint L~:

LI'„(p) = Il„I'„(p), L'$„(p) = Il„* p„(p) .
It has been shown" that when time reversal in
the form of detailed balance is obeyed, we have

I(t, +t, + ~ ~ +t„,), . . . , I(t,), I(O)),

(2)

$.(p)~ = I'„(p)/I'o(p),

where Po(p) satisfies the equation

(lo)

where t, is the time delay between the first and
second measurements of the intensity, t2 the delay
between the second and third, and so on.

The multitime correspondence between quantum
and classical stochastic systems, '6

b(t) —P(t), b'(t) - P*(t),

is such that apex-ordered operators, as in (1), can
be averaged by taking the associated c-number
average:

LP0(p) = 0 9

corresponding to the eigenvalue A0= 0. While L
is not in general a Hermitian operator it is equiva-
lent to one under a similarity transform given by
multiplication by [Po(p)]'i . Thus the eigenvalues
of I are real: A„= Jl„*. In the RWVP model, P„(p)
can be chosen to be real.

The triple-intensity cumulant, Eq. (6), reduces
to

(TN(~ Il+I2 I3)& (+P3 P2+Pl)

where

(3) &~p(t+ t, )t p(t) ~p(t —t, )&

~ (+P)ome " '(+P)mne " '(+P)no
mom0

is the intensity and

+Pc =Ps (P&)n =ps P

is the intensity fluctuation. The mean intensity
can be denoted simply p, since it is independent of
the time t& . Hereafter all averages will be c-
number averages, and the subscript will be omitted.

The result, Eq. (3), is valid whether or not the
quantum field statistics are Markoffian. Undez
the Markoffian assumption (and, in particular, for
the RWVP model) the multitime probability den-
sity needed to carry out the indicated average in
(8) factors" so that

«potlpot pl) f dpodpodpl(P3 p)I'(poitolp»t2)

&&(P2 5) I'(P2, -to
I pl, tl) (Pl- P) Po(pl),

(6)
where Po(p) is the steady-state intensity probabili-
ty distribution, and P(p, tl po, to) is the conditional
probability that the intensity will be p at time t,
given that it was p0 at t0. In general, the inten-
sity probability distributions obey an equation of
motion

= Z (po —pb ) '"'2(p „-pb .)
ms fi-"0

&«n "(Pe —Pb o)

PmoPno(Pmn bmn P) ~

ms n=1

where

(p') „=f, y„(p)*p'I'„(p)dp,

(12b)

(13a)

P =&P& =Poo ~ (14)

The double-intensity cumulant can be expressed
similarly as

(hp(t)tip(0)) = Z (po„—pbo„) e
n=0

X(P o Pb o) (15a)

(&p') .= f, 0 (p)*(p-p)'I'„(p)dp (13b)

are the matrix element of the 4th powers of the in-
tensity and intensity fluctuation between the eigen-
functions of L and L~. If k =1 the superscript is
omitted, as in (12). The mean intensity is
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Q (~p )2 -A~t

n=1
(15b)

Note that using hp instead of p results in the elimi-
nation of the n = 0 term in (15b). The normalized
intensity moments about the mean are

H, (t) = (~p(t) ap(0))/p',

H, (t„t,) =(~p(t, + t,)np(t, )~p(0))/p',

H4(t1P t2 l to) (+P(t1+ t2+ to) np(tl+ t2)

(16a)

(16b)

SC,(t) = H, (t),
Z, (t„t,) =H, (t» t,),

4(tl y t2 s to) H4(tl & t2 y t3) H2(tl)H2(to)
'~

—Ho(to)Ho(tg+ to+ to)

(1Va)

(17b)

H2(tl+ t2)H2(to+ to) (17c)

'When all delay times except one are zero, we
have

Ifo(t, 0) =(p) 'Z (np')o„s "'(&p)~, (18a)

xbp(tg)hp(0))/p . (16c)

The associated normalized cumulants are
Po. =(po.)' ~ (Pop)'

oaf
(2o)

The values of p „ for this range of P, and values
of A„and (p )„„for 1&k&4, 0&m, n-20, are
available '0'3

Our numerical results for the time dependence
of H, =K, at p = 3, 2, 1, 0, —1 are displayed in Figs.
1-5. Our results for p= —2 and -4 are not dis-
played. In these graphs we have measured time
in units of the second-order coherence time T,
at the given intensity

s = t,A, s'= 8~A, (21)

