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A molecular-dynamics "experiment" was performed for a system of 864 particles interacting through a
Lennard-Jones potential. The state considered was in the immediate neighborhood of the triple point. The
total duration of the "experiment" was quite large: It corresponds to 10 sec in the case of argon.

Transport coefficients were calculated using the standard Kubo formulas. They are compared with the

prediction of a simple hard-sphere model. It is shown that, as in the case of the hard-sphere fluid near

solidification, the Kubo-correlation function relative to the shear viscosity presents a tail extending at large

time. The inclusion of this tail turns out to be essential in explaining the transverse-correlation function and

the dynamical-structure factor, which shows, for the lowest wave vectors accessible in this study, a
characteristic Brillouin doublet structure. Using the hydrodynamical model of Zwanzig and Bixon, it is

shown that the introduction of the long-time tail in the Kubo-correlation function for the viscosity explains

the negative plateau of the velocity-autocorrelation function observed near the triple point by Rahman and

others.

I. INTRODUCTION

In this paper, we shall report and analyze the
results of a computer simulation of argon near its
triple point. The aim of this "experiment" was to
obtain information on the transport coefficients and
the time-dependent correlation functions.

As in the preceding papers of this series' 864
atoms were considered: enclosed in a cubic box
of side L (with periodic boundary conditions).
They interact through a Lennard- Jones (LJ) po-
tential

V(r) =4&[(o/r) —(6/r) j . (1.1)

We choose o, c, and so= (mo/48m)' as length,
energy, and time units, respectively. When we
make a comparison with real argon, we choose
0 = 3.405 A, & = 119.8k&, vo = 3. 112&& 10 sec.

Using the method described elsewhere, ' the in-
tegration of the equation of motion was carried out
for 100800 integration steps of 0. 032vo. This
corresponds to a total time of 10 sec in argon.
During the integration we calculated the quantities
whose time correlation enters in the various Kubo
formulas for the transport coefficients. These
quantities as well as the coordinates and velocities
of the particles are kept on tape.

Section II is devoted to a discussion of the ther-
modynamics of the state which is considered in
this study.

In Sec. III, the results for the shear viscosity,
the bulk viscosity, and the thermal conductivity
are given. They are interpreted successfully with
a hard-sphere model which can be built using the

very complete results obtained by Alder, Gass,
and Wainwright for the transport coefficients of
the hard-sphere gas. The more striking results
of this section are the following: The Kubo cor-
relation function for the shear viscosity q presents
a tail extending to large times; due to the large
incompressibility of the liquid near the triple
point, the bulk viscosity g tends to be small; be-
cause of these two effects, the ratio $/g is not of
the order of 1 as generally expected, but much
smaller, of the order of 4. All these results
agree very well with similar properties of the
hard-sphere gas near solidification. '

We then proceed (Sec. V) to study the correla-
tion of transverse currents. Our results comple-
ment with an increased accuracy those obtained by
Rahman. 4 They are concentrated in a region of
relatively long wavelength, in order to study the
generalization of linearized hydrodynamics. ' As
a first approximation, we analyze our results in
terms of a viscoelastic theory with a 0-dependent
relaxation time. Shear waves appear as predicted
by the theory for k ~ o ' (0.3 A ' in argon).

The simple viscoelastic theory appears to be in-
adequate at low wave vectors; it yields shear-wave
peaks which are too broad and too low. The more
solidlike behavior of the molecular-dynamics re-
sults can only be accounted for if one also intro-
duces at finite k's the long-time tail observed at
4 = 0. This tail is described by a second exponen-
tial with a large relaxation time. It tends to dis-
appear when k increases and is seen to be related
to a collective effect involving a small group of
particles.
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The dynamical-structure factor S(k, &o) is then
computed and analyzed (Sec. V). It is shown that
for k & o ' this quantity still presents a secondary
maximum which is the remainder of the Brillouin
doublet as a function of ~. An analysis of the data
can be made in terms of three parameters: a fre-
quency-dependent longitudinal viscosity; a k-de-
pendent thermal conductivity; and a k-dependent
ratio y(k). Assuming a single- relaxation-time
form for the longitudinal viscosity, an excellent
fit can be obtained. A disturbing element of this
fit is, however, that the limit of y(k) when k goes
to zero turns out to be unreasonably large. This
failure can be traced back to the neglect of the
long-time tail in the generalized viscosity. The
inclusion of this tail, as in the transverse case,
leads to a completely satisfactory description of
the data.

