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We have calculated the third- and higher-order (multitime) cumulants of the intensity of
single-mode laser light using the rotating-wave van der Pol (RWVP) model. Our results in-
dicate a distinctly nonexponential time dependence of the cumulants slightly below threshold
and an oscillatory time dependence somewhat above threshold. One can interpret this oscil-
latory behavior as showing that the larger fluctuations above the mean decay more rapidly
than those below the mean, Measurements of the third-order intensity cumulants above thresh-
old would be desirable to check for this behavior and to provide a more rigorous test of the
RWVP model than the second-order intensity correlation.

1. INTRODUCTION

The statistics of single-mode laser light in the
threshold region have been the subject of con-
siderable experimental and theoretical study. The
steady-state statistics are found to be well de-
scribed by essentially the simplest physically rea-
sonable model, the rotating-wave van der Pol
(RWVP) model. However the time-dependent sta-
tistical behavior of a laser, as it relaxes towards
equilibrium from a fluctuation, involves considera-
bly more details of its dynamics than does the
time-independent steady-state behavior. Experi-
mentally, the relaxation processes are revealed
in the time dependence of the multitime correla-
tions of the intensity such as {I(¢,)I(¢,)) and {I(¢,)

X I(t,)I(ts)). In this paper we shall calculate the
third- and higher-order intensity correlations, !
which are more sensitive to the higher decay rates
of the laser than the well-studied second-order
intensity correlation. This will provide a more
detailed understanding and test of the RWVP model.

A triple-photoelectron-coincidence experiment
has been performed by Davidson and Mandel? on a
He: Ne laser at and below threshold. These mea-
surements are consistent with a simple exponential
time decay, with a third-order coherence time
which (below threshold) is distinctly shorter than
the second-order intensity correlation time. Ac-
cording to our calculations the decay slightly below
threshold departs significantly from simple ex-
ponential behavior, and the times characteristic
of this decay are longer than those found by David-

3

son and Mandel. Above threshold, the decay be-
comes oscillatory. Haake® has predicted a damped-
oscillation time dependence for the intensity cor-
relation functions of lasers where atomic “memory”
effects invalidate the Markoffian assumption of

the RWVP model. However, we find damped
oscillatory behavior even in the RWVP model; that
is, on the 10-usec time scale, rather than on the
nanosecond time scale needed to observe non-
Markoffian effects.

The additional complexity of an oscillatory cor-
relation means that the experimental results are
sensitive to some of the higher eigenvalues (decay
rates) of the Fokker—Planck operator in the RWVP
model. Thus, in contrast to the second-order
intensity correlation, it is not possible to describe
the expected third-order correlation results in
terms of a single correlation time. More precise
measurements would be desirable.

II. CALCULATION

It is convenient to express both experimental
and theoretical results for Nth-order intensity
correlations in terms of quantities which contain
only the true Nth-order correlation, with all lower-
order effects subtracted away. The quantities
which fulfill this criterion are the cumulants*
Ky, L) ={Ty(ALAL) ,
Ky, I, 1) ={Ty(ALALAL) ,
Kunu(ly, I, Iy, 1) =(Ty(ALALATLAL)

~(Ty(ALAI(Ty(ALAL)
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ATy (ALAIN Ty (ALAL))

—(Ty(ALAIN(Ty(ALAL)) ,
where (1)
AL =b7b;-{bjby);

b, =b(t,) is the positive-frequency (destruction)
part of the field operator at time £;; and Ty places
the operators in normal order (creation operators
to the left) and in the apex time sequence (e.g.,

bI b} bl byb,b,). Experimental results for the in-
tensity cumulants are proportional to the average
intensity, solid angles, and other efficiency fac-
tors. These can be eliminated by comparing ex-
periment with theory for the dimensionless ratios

Ko(tyyoony byu)) =D Ky U+ 5+ 000 +E0)

It 4ty oee +tp), .00, I(#), 100)) ,
(2)
where f; is the time delay between the first and
second measurements of the intensity, £, the delay
between the second and third, and so on.
The multitime correspondence between quantum
and classical stochastic systems, *'®

b(t)—B@), b'(@#)~p*@),

is such that apex-ordered operators, as in (1), can
be averaged by taking the associated c-number
average:

(Ty(ALALALY) =(ApsApaapy)s (3)
where
p;=pt;) = | B(;) 12 4)

is the intensity and
Bp;=p; —{ppc=p; —P (5)

is the intensity fluctuation. The mean intensity
can be denoted simply p, since it is independent of
the time #;. Hereafter all averages will be c-

number averages, and the subscript will be omitted.

