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The order-disorder theory of a classical lattice model is used to obtain both the solid-solid phase

transition and fluid-solid phase transition in a single system. In this model, the range of the interatomic

potential is extended up to the fourth-neighbor distance. If the potential is suitably chosen, it is shown

that the phase transitions between the bcc solid and fcc solid, between the bcc solid and fluid, and

between the fcc solid and fluid occur within the Bragg —Williams approximation. The results are shown

by the phase diagrams.

I. INTRODUCTION

Since Lennard-Jones and Devonshire' (LJD) for
mulated a theory of melting of solids in terms of
the lattice model, the lattice model has been used
by many authors in order to investigate theoretical-
ly the phase transition between the solid and fluid. '

A satisfactory explanation at least in the first ap-
proximation, has been given for the change of phase
from the solid to the fluid in terms of the interatom-
ic forces.

Recently, LJD theory has been refined and ex-
tended by Yoshida and Qkamoto to explain the melt-
ing curve maximum, which is a fascinating phenom-
enon found at high pressures. (This must be dis-
tinguished from the critical temperature for the co-
existence of solid and liquid. The melting curve
maximum implies that it is not possible to trans-
form solid phase continuously into liquid phase, in
contrast with the case between liquid phase and gas
phase. ) In their theory, like in LJD theory, the
ratio of the number of occupied lattice points to
that of unoccupied lattice points is fixed and hence
the volume change of the system is represented by
the change in the lattice constant. By using an ef-

fective interatomic potential, the repulsive part of
which is properly soft, and using the Bragg-Wil-
liams approximation, they obtained a melting curve
which has a maximum in T-P phase diagram.

In high-pressure experiments, not only the
melting curve maximum but also solid-solid phase
transitions have been observed in several sub-
stances. It is now a well-established fact that some
substances, e.g. , Ce, Cs, and so on, undergo poly-
morphic transitions which contain several struc-
tural and also isostructural transitions. In some
cases of isostructural transition, the mechanism
is known to be the electronic transition, that is,
the promotion of electrons from one shell to an-
other or the collapse of one electron shell to an-
other. The mechanism of some structural transi-
tions is known to be the rearrangement of atoms
from one structure to another. This may be due

partly to the change in the mechanism of cohesion
resulting from the electronic transition, but most-
ly to statistical effects. The typical example of
the structural and isostructural transition is ob-
served in the phase diagram of cesium, ' which is
shown in Fig. 1. The two separate experimental
results are superposed in one figure. The experi-
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FIG. 1. T-P phase diagram for cesium. Solid line is
given in Ref. 6. Dashed line is given in Ref. 8.

mental measurements do not seem to agree with
each other especially in the high-pressure region.
The first transition, the transition from phase r to
phase n, was noted by Bardeen" to be the one in
which cesium atoms were rearranged from bcc to
fcc. The second one, from phase xr to phase Irr,
was suggested by Fermi' that the transition may
represent an electron collapse of the Gs electron
to the 5d state. Some theoretical calculations sup-
ported this mechanism. By x-ray diffraction stud-
ies, the crystal structures of Cs rr and Cs zo have
been confirmed as fcc structure. However, it is
not yet known whether the third one, from zrx to xv,

is structural or isostructural. '
Some attempts have recently been made to study

the isostructural transition. ' ' However, to the
knowledge of the present authors, there is no sta-
tistical theory which explains the possiblity of
three-phase transitions, that is, structural solid-
solid transition and solid-fluid transitions in a
single system within the same theoretical frame-
work. Since the structural transition is consid-
ered to be due mostly to statistical effect, we focus
our attention to the transition near the triple point
caused by the rearrangement of atoms like the first
one in the phase diagram of Cs.