In Sec. V, we reexamine the model which was
proposed by Zwanzig and Bixon for the descrip-
tion of the velocity-autocorrelation function. In
this model the motion of a LJ molecule was ap-
proximated by that of a hard sphere moving in a
viscoelastic medium. The constants entering the
model are all given by the molecular-dynamics
computation. A single-relaxation-time viscoelas-
tic theory leads to results similar to those ob-
tained by Zwanzig. The velocity-autocor relation
function obtained from molecular dynamics is fair-
ly well reproduced, but the model gives rise to
oscillations when the "experimental" v. a.f. ex-
hibits a negative plateau at large times. The in-
clusion of the large-time tail results in a frequen-
cy-dependent viscosity coefficient which provides
a correct description of the long-time behavior of
the velocity -autocorrelation function.

II. THERMODYNAMICAL CONSIDERATIONS

The molecular-dynamics computation reported
in this paper has been made for the reduced den-
sity p=0. 8442 and the reduced temperature T
= 0.722. This state is very near the triple point of
the LJ potential which is characterized by p,
= 0. 85 + 0.01 and T, = 0. 68 + 0.01. It is also in the
immediate neighborhood of the solidification line;
the value of the maximum of the structure factor
is equal to 2. 76, whereas it reaches the value 2. 85
on the solidification line. Using the above-men-
tioned reduction constant, our state corresponds in
argon to p=1.418 g/cm3, T=86. 5'K. The triple
point of argon is quite close: p= 1.435 g/cm~,
T = 83.8'K. For our state we obtain for the com-
pressibility factor P/pkT=0. 25 and for the con-
figurational energy per particle U, /N= -6.08.

We can get the specific heat at constant volume
through the fluctuations of the kinetic and potential
energy. The first method yields the value 2. 6,
the other 2. 8. We thus choose c~= 2.7+0.1.

P
i

=240 .
ep )r

Combining these three thermodynamics deriva-
tives, we obtain

y= —=1+~ k T 'cp I 8I 1 ( ep
cv (BT v Pcv i(BP

=1.86+0. 1 .
From this, we obtain for the speed of sound in
reduced units, c=0.831 or =906 m/sec. This is
compatible with the experimental value' c = 876 m/
sec. The experimental value for y is equal to 2.

It is interesting to take this opportunity to ex-
amine the predictions of the thermodynamic per-
turbation theory' ' concerning these various

thermodynamic derivatives. U sing the expressions
given in Ref. 15, we obtain

c&= 2. 57, y=1, 99,

=6.42, p i
=22. 6.

(8T v
' (sp

III. TRANSPORT COEFFICIENTS

A. Shear Viscosity

The shear viscosity i;s obtained through the well-
known Kubo-like formula

q=j q(t)dt

with

(3. 1)

(3. 2)

where the sum is to be made on the circular per-
mutation of the indices, and where 7 component
of the microscopic stress tensor given by

We remark here that, although we have made a
computation 100 times longer than most of those
usually made for continuous potentials, the error
in the specific heat remains of the order of 5%%uo.

The fluctuation of the product of the potential en-
ergy and of the virial yields'

= 6.41 + 0. 2 .(eI
BT v

We obtain the inverse compressibility by extrap-
olating the structure factor S(k) computed directly
(Sec. V) to zero wave vector. We thus obtain

P (
—

)
= 24. 7 s 0. 5 .