L. For the RWVP model,

B 2
B2

(2p' —2Pp - 4)+, (4p),
Bp Bp

where p is the dimensionless net pump rate (equal
to zero at threshold, positive above, threshold,
and negative below). Some of the numerical tech-
niques for integrating (7) and (19) and calculating
p~„have been described elsewhere. "'~ The first
ten nonzero eigenvalues A„ for assorted integral
values of p in the range —10&p&10 have been
published, '~ together with values of the coefficients

H, (t, o, o) =(p)-'Z
n~l

where

(22)
'

x[(np )o —8(&p )oonpo ] s "'(np), o,
00 (18b)

z, (t, o, o, o) =(p)-'Q
n~1

x[(~p')o„-4(&p')oo&po. —6(t p')oo(&p')o. ]

x e ""'(&p)„o (18c)

III. RESULTS

Evidently, below threshold,

H(s, s') = Ho(s, s')— (23)

is positive for all (normalized) times s, s, but
somewhat above threshold H~ becomes negative for
ponzero times. The third-order cumulant is a
measure of the asymmetry of a prob'ability distri-
bution; for example, if

To evaluate Eqs. (16) we need the eigenvalues
and eigenfunctions of the Fokker-Planck operator

K,(s, 0)=H, (s, 0)

= (ap(s) [Sp(0)]) (24)

TABLE I. Parameters to be used in the approximate expression, Eq. (25), for the third-order intensity. cumulant
He(g, g').

-10
-8
—6

3
-2
-1

0
1
2
3
,4

21, 4794
17.7829
14.2229
10, 8965
9.8735
7, 9889
6, 7927
5. 8539
5.2688
5.1750
5. 7508
7.1122

21, 4694
17.7667
14, 1955
10, 8474
9.3070
7, 8987
6, 6721
5.7027
5, 1770
3,3616
4.4155
5.2632

45, 0148
37.9667
31.2890
25. 1834
22. 4388
19.9689
17.8441
16,1628
15.0958
14.5447
15,6461
18.1747

Cg

1.693 895 2
1.575 1517
1.8875394
1,0891405
0, 885635 8
0, 647 763 1
0, 893 596 2
0.162 0673
0, 0000313

—0.032 533 3
—0.0442604
—0.025 803 9

0, 003 2445
0. 005 9024
0.0111778
0.021 1136
0.028 060 8
0.0352551
0.0401263
0.038637 0
0, 025 2275
0, 049 0249
0.0174704
0, 007 706 5

C)2

0.053 933 8
0.071 0724
0. 094 0294
0.120 420 9
0.131322 9
0.1364293
0.1314991
0.114249 7
0.090482 4
0. 027 0513
0.0213626
0.010182 8

0, 0055
0, 014
0. 041
0.13
0, 24
0.43
0, 69
1,1
1.5
1.1
0.43
0.22

1oo (~/Hm~)

; 0, 0003
0.0008
0. 0026
0.010
0.020
0, 043
0.10
0.26
0, 73
1.6
2. 7
2. 9
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FIG. 1. Normalized third-order intensity cumulant
H(s, s') fEq. (18a)J is shown as a function of the normal-
ized time delays s and s' for pump parameter p =-1.
The times s and s' are measured in units of the laser
second-order coherence time fzqs. (21) and 22)], and

H{s, s') is measured in units of p3, where p is the mean
intensity at this pump parameter.

is positive, then the joint probability distribution
of hp(s) and [bp(0)) is asymmetric towards posi-
tive fluctuations,

ap(s) = p(s) —p & 0 .

If Z, (s, 0) & 0, then the distribution is asymmetric
towards negative fluctuations.

Figure 6 shows that somewhat above threshold
the asymmetry of the joint probability distribution

FIG. 3. Plot of H(s, s') for p =1, with units as
described for Fig. 1.

depends on the normalized delay time s. For
short delay times, the distribution is asymmetric
towards positive fluctuations (as is always true
below threshold); but for longer delay times the
asymmetry favors negative fluctuations. If one
can intuitively separate the appearance of a fluctu-
ations from its subsequent decay, ([Ap(0)] 4p(s))
can be viewed as an average of the value of a fluctu-
ation s sec after it appears weighted with the square
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FIG. 2. Plot of H(s, s') for p=0, with units as
described for Fig. 1.