The purpose of this paper is to investigate the
structural transition as well as solid-fluid transi-
tion in terms of the lattice model, and clarify what
is essentially important in order to account for the
solid-solid transition and high-pr@ssure remelting.
Our calculation is based on the simplified model in
which the lattice constant is assumed to be unchange-
able. In our model, the effect of diffusive motions
of atoms is considered to be given by the migration
of atoms from one lattice site to another, but the
vibrational motions are completely neglected in

p=N/L = 1/v, (2. 1)

where v = V/Nas and U= La~ The int.eratomic po-
tential is assumed to be described by two-body
central forces. In our calculation, the range of
the interatomic potential is assumed to go up to the
fourth-neighbor distance. It would be worthwhile
to point out that this assumption is quite essential
not because the range of the interatomic potential
is long but because of our refinement of the lattice

spite of their important role in the solid phase.
this paper we use the crudest approximation, i.e. ,
the single-site approximation in the cluster-varia-
tion method, "which is equivalent to the Bragg-
Williams approximation. Thus, the short-range
order is ignored, which is important not only in the
liquid state but also in the region of the solid state
near the melting temperature. One may, further,
realize the fact that in real systems, like Cs, the
interatomic distance does not change appreciably on

phase transition from bcc to fcc structures, while
in the present theory it changes from v'3 to v"2 in

units of the simple cube-edge length, as will be
described in Sec. II. Therefore, any detailed quan-
titative comparison of the present theory with ex-
perimental values would be insignificant. In Sec.
II, the formulation is described within the single-
site approximation using the cluster-variation
method. In Sec. GI, the results obtained by nu.-
merical calculation are shown in graphs with dis-
cussion. Concluding remarks are given in Sec. IV.

II. MODEL AND FORMULATION

It is most convenient to use the simple-cubic lat-
tice as our basic lattice because it contains the bcc
lattice and fcc lattice as its sublattices. By fol-
lowing LJD theory, we introduce the so-called nor-
mal and abnormal sites. All the lattice sites which
belong to the sublattice constituting the desired lat-
tice structure are called normal or n sites, and
the remaining sites, belonging to the other sublat-
tice, are called abnormal or P sites. The solid
state, which is an ordered state, is characterized
by having 0. sites more abundantly populated by
atoms than P sites, and the fluid state, which is
a disordered state, has all the lattice sites equally
populated. As shown in Figs. 2(a) and 2(b), two
different definitions of the normal and abnormal
sites are considered. In Fig. 2(a), the ratio of
the number of n sites to that of P sites is —,', and
the lattice structure of the solid phase is bcc. Qn
the other hand, in Fig. 2(b), the number of o sites
is equal to that of P sites, and the lattice structure
of the solid is fcc.

The system we consider is a lattice gas in which
N atoms are distributed over the I. lattice sites of
the basic simple cubic lattice with a lattice con-
stant a. Then the number density is defined by
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model.
We shall first consider the case given by Fig.

2(a). Denoting the number densities of a sites
and p sites by pb and pbb, we have

pbo& Nba /Lbn &

p bb= Nbb /L bb &

(2. 2)

(2 ~ 3)

N~~ +Nq~ = N,

L~~ +L~~= L)

L~ = —'L
~

(2.4)

(2. 6)

(2. 6)

The long-range order parameter is defined as

R,= (P,.—p)/(1 —P). (2 I)

As the completely ordered state is defined as the
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FIG. 2 . (a) Simple cubic lattice which contains the
bcc 1attice as an e s ite. (b) Simple cubic lattice which
cont ains the fcc 1attice as an e site.

where L ~ and L,~ are the number of the n sites
and the number of p sites, respectively, and Nb,
and N~~ are the number of atoms on the e sites and
the number of atoms on the P sites. We have the
following r elatio ns:

state in which all n sites are occupied, p~ is equal
to 1 and hence we have R ~

= 1. In the completely
disordered state the atoms are equally populated
on both o and p sites; then pb = p and we have Rb
= 0. The number densities on the n and P sites
are expressed in terms of the long-range order
parameter R~, that is,

pbl = P+Rb (1 -P),

pbb = P —
3 R b (1 —p).

(2. 8)

(2.9)

Pyb= P R»(1 P).

(2 ~ 6')

(2 ~ 9')

Within the same approximation as in Eq. (3 ~ ll),
the free energy is expressed as

Fy/L = [3@(r,)+ 6$(r )+4/(r )+ 3$(r,)]p'

By using the lowest app roximation of the cluster-
variation method, ' which is equivalent to the
Bragg-Williams approximation, the free energy
pe r lattice site is given by

F, /L = 3 [zbp(r3)+z4y(r4)] pb,

+ l [z i 4 (r i) + z 3 4 «2)] P b Pbb

+ 3 [(z) —2)y(rg)+ (zz —4)y(ra)