Using the prolongation procedure described by
one of us, ' with the help of which the complete
g(r) from the limited amount of information pro-
vided by the molecular-dynamics computation is
obtained, we obtain
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i N 1 g eg I ep."(t)=z ~.;-- z "' '„'~
j&i i)

(3.3)
The average over the initial time, indicated by

the bracket in (3. 2), is done over 27 000 values
for the initial time separated by 0. 128vo. The
noise level on q(t) can be estimated to be about 2-
3% of its value for t = 0, which is equal to the in-
finite-frequency shear modulus at zero wave vec-
tor G„(0). This shear modulus, which can be ex-
pressed in terms of the two-body radial-distribu-
tion function, ' ' 7 turns out to be especially simple
in the case of the LJ potential, as Zwanzig and
Mountain have shown

7'qo|
——(2d/y) (v/3T)' s= 0. 226 (s. 6)

We see, by the way, that the computation of the
LJ transport coefficients which we have made in-
cludes 10~ equivalent hard-sphere collisions. We
thus expect the same kind of accuracy as in
Alder' s longest computations. 3

The model yields for the diffusion constant

D=DHsfn(&) ~ (s. 6)

The Enskog mean collision time v„, can then be
obtained. This enables us to connect the scale of
time of the hard-sphere gas with that of the LJ
molecule s:

G„(0)= 3P/p —
s (U(/N) —2ksT, (3.4)

where D„, is the Enskog value for the hard-sphere
diffusion constant,

where P is the pressure and U, /N is the configura-
tional energy per particle. Using the thermody-
namical results given in Sec. I we obtain

G„(0)= 23. 9 .
The evaluation of q(0) made using (3. 2) yields

g(0) = 24. 7. The shear viscosity obtained by in-
tegrating q(t) up to a time of 12.8rs is q = 27. 9 + 2.

McDonald and Singer' have recently calculated
the shear viscosity by producing an actual shear
on a system of 256 LJ particles.

This method succeeds in calculating the shear
viscosity with much less computational effort than
in the present paper. It should be noted, however,
that this method unavoidably yields a shear vis-
cosity determined for a finite value of the wave
length, namely I..

Using the results obtained in Sec. IV, one can
understand that these authors obtain a shear vis-
cosity smaller than ours by around 30%.

We shall interpret the value obtained for the
shear viscosity with the help of the hard-sphere
model already used in the case of the self-diffu-
sion constant. ' This model was established using
preliminary hard-sphere results. ' Due to the ap-
pearance of the more complete and accurate hard-
sphere results of Ref. 3, we give here again a de-
tailed explanation of the model. We replace the
LJ molecules by hard spheres of diameter d.
There is obviously some arbitrariness in choosing
this diameter. We find that a good choice con-
sists of taking for the diameter d the value which
enables one to fit the equilibrium structure factor
S(k) with the analytical hard sphere stru-cture fac-
tor obtained by Wertheim and Thiele as the solu-
tion of the PY equation. '

For the state we consider, we have 4 = 1.02.
The packing fraction g = s spds is then equal to
0.47. Using the Carnahan-Starling expression
for the hard-sphere pressure, we obtain

y = (P/pksT)Hs —1=9. 7 .

DHS =
3Q %cog T ) (3.7)

and fs($) is the correction to the Enskog diffusion
constant empirically determined by Alder et al.
from molecular-dynamics computations on the
hard-sphere system. We now apply this model to
obtain the diffusion constant of the LJ fluid. We
have used in Ref. 2 the preliminary hard-sphere
results of Alder and Wainwright. The model
yielded diffusion constants which were too large
by 20 or 30%. With the new results for fH($), the
discrepancy is reduced to about 10%. In view of
the basic roughness of this hard-sphere model it
does not make sense to try to improve those re-
sults by choosing some other definition of the
equivalent hard-sphere diameter.