FIG. 4. Plot of H(s, s') for p=2, with units as
described for Fig, 1. For clarity, the curves for s'
&0. 5 have been displaced downwards successively by one
unit per curve. In each case, the actual asymptote of
H{s, s') for large values of s is the s axis.
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FIG. 5. Plot of II(g, 8') for p=3, with units as
described for Fig. 1.

of its original magnitude. Thus, while fluctuations
above the mean tend to be larger [Ks(s, 0) & 0 for
s =0~ thes = ~, ey also decay more rapidly, leaving the
negative fluctuations to predominate for longer de-
lay times [K,(s, 0) & 0 for s not near zero]. This
behavior is physically reasonable, in view of satu-

laser
ration of the atomic population difference b th e
aser light. The same saturation effects which

stabilize the intensity in a laser above threshold

-0 02

(1.0 I

2«0
(

3 ' 0

0 08

P=1 p

FIG 7 Comparison plot of the normalized fourth-
order intensity cumulantK4(8, 0, 0) fzq. (18b)I as a
function of normalized time delay 8 for several values
of the pump parameter p in the threshold regi n The
units of time are the same as those used in Fig, 1. For

the
each curve, K'4 is measured in units of p4 h, w erepxs

e mean intensity of the laser at that value of p„

0 06

0 02

evidently damp the large intensity fluctuations
above the mean more rapidly than those fluctuations
below the mean.

Our results for the fourth- and fifth-order cu-
mulants calculated from (18) are presented in Figs.
7 and 8. In the threshold region (t) = —1 to p = 2) If 5

becomes negative for nonzero delay times, thus

supporting the conclusions drawn from K3.
To present our results for Hs in a compact form,

we have fit a five-parameter expression of the form

H(& +&) & &-&)(sse')/&+& &
xa(sse')/&

I1.0
1

2&0

FIG. 6 Comparison plot of H(s, 0) for several values
of the pump parameter p in the threshold region, The
oscillatory behavior of H(g, 0) for p&1.5 indicates a
change in the asymmetry of the joint (tao-time) intensity
probability distribution. The units used are the same
as in Fig, 1,

+& (e- ) 3
' / +&HA )s+k a)s/A } (25)

to our exact results for He(s, s'). The constants

e» ea, e,z, X» and Xz have been chosen so that
the values of H, (0, 0), [()H,(s, 0)/()s] I

f,"H,(s, 0)ds, f()"sH, (s, 0)ds, and f,"H,(s, s ) ds are
given exactly. While the form of (25) has no spe-

~ ~ ~ ~cial sxgnzf~cance, it is simple and gives a reasonably
good fit to the values of H, (s, s') calculated from
the more cumbersome expression (12). For the
indicated values of P, Table I contains the constants
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FIG. 9. Com parison plot of the exact third-orde
intensity cumulant H(s

lr -or er
an (s, s') (smooth curves) and the a-

proximate five-parameter fit fE . '
6 RP-

r ' '
1 f q. (25) and fable I

FIG. 3;l. Sumummary of experimental meUm a meaSurements of

, vath t=0, as func-
Rrame er p,
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c» e» c», &» and &q, the reciprocal second-order
coherence time X; ~, the maximum difference
between the exact H, (s, s') and (25); and ~/H ~,
the ratio of ~ to the maximum value of lHs(s, s ) I,
expressed as a percent. Figure 9 contains a com-
parison plot of Ho(s, s ) and the five-parameter fit
(25).

To compare our calculations to the experiments
of Davidson and Mandel, we determined the experi-
mental threshold intensity Io by fitting the measure-
ments of Hs(0, 0) versus intensity to the theoretical
curves, thus finding the values of P corresponding
to the measured intensities, For each value of
the laser intensity, the experimental delay times
at which the third-order cumulant was measured
were divided by the measured second-order coher-
ence time to obtain the normalized times s, s'.
Davidson and Mandel report that Hs(s, s ) decays
essentially exponentially to zero and can be charac-
terized by a third-order coherence time. For the
measured intensities (which were all below thresh-
old) and the range of decrease of Hs (roughly a fac-
tor of 5), the report of essentially exponential decay
is consistent with these calculations. However, the
measured third-order coherence times (shown in
Fig. 10) are distinctly smaller than the calculated
times which characterize the decay of II, . The

small amount of freedom in our determination of the
time and intensity scales is inadequate to produce
a substantially better agreement than is shown in
Fig. 10. This situation contrasts sharply with the
generally excellent agreement between experiment
and the RWVP model for the mean reciprocal co-
herence time, the normalized second-order cumu-
lantatzerotimedelay (Fig. 11), andthenormalized
higher-order cumulants at zero time delay (see
Chang et al. '). These results suggest that
more detailed measurements of the third-order
intensity cumulant should be made, particularly
above threshold, in order to look for the predicted
oscillatory decay of H8(s, s') and provide more
exacting test of the RWVP model.
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