+ z 3 y (r3 ) +z 4 y (r4 )]p'„

+ —,
' kT [ p, lnpb, +(1 —pb ) ln(l —pb )

+ 3pbb lnpbb+ 3(l —
pbb) ln(1 - pbb)] &

(2. 10)

where z„g2, z3, and z4 are the first-, second-,
thi rd-, and fourth -neighbor distanc es equal to a,
v 2a, v'3a, and 2a, respectively, and z„zz, zb,
and z4 are the numbers of the first-, second-,
third-, and fourth-neighbor lattice sites equal to
6, 12, 8, and 6, respectively. The potential ene r-
gy is denoted by P(r). k is the Boltzmann constant
and T represents the temperature. By inserting
Eqs. (2 ~ 8) and (2 ~ 9) into (2 ~ 10), one has

F /L = [3&(r,)+6p(rb)+4&(rb)+ 3&(r,)]p'

3 [p(r, ) + 2&(r,) —4&(r3) —3&(r4)] (1 —p)'R',

+ —,
' kT ([p+ (1 —p)R, ] ln[ p+(1 —p)R, ]

+ (1 —p) (1 —R,) ln [(1 -"p) (1 —R,)]
+3[P 3(1 P)Rb]ln[P (1 P)R ]

+ 3(1 —p) (1 + 3Rb) ln [(1 —p) (1+—3'Rb)]) . (2. 11)

In the case of Fig. 2(b), Eqs. (2. 2)-(2. 6), (2. 7),
and (2. 8) remain valid if p», p&3, Nz, , N&3, L&

L&~, and R& are substituted in place of p~~ ) p, ~)
N„, N», L,„, Lbb, and R, ~ Equations (2 ~ 6) and
(2 ~ 9) are replaced by
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—[3$(r,) —6$(r2) + 4$(rs) —3$(r4)] (1 —p) Ry

+ —,
' k T {[ p+ (1 —p)R& ] ln [p + (1 —p)R& ]

+ (1 —p) (1 —R&) ln [ (1 —p) (1 —R&)J

+ [p —(1 —p) R&] ln[p —(1 —p)R&]

+ (1 —p) (1+RE) ln [(1—p) (1+R&)]}. (2. 12)

In the case of the disordered state corresponding to
the fluid state, the two expressions for the free en-
ergy give the same result, i.e. ,

E,/1. = [Sy(r, ) + Gy(r, ) + 4y(r, ) + Sy(r, )]p'

+ kT [p lnp+ (1 —p) ln(1 —p)]. (2. 13)

By minimizing the free energy E~ or E& with re-
spect to R~ or R&, one obtains the minimum free
energy EI,

'" and Ef ", and the corresponding long-
range order parameters R~ and R&. The true free
energy of our system is considered to be given by

I

M&num
in Pm in P } (2. 14)

(2. 15)

In our system, this equation is expressed as
—E BEL

(2. 16)

By Eqs. (2. 11)-(2.13), we have for the pressure
of the bcc solid state, fcc solid state, and fluid
state

Here E~"or Ef.
"with zero-order parameter is

equal to E„. If E is equal to E~"with nonzero R~,
to F&

"with nonzero R&, or to E„, our system will
be either the bcc solid state, fcc solid state, or
fluid state, respectively. Here, however, one
must take the Maxwell construction into account
in order to obtain the coexistence phase.

From the thermodynamic relations, we have

P,a'= [3$(r,) +6/(r, ) +4/(r, ) + 3/(r4)] p +-,' [p(r, )+ 2/(r, ) —4$(r, ) —3$(r4)] (1 —p )R,
——,

' kT {R4ln[p+(1 —p)R4]+(1-R,) ln[(l- p) (1-R4)]
—R4ln[p ——', (1 —p)R„]+(3+R4)ln[(l —p)(1+—,'R4)]}, (2. 1V)

P&a = [3$(r,) +6/(r )+24/(r )+t3$(r4)] p +[3/(r, ) —6$(rz) +4/(rt) —3$(r4)] (1 —p )R&

——,
' kT {R&ln [p + (1 —p)R& ] + (1 -R&) ln [ (1 —p) (1 —R&)]

R&ln[p —-(1 —p)R&]+(1+R&)ln[(1 —p) (1+R&)]}, (2. 18)

P„a'= [3$(r,)+GP(rt)+4/(ra)+ 3/(r4)] p —T ln(l —p).