For the shear viscosity, we found a similar ex-
pression

(s. 8)7 7HSf (5)

where f„(g) is the empirical corrections to the
Enskog approximation for the hard-sphere visco-
sity g„s which is given by

ps= (10 g/dye„, )(1/y+0. 8+0.761y) . (3. 9)

q = r/2ndD . (s. 10)

For the state under consideration, we have~
D=0. 0047. Equation (3. 10) gives q=24, in good

For the state considered in this paper, we get
f„($)= 1.54 and 7l = 32. 8. The agreement with the
"exact" result is good. The use of the hard-
sphere model is seen to overestimate the shear
viscosity and to underestimate the diffusion con-
stant.

A consequence of the model is the following:
Alder, Gass, and Wainwright3 have shown that for
the hard-sphere gas at highdensity, Stokes's law with
slip boundary conditions holds within 10/o. The
hard-sphere model, therefore, implies that the
Stokes relation also holds for the LJ molecules.
It reads, with the present notations,
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0.5.

0 5 'l6 24

FIG. 1. Solid curve is
the function n, (0, t} = q(t}/
g(0). The crosses are
Alder's hard-sphere re-
sults for the part of g(t)
nonlocal in time, the
normalization is 1 for t
=0, and the packing frac-
tion 0.49. The dashed
curve is the memory func-
tion n~(0, t) for the auto-
correlation function of the
velocity at the same LJ
state.

agreement with the molecular -dynamics result.
In Fig. 1, we have plotted the function

q = q, (T/T, )"". (S. 13)

If there is some truth in the hard-sphere model,
the experimental situation appears rather puzzling.
At the triple point of argon, Boon, Legros, and
Thomas obtain g = 2. 89x10 P. On the other
hand, at a slightly different temperature (T= 88. 5

'K), very close to the transition line, de Bock et
al. obtain q = 3.34x 10" P which, in view of
(3. 13), would yield a value of S. 25x 10 ' P for the
viscosity of the triple point, in apparent contradic-
tion with the value obtained by Boon et a/. For
the state considered in the present study, these
authors give the value g=2. 71x10 3 p, which dif-
fers significantly from the value we obtain for the
LJ fluids, i.e., g=3. 64x10 3 p.

t},(0, t) = q(t)/G„(0), (3.11) B. Bulk Viscosity

which is, as we shall see (Sec. IV), the memory
function for the transverse-current correlation
function at zero wave vector. We see that this
function presents a very long tail slowly decaying
at large times. We show in Fig. 1, for the sake
of comparison, the memory function for the auto-
correlation function n, (0, t) for the same state.
As was shown in Ref. 2, this function has a fairly
large extension in time which corresponds to the
well-known negative-plateau region in the velocity-
autocorrelation function near the triple point. ~
The tail of n, (0, t) is seen to have a different shape
and a slower decay.

A long tail in q(t) was also observed by Alder,
Gass, and Wainwright for the hard-sphere gas
near solidification. In Fig. 1 we have shown by
crosses the hard-sphere results: they correspond
to the part of q(t) which is nonlocal in time with a
normalization of one for I;= 0. The value of the
packing fraction is 0.49. Due to the difference in
normalization and packing fraction, the quantita-
tive agreement with the LJ data is coincidental.
What we want to emphasize is the remarkable sim-
ilarity of the slow decay in time. This leads to a
large enhancement of the shear viscosity when one
gets near solidification.

Using the above-defined hard-sphere model, the
value of the packing fraction is a constant along
the solidification line. Using (S. 5) and (S. 9), we
thus have

The Kubo formula for the bulk viscosity can be
expressed as

g= j'" g(t)dt,

with

(S. 14)

x[~"{0)-(~") l) . (3. »)

The function g(t)/$(0) is plotted in Fig. 2. It is
seen that it is a rapidly decreasing function with
no appreciable long-time tail. This behavior is in
accordance with the hard-sphere results. Zwan-
zig and Mountain' have shown that

$(0) =It„-Zo, (3. 18)

Z„=g+ ("„+2pke T (P/pke T —1) =38.7 . (S. 17)

For K0, the adiabatic bulk modulus, we have

Ito=pyi — =28. 3+2 .(sP
(eP r

(3. 18)

We therefore find K„-&0 = 10.4 a 2, which

where E„and K0 are the infinite and zero-frequen-
cy bulk moduli, respectively. For E„, we have
the relation'