The result, Eq. (3), is valid whether or not the
‘quantum field statistics are Markoffian.” Under
the Markoffian assumption (and, in particular, for
the RWVP model) the multitime probability den-
sity needed to carry out the indicated average in
(3) factors®® so that

(ApsApa8py) = fow dpgdp,dp; (ps— p) Ppg, t5| pz , t2)

X (pz = P) P(ps, t2]p1, t1) (py —E)Po(mz >
6)
where Py(p) is the steady-state intensity probabili-
ty distribution, and P(p, lp,, %) is the conditional
probability that the intensity will be p at time £,
given that it was p, at {,. In general, the inten-
sity probability distributions obey an equation of
motion

9P
—g =-LP, (7)
where L is a general linear operator. In the Fok-
ker~Planck (or diffusion) approximation, where L
is a non-Hermitian second-order differential op-
erator, the conditional probability [or Green’s-
function solution of (7)] can be written in the form®

Plp, t|po, tg) =25 e™*nt710 P (p) ¢,,(po)* , (8)
n=0
where P, and ¢, are the eigenfunctions of L and its
Hermitian adjoint L':
LP,(p)=A,P,lp), L'¢,(p) =A% 6,(p) (9)

It has been shown® ' that when time reversal in
the form of detailed balance is obeyed, we have

¢n(p)* =Pn(P)/P0(P) > (10)
where Py(p) satisfies the equation
Lpo(p) =0 > (11)

corresponding to the eigenvalue Ay=0. While L
is not in general a Hermitian operator it is equiva-
lent to one under a similarity transform given by
multiplication by [Py(p)]*/%. Thus the eigenvalues
of L are real: A,=A¥. Inthe RWVP model, P,(p)
can be chosen to be real.

The triple-intensity cumulant, Eq. (6), reduces
to

(Ap(t+t)Ap()Ap(t = £,))

o

E (Ap)()m e ml2 (Ap)mn e-A"tl(Ap)no

myn=0

Z; (p()m - ‘—)GOM) e-Ath (pmn - ﬁﬁmn)

myn=0
xe""ntl(p,,(_, -pbn)  (12a)
) mél €™t 4n2 00 0o (Pn = Omn D) 5 (12b)
where
(M= f; dmp)V*0*P,(0)dp (132)
(APP)n = fo°° b (0)*(p - P)*P,(p) dp (13p)

are the matrix element of the 2th powers of the in-
tensity and intensity fluctuation between the eigen-
functions of L and L', If 2=1 the superscript is
omitted, as in (12). The mean intensity is

5=(p> =Poo -+ (14)

The double-intensity cumulant can be expressed
similarly as

(8p(0)2p(0)) = E (Do ~ Oon) €77t

X (Pno - f_)én()) (153')
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=27 (Apyoie™nt (15b)
n=1

Note that using Ap instead of p results in the elimi-

nation of the =0 term in (15b). The normalized

intensity moments about the mean are

Hy(8) =(ap(®)2p(0))/p% , (16a)
Hy(ty, t2) =ap(ty + £5) Ap(4) 6p(0))/3° (16b)
Hy(t,, ty, t3) ={Ap(t, + Ly + 13) Ap(ty + £5)
xAp(t)Aap(0)/p* . (16c)
The associated normalized cumulants are
K,(8)=Hy(¢) , (17a)
Kylty, tp) =Hylty, 1) (17p)
Kty by, t3) =Hy(ty, 1y, t3) - Hy(21)Hy(t5)
—H () Hy (b 4ty + b))
- Hy(ty + 1) Hy(ty+ 25) . (17¢)

When all delay times except one are zero, we
have

Ky(t,0) = (5)'32: (ApP)gne™nt (Ap)yg (182)

©

K,(t,0,0)= ()2

n=1

X [(Aps)o,, - 3(Apz)ooApon] e (ap),o »

.. (18b
K;(#,0,0,0)= <ﬁ)'521 !

x[(ap*on = 4(80%)g0APo, — 8(ap?)eo(20%)g ]

et (Ap)o - (18¢)

III. RESULTS

To evaluate Eqs. (16) we need the eigenvalues
and eigenfunctions of the Fokker-Planck operator
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L. For the RWVP model,
L= (202 - 2pp - )+ -2 (4) (19)
op Y P 'é;f P/

where p is the dimensionless net pump rate (equal
to zero at threshold, positive above thréshold,

and negative below). Some of the numerical tech-
niques for integrating (7). and (19) and calculating
Pmn have been described elsewhere. 3 The first
ten nonzero eigenvalues A, for assorted integral
values of p in the range — 10<p< 10 have been
published, '? together with values of the coefficients

p0n= (pOn)z/é (pOJ)z . ' (20) ‘

The values of p,,, for this range of p, and values
of A, and (p*),, for 1<k<4, 0<m, n=20, are
available, 10+13