By using the formula

(
s(T/l. )

)

(2. 19)

(2. 2O)

the expressions for the chemical potential of the bcc solid state, fcc solid state, and fluid state are
given as

li4= 2[3/(r, )+Gp(r, )+4/(rt)+3/(r4)] p + —', [Q(r,)+2/(rt) —4$(r,) —3$(r4)] (1 —p)R',

+-,' kT {(1—R,) ln[p+(1 —p)R4] —(1 R,) ln[(1 —p-) (1 —R,)]
+ (3+R,) ln [p ——,'(1 —p)R, ) —(3+R,) ln [(1—p) (1+—',R,)]}, (2. 21)

p& = 2 [Sp(r, ) + Gp(rt) + 4/(rs) + 3$(r4)] p + 2 [3/(r, ) —Gp(ra) + 4/(rs) + 3$(r4)] (1 —p)R~

+-', kT {(1-R&)ln fp+(1 —p)R&] —(1 -R&) ln[(1 —p) (1 -R&)]

+(1+R&)ln[p —(1 —p)R&] —(1+R&)ln[(1 —p) (1-R&)]}, (2. 22)

p4= 2[3&(r,) +6&(r2)+4/(rt) +3/(r4)] p+kT [lnp —ln(1 —p)]. (2. 23)

III. PHASE DIAGRAM

By using the formulation obtained in Sec. QI, we
shall discuss the phase transitions between the bcc
solid and fcc solid, the bcc solid and fluid, and the
fcc solid and fluid. We investigate the system de-

scribed by the I.ennard- Jones potential

y(r) = 44: [(a/r)" —(a/r)'],
or by the exponential-type potential

0'2 2
'02 3

e(r)=~ 2 ae~ —
3

'Yp —0' t'0

(3 1)

(3 2)



SOLID-SOI ID AND SOLID-FLUID PHASE TRANSITIONS IN. . .

4.0

3.0—

2.0-

10-

$ IOI.788
I I I

I

I
I

I

I

I

I

I

I

I

I
I

I

I

I

I

I

I

o ~ ii+4+2)15 k

ro = (4+3+2) /5

KXPONETlAL

&2+3 2

-I 0—

I.O 2.0 3.0 4.0 5.0

FIG. 3. Graph for the interatomic potential.

In Eqs. (3. 1) and (3.2), z is equal to the distance
where the potential is equal to zero and -& is equal
to the minimum value of the potential. xo in Eq.
(3.2) is the distance at which the potential has its
minimum value -&. It is convenient to introduce
the reduced temperature T, pressure P, free en-
ergy F, and chemical potential p, , which are di-

mensionless quantities and defined by

(3. 3)

(3.4)

(3. 5)

(3. 6)

in terms of the parameter &. In Fig. 3, the typical
curves of the potential are shown for the Lennard-
Jones potential with g/a= —,'(1+4 v 2) and for the ex-
ponential-type potential with o/a= —,'(1+4 v 2) and
ro/a= —,'(4 /3+2). It is reasonable to choose o/a be-
tween 1 and v'2. The repulsive part of the inter-
atomic potential, which is expressed as the value
at x/a= 1 in our model, can be considered to be a
measure of the softness of the interaction. For the
same value of 0, the value of the Lennard-Jones
potential at r/a = 1 is extremely large as compared .

with that for the exponential-type potential.
At first, the system with the Lennard-Jones po-

tential is considered. For several values of 0,
this system is numerically investigated and it be-
came clear that the system does not show the phase
transition between the bcc solid and fcc solid. The
only possible phase transition is the one between
the fcc solid and fluid for any value of g/a larger
than. 1. In Fig. 4, T-P phase diagrams for o/a
= —,'(1+/2) and o/a= —,'(3+ v 2) are shown. The val-
ues of the potential at r/a = 1 are 25.9085& and
5. 8244&, respectively, and these are still very
large compared with the value for the exponential-
type potential with o/a = —,'(4+ K2) in Fig. 3. As far
as the value of the potential at x/a = 1 is finite, our

30.0
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20.0

tl- I 5.0

I 0.0

FIG. 4. T-P phase diagram for
the system with the Lennard-Jones
potential. Maximum point of the
melting curves is approximately
shown by inequality.
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system is expected to give rise to the high-pressure
remelting. In fact, even the system with the Len-
nard-Jones potential shows the high-pressure re-
melting at an extremely high pressure in compari-
son with the pressure at which the system with the
exponential-type potential remelts at the same tem-
perature.