(3. 12)

At the triple point of experimental argon we get
for the hard-sphere viscosity

g, = 27. 8=3.64x10-' P .
Taking into account the variation of d along the

solidification line which can be derived using the
LJ transition data of Ref. 10, we obtain

0.5

0
0 S 12

FIG. 2. Solid and
dashed curves represent,
respectively, X (t)/X (0)
and K(t)/K(0), the nor-
malized Kubo integrands
for the bulk viscosity and
the heat conductivity (the
time unit is 10 sec).
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4s 1.002y
0.761y+0. 8+y ' (3. 19)

We obtain Ps/q„s = 1.1 for the state considered
in this study. This Enskog ratio must be multi-
plied by the correction factor empirically deter-
mined by Alder's group, 3 which for the hard-
sphere system near the transition line is of the
order of —,'. Once again, the hard-sphere model
works very well. The low value of g/rl near the
transition line appears to be due to the combina-
tion of two factors: the large value of the shear
viscosity rl owing to the appearance of a long tail
in )7(t) near solidification; the low value of the bulk
viscosity, which in the present computation can
be related with the appearance of a very high adia-
batic bulk modulus when one gets near to the tran-
sition line.

This low value of the ratio $/)7 near solidifica-
tion predicted by the hard-sphere model and "ob-
served" in our computer calculation seems to con-
tradict the existing experiments' which yields g/)7
= 0. 8 near the triple point. It would be interesting
to have newer, more precise experimental mate-
rial related to this problem.

C. Thermal Conductivity

agrees, within the expected errors, with the re-
sult of the molecular-dynamics computation,

g (0) = 12.3 a 1 .
The computation also yields g = 7. 3 a 0. 8, and,

therefore, the ratio

g/q =0. 26+ 0.05 .
For the hard-sphere fluid, Enskog theory gives

for that ratio

sentially correct: The contribution of the autocor-
relation of this erroneous term to the total heat
conductivity is of the order of 0. 1%. Its cross
terms with the kinetic- and potential-energy fluxes
amount to less than 1%. A direct inspection of the
corrected terms shows that they should be of the
same order, and therefore negligible. Further-
more, we shall see in Sec. V that the extrapola-
tion of the )'r-dependent heat conductivity which ap-
pears in the analysis of S(()'r, (d) is in good agree-
ment with the value obtained directly.

K(t)/K(0) is plotted in Fig. 2. As is the case
for hard spheres, there appears to be no long tail
as a function of time. For the value of the thermal
conductivity, we obtain E= 2. 14.

Using again the hard-sphere model, we obtain in
the EQskog approximation

A„=@($/ rdr) c"„(,'rrT} r s—(l/y+ l. 2+0.755y),
(3. 23)

where c~' is the hard-sphere specific heat, equal
to 1.5.

Making the Alder correction, we obtain

&=fr(&)&Hs =1~ 9 ~

The agreement is quite satisfactory but may be
coincidental: it may be argued that we should have
tried to apply the hard-sphere model not to E, but
rather to the quantity

a=a/pc, ,

which appears naturally in the theory. In-that
case, the agreement is completely destroyed.

The comparison with experiment turns out to be
disappointing. The molecular -dynamics computa-
tion gives

The thermal conductivity is given by

K=1 K(t)dt,

with

when the energy density flux is given by

(3. 20)

(3. 21)

a = E/pcs = 0. 94

= 3. 5 x 10 s cm /sec.

Using the experimental data quoted by Naugle
et a/. ,

' we get

a = l. 68x 10 s cm /sec,

BV (err) r)~ ~ vr (3 22)
i=1 j ef'ig 2

Due to our use of the expression of the thermal
conductivity due to Luttinger, ~6 we have made the
computation with the last term replaced by

'=N

Z [V V(r„) r"„jv;
i =1 jli

We believe, however, that our results are es-

which differs by a factor 2. We may notice that
Chung and Yip use, in the analysis of Rahman's
computation, the value a=3.4x10 s cms/sec, which
agrees very well with ours. The origin of this
number is unfortunately not clear.