Our numerical results for the time dependence
of Hy=Kg at p=3,2,1,0, — 1 are displayed in Figs.
1-5. Our results for p=-2 and -4 are not dis-
played. In these graphs we have measured time
in units of the second-order coherence time T,
at the given intensity

s=tA, s'=f,7, (21)
where »
T.=(R)™" =2 pon(A)™ . (22)°
n=l

Evidently, below threshold,
H(s,s")=Hy(s,s") (23)

is positive for all (normalized) times s, s’, but
somewhat above threshold H; becomes negative for
nonzero times. The third-order cumulant is a
measure of the asymmetry of a probability distri-
bution; for example, if

Ky(s, 0)=H,ls, 0)
={Ap(s)[ap(0) P (24)

TABLE I, Parameters to be used in the approximate expression, Eq. (25), for the third-order intensity cumulant

Hy(s, s').
» A A A, ) ¢ c1a AH 103 102 (AH/Hypgy)
-10 21,4794 21, 4694 45,0143 1.693 895 2 0.0032445  0,0539338 0, 0055 . 0,0003

-8  17.7829 17,7667 37.9667 1.5751517 0.0059024  0.0710724 0,014 0, 0008
-6 14. 2229 14,1955 31,2890 1.3875394 0.0111778  0.0940294 0,041 0.0026
-4 10,8965 10, 8474 25,1834 1.0891405 0.0211136  0.1204209  0.13 0,010
-3 9.3735 9.3070 22,4388 0.885635 8 0.0280608  0,1313229  0.24 0,020
-2 7.9889 7.8987 19,9689 0.6477631 0.0352551 - 0,1364293 0,43 0,043
-1 6.7927 6.6721 17. 8441 0.393596 2 0.0401263  0,1314991 0,69 0.10

0 5.8539 5,7027 16.1628 0.162 0673 0.0386370  0,1142497 1,1 0.26

1 5,2688 5,1770 15,0958 0.0000313 0.0252275  0,0904824 1.5 0.73

2 5,1750 3.3616 14,5447  —0,0325333 0.0490249  0,0270513 1.1 1.6

3 5,7508 4,4155 15,6461  —0,0442604 0.0174704  0.0213626 0,43 2.7

4 7.1122 5.2632 18,1747  —0,0258039 0.0077065  0,0101828 0,22 2.9
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Normalized third-order intensity cumulant

H(s, s’) [Eq. (18a)] is shown as a function of the normal-
ized time delays s and s’ for pump parameter p=-1.
The times s and s’ are measured in units of the laser
second-order coherence time [Egs. (21) and 22)], and
H(s, s’) is measured in units of p°, where 5 is the mean
intensity at this pump parameter.

is positive, then the joint probability distribution
of Ap(s) and [Ap(0)]? is asymmetric towards posi-
tive fluctuations,

Ap(s)=p(s)-p>0.

If K4(s, 0)<0, then the distribution is asymmetric
towards negative fluctuations.

Figure 6 shows that somewhat above threshold
the asymmetry of the joint probability distribution
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Plot of H(s, s’) for p=1, with units as
described for Fig. 1.

FIG. 3.

depends on the normalized delay time s. For

short delay times, the distribution is asymmetric
towards positive fluctuations (as is always true
below threshold); but for longer delay times the
asymmetry favors negative fluctuations. If one

can intuitively separate the appearance of a fluctu-
ations from its subsequent decay, {[Ap(0)]?Ap(s))
can be viewed as an average of the value of a fluctu-
ation s sec after it appears weighted with the square

THIRD-ORDER INTENSITY CORRELATICN

JALL L Li il

/Illlll

O —=-MNMUWDdDOO~N®

40

12 16 20 24 28 3.2 36
S

ol
0O 04 08

Plot of H(s, s’) for p =0, with units as
described for Fig. 1.

FIG. 2.
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FIG. 4. Plot of H(s, s’) for p=2, with units as
described for Fig, 1, For clarity, the curves for s’
>0.5 have been displaced downwards successively by one
unit per curve, In each case, the actual asymptote of
H(s, s’) for large values of s is the s axis.
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FIG, 5. Plot of Hs, s’) for p=38, with units as
described for Fig, 1.

of its original magnitude. Thus, while fluctuations
above the mean tend to be larger [K4(s, 0) >0 for

s =0}, they also decay more rapidly, leaving the
negative fluctuations to predominate for longer de-
lay times [K,4(s, 0)< 0 for s not near zero]. This
behavior is physically reasonable, in view of satu-
ration of the atomic population difference by the
laser light. The same saturation effects which
stabilize the intensity in a laser above threshold

THIRD-ORDER CUMULANT

T T T T

P=0

FIG, 6. Comparison plot of H(s, 0) for several values
of the pump parameter p in the threshold region. The
oscillatory behavior of H(s, 0) for p>1.5 indicates a
change in the asymmetry of the joint (two-time) intensity
probability distribution, The units used are the same
as in Fig, 1.
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FOURTH-ORDER CUMULANT
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FIG. 7. Comparison plot of the normalized fourth-
order intensity cumulant K,(s, 0, 0) [Eq. (18b)] as a
function of normalized time delay s for several values
of the pump parameter p in the threshold region. The
units of time are the same as those used in Fig, 1. For
each curve, K, is measured in units of 7%, where 7 is
the mean intensity of the laser at that value of p.

evidently damp the large intensity fluctuations
above the mean more rapidly than those fluctuations
below the mean.