We shall consider the reason why the system de-
scribed by the Lennard- Jones potential has only
one solid phase of which lattice structure is fcc.
The ordering energy is given by coefficient of R~
or R& in the second term of Eq. (2. 11) or (2. 12):

E',"'"=—-', [y(~,) +2y(~, ) -4y(~, ) —3y(~, )] (1-p)',
(3.7)

E,"'"= - [3y(r, ) 5y(~, ) + 4—y(~, ) 3y(r, )] (1——p)'.
(3. 8)

For cr/a not close to 1, p(z, ) is sufficiently large
that the dominant contribution to the ordering en-
ergy comes only from P(x,). Although both of the

ordering energies are negative, the magnitude of
the ordering energy for the fcc lattice structure is
nine times as large as that for the bcc lattice struc-
ture. This means that the fcc lattice structure is
stable as the solid phase. For o/a close to 1, P(x,)
does not give the dominant contribution to the or-
dering energy. In this case the distance at which
the potential has its minimum value is between 1
and v"2. The Lennard-Jones potential decays fast
to zero as the function of distance. From these
facts, the dominant contribution to the ordering en-
ergy seems to come from p(x3). The contribution
from p(x2) to E~' " is positive, but the one to Ep""
is negative. Even though the contributions from

P

FIG. 5. T-P phase diagram for the system with the
exponential type potential. The triple point is denoted by
T.P.

p(r&) and p(rs) are taken into account, the order-
ing energy for the fcc lattice structure is more ne-
gative than the one for the bcc lattice structure.
Thus the system with the Lennard-Jones potential
for o/a larger than 1 always has the fcc lattice
structure as the solid phase.

Next, we shall investigate the system in which the
potential is given by Eq. (3. 2). In Fig. 5, the tem-
perature-versus-pressure phase diagram is shown
for the case of g/a= —,'(1+4 & 2) and xo/a =-,'(4/3+2).
Three phase transitions between the bcc solid and
fcc solid, the bcc solid and fluid, and the fcc solid
and fluid are obtained. It is rather natural to ex-
pect that the bcc solid phase is stable in the lower-
pressure region and the fcc solid phase is stable in
the higher-pressure region. The exponential-type
potential gives rise to such a behavior as is shown
in the diagram. Our attention is focused on the re-
gion near the triple point like the one in the first
transition in the phase diagram of Cs. As com-
pared with the melting curve of cesium. in Fig. 1,
the melting curve maximum for the bcc solid phase
is not obtained, but the one for the fcc solid phase
is. The slope of the transition line between the bcc
solid and fcc solid is gently curved in our calcu-
lation. The isotherms for the free energy, pres-
sure, and chemical potential versus volume are
given in Figs. 6-8 at T = 3.6. The three phase
transitions, which are between the bcc solid and
fcc solid, the bcc solid and fluid, and the fcc solid
and fluid are always accompanied by volume changes,
and hence these are first-order phase transitions.

In order to investigate the effect of the softness
of the interatomic potential upon the solid-solid
phase transition, the value of the potential given by
Eq. (3. 2) at x/a = 1 is successively doubled, tripled,
and quadrupled for fixed values of g/a = —,

' (1+4 v'2)

and xo/a= —,'(4 v"3+2) and the systems with these
potentials are studied. As the value of the poten-
tial at x/a = 1 increases, the bcc solid phase shrinks
down under the fcc solid phase in the phase dia-
gram and the fcc lattice structure is more favored
as the solid state. This situation is easily under-
stood by recalling the discussion above of the Len-
nard-Jones potential. If the value of the potential
v/a= 1 decreases, the bcc lattice structure becomes
more favorable because the contribution from P(xs)
to the ordering energy becomes dominant. But the
melting curve in the high-pressure and low-tempera-
ture region has a positive value for (8T/BP)„after
passing the maximum temperature.