Our results for the fourth- and fifth-order cu-
mulants calculated from (18) are presented in Figs.
7 and 8. In the threshold region (p=-1to p=2) K;
becomes negative for nonzero delay times, thus
supporting the conclusions drawn from Kj.

To present our results for H; in a compact form,
we have fit a five-parameter expression of the form

- YL = /A
H(S, s')=cle Ay sts )/A+cze rols+s’) /A

+ 012(3-( Mstrgs') /A P Ay st enys) /A) (25)

to our exact results for Hy(s, s’). The constants
€1, €2, C13, Ay, and A, have been chosen so that

the values of Hy(0, 0), [0H,(s, 0)/8s]l4q,

[ Hyls, 0)ds, Jg"sHy(s, 0)ds, and [§° Hy(s, s ) ds are
given exactly. While the form of (25) has no spe-
cial significance, itis simple and gives a reasonably
good fit to the values of Hy(s, s’) calculated from
the more cumbersome expression (12). For the
indicated values of p, Table I contains the constants
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FIG., 8. Comparison plot of the normalized fifth-
order intensity cumulant K5(s, 0, 0, 0) [Eq. (18c)] as a
function of normalized time delay s for several values of
the pump parameter p in the threshold region. The units
of time are the same as those used in Fig, 1. For each
curve, K; is measured in units of pd, where 7 is the
mean intensity of the laser at that value of p.
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FIG. 9. Comparison plot of the exact third-order
intensity cumulant H(s, s’) (smooth curves) and the ap-
proximate five-parameter fit [Eq. (25) and Table I
(circles)].
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FIG, 10, Comparison between the calculated time
required for H(0, s) to decay to e™! of its initial value
(curve 1), one-half the time required to decay to ¢ of
its initial value (curve 2), and the experimental results
of Davidson and Mandel (Ref, 2). Far below threshold
(p large and negative), curves 1 and 2 asymptotically
approach 1, 0, indicating that the second-order and third-
order coherence times agree, Nearer threshold, the
difference between curves 1 and 2 indicates the nonex-
ponential time dependence of H(0, s).
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FIG. 11, Summary of experimental measurements of
the reciprocal of the second-order coherence time (A),’
Eq. (22), and the second-order intensity cumulant at
zero time delay, n% —1 [Eq. (15b), with £=0, as func-
tions of the pump parameter p.



1 THIRD- AND HIGHER-ORDER INTENSITY CORRELATIONS... 181

Cy, C3, C125 Ay, and Az; the reciprocal second-order
coherence time A; AH, the maximum difference
between the exact Hy(s, s’) and (25); and AH/H,,,,
‘the ratio of AH to the maximum value of | Hy(s,s "),
expressed as a percent. Figure 9 contains a com-
parison plot of Hy(s, s’) and the five-parameter fit
(25).

To compare our calculations to the experiments
of Davidson and Mandel, we determined the experi-
mental threshold intensity I; by fitting the measure-
ments of Hy(0, 0) versus intensity to the theoretical
curves, thus finding the values of p corresponding
to the measured intensities. For each value of
the laser intensity, the experimental delay times
at which the third-order cumulant was measured
were divided by the measured second-order coher-
“ence time to obtain the normalized times s, s’.
Davidson and Mandel report that Hy(s, s') decays
essentially exponentially to zero and can be charac-
terized by a third-order coherence time. For the
measured intensities (which were all below thresh-
old) and the range of decrease of H; (roughly a fac-
tor of 5), the report of essentially exponential decay
is consistent with these calculations. However, the
measured third-order coherence times (shown in
Fig. 10) are distinctly smaller than the calculated
times which characterize the decay of H;. The

small amount of freedom in our determination of the
time and intensity scales is inadequate to produce
a substantially better agreement than is shown in
Fig. 10. This situation contrasts sharply with the
generally excellent agreement between experiment
and the RWVP model for the mean reciprocal co-
herence time, the normalized second-order cumu-
lant at zero time delay (Fig. 11), andthe normalized
higher-order cumulants at zero time delay (see
Chang ef al.*). These results suggest that
more detailed measurements of the third-order
intensity cumulant should be made, particularly
above threshold, in order to look for the predicted
oscillatory decay of Hy(s, s’) and provide more
exacting test of the RWVP model.
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