The position where the potential is minimum is
also important for obtaining the solid-solid phase
transition. In both Figs. 2(a) and 2(b), the first-
neighbor site is a P site and the fourth-neighbor
site is an z site. The third-neighbor site in Fig.
2(a) and the second-neighbor site in Fig. 2(b) are
n sites. Thus, when P(y, ) does not have a dominant
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contribution to the ordering energy, P(r2) and P(r~)
play an important role. If ro/a is la.rger than
—,'(4 v'3+ 2), the bcc solid phase becomes stable up
to the higher-pressure region. But if x, /a is
smaller than v'3, the fcc solid phase becomes stable
up to the lower-pressure region. In Fig. 9, T-I'
phase diagram is shown for g/a = —,'(1+4 K2) and

/ao= ,'(3 v'3+ 2-).

IV. CONCLUDING REMARKS

constant is changeable as a function of density,
Yoshida and Okamoto discussed the high-pressure
remelting for the system with potential p(x)
=& e " "o. Mori et al. ' discussed the phase transi-
tion between the liquid and solid phases for a sys-
tem with Lennard-Jones potential by using the ex-
pandable lattice model originally used by Peek and
Hill, in which the free energy is minimized with
respect to a lattice expansion parameter. It is

By means of the classical lattice model, the phase
transitions between the bcc solid and fcc solid, the
bcc solid and fluid, and the fcc solid and fluid are
obtained for the system described by the exponen-
tial type potential in the Bragg-Williams approxi-
mation. In our lattice model, the softness of the
repulsive part of the interatomic potential as well
as the distance at which the potential has its mini-
mum value are important factors for the system to
have the solid-solid phase transition. The system
with the Lennard-Jones potential does not show the
solid-solid phase transition and its solid structure
is fcc. The result is consistent with the fact that
the compressed rare gas, if it is described by the
Lennard-Jones potential, has fcc lattice structure
in the solid phase.

However, our theory still has many aspects
which should be improved: The rigid-lattice model
is used in our calculation. When the substance is
compressed, it is reasonable to think that the lat-
tice constant adjusts itself to the applied pressure.
Recently, following LJD theory, in which the lattice

6,0

5.0—

4.0
F luid

F luld

t+ 5.0

2.0

\

\

1
I

g ~ (1+4+2)/5 8.

1.0 ro- (s/~+2)r4 z-

0 l.o 2.0 S.O 4.0 5.0

FIG. 9. T-P phase diagram for the system with the
exponential-type potential. The triple point is denoted by
T.P.
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hoped that the solid-solid and solid-fluid phase
transitions may be investigated by using these ex-
pandable lattice models.

As for the statistical approximation used in our
theory, it is the crudest one, that is, the Bragg-
Williams approximation. Therefore, the short-
range-order effects are completely ignored, in
spite of their importance in the region of the solid
state near the melting temperature, as well as in
the fluid state. In order to take these effects into
account, the pair approximation, which is equiva-
lent to the Bethe approximation, the triangular ap-
proximation, etc. , in the cluster-variation method'~

will be used in the future.
As mentioned in Sec. I, in real systems like Cs,

the interatomic distance does not change apprecia-
bly on phase transition from the bcc to fcc struc-
tures, while in tne present theory it changes from
f3 to v'2 in units of the simple cube-edge length.
To eliminate this drawback of the present formula-
tion, the following improvement of the lattice mod-
el is suggested: Divide our original simple cubic
lattice into a finer simple cubic lattice with lattice
constant one-twentieth of the original value. Place
the nearest-neighbor body-center lattice site at the
fourth-neighbor distance along the body-diagonal
direction and place the nearest-neighbor face-cen-
ter lattice site at the fifth-neighbor distance along

the face-diagonal direction. The interatomic dis-
tance, in the solid phase in this improved lattice
model will be v 48 and v 50 along the body-diagonal
and face-diagonal directions, respectively. The
number of P sites in this lattice will be substantially
increased and average density will correspondingly
be reduced. As long as the Bragg-Williams approx-
imation is concerned, the elaboration of the theory
to this model is straightforward, although lengthy.

Since the interatomic potential was originally de-
termined experimentally by means of the second
virial coefficient in the gas phase, whether the same
potential can be used in dense phases is question-
able. In addition, the potential in the solid phase
may be different from the one in the fluid phase.
In spite of these complications related to the nature
of interatomic potential in condensed phases, the
major mechanism of structural transition should
be accounted for by statistical effects. The for-
mulation discussed in this paper should offer an
explanation in this direction.
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