IV. TRANSVERSE-CURRENTS CORRELATION

The transverse-current correlation function is
defined as

i=N i=N

c ((: t)=a' Z u "(t)e "'"' E v*(o)e'"'~"')
i=1 j=1

(4. 1)
where k is along the g axis.
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TABLE I. k is the mean value of the group of vectors
k considered in the computation of the eight functions
S(k, ~), with the corresponding multiplicity. dk is the
difference between the mean norm of the vector k and
the norm of the largest or smallest vector of each group.

0.6235
0.7526
0. 8817
1.3667
1.9319
2. 5348
3.1822
3.8124

Multiplicity

3
6
3

13
19
39
55
72

0
0.13
0
0.28
0.23
0.28
0.23
0.23

Let us introduce its Fourier-Laplace trans-
form

C, (k, ~)= J e'"'C, (k, t)dt.
The behavior of C, (k, t) at small times and the

hydrodynamic limit are included through the use
.of the memory-function formalism.

Let us write

(4. 2)

(4. 3)

where

(uo
——Cg(k, 0) =k (ksT/m)

and

(4. 4)

=u),'+ P drg(r), (1 e'"')—
o dt2 «O m Bx

k
G„(k) . (4. 6)

This last equation defines G„(k), the k-dependent
shear modulus. In order to obtain the correct hy-
drodynamic limit, we must have

q = G„(0)ng(0, 0). (4. 6)

The average over initial states implied in (4. 1)
was made over 33 600 states with an interval of
0. 128vs. C, (k, t) was calculated for wave vectors
whose components were the first multiples of
2v/I, .

All the vectors whose length was comprised be-
tween k and k+ hk were bunched together. The
average of k as well as the multiplicity of each
group is given in Table I.

We have plotted in Fig. 3 as a function of ~ the
results of the computation for C, (k, &u). We see
that, except for the lowest value of the wave vec-
tor, ReC, (k, ~) presents a maximum for a nonzero
frequency. This is characteristic of the existence
of shear waves. Zf we take for the memory func-
tion a simple relaxation. form

n, (k, t)=e ' '&' ', (4. 7)

it is easy to see that ReC, (k, &o) presents a maxi-
mum for & different from zero if k) k~ where

k, =i
mp

(2G„(k)j ~, (k)
' (4. 8)

If we neglect the k dependence, we easily get
this limiting wave vector. Using (4. 6) and (4.7),
we have

rg(0) =q/G„(0) =1.17 . (4. 9)

TABLE II. Values of v&(k), v'&(k), and v&'(k) in reduced
units. The values of v'&(k) and v f (k) given by least-squares
fits of C&(k, ~) and S(k, co) are almost the same. Their
difference might be due mostly to the statistical errors
of the molecular-dynamics computations.

0
0.7526
1.3667
1.9319
2.5348
3.1822
3.8124

1.17
0.91
0.74
0.66
0.58
0.52
0.46

0.64
0.70
0.65
0.60
0.54
0.50
0.44

0.64
0.70
0.58
0.54
0.50
0.45
0.45

We see then from (4. 8) that shear waves appear
when k is larger than 0.790" ..

In the relaxation approximation, C, (k, ~) de-
pends only, for each value of k, on the parameter
r, (k). It is determined from the computer data
through a least-squares fit either in the t or the
& variable: The results turn out to be identical.
The relaxation times thus obtained are given in
Table II and shown in Fig. 4, as circles. We see
that the extrapolation to the hydrodynamic limit
(4. 9) is quite smooth. We have also shown in Fig.
4 the results with crosses of Chung and Vip who
have analyzed Rahman's molecular-dynamics
computation for the state p=0. 83, 7.'=0. 635. The
agreement is seen to be quite good.

In Fig. 3, we compare ReC, (k, a&) obtained in
the relaxation approximation with the molecular-
dynamics results. We see that the agreement is
not very good. In particular, for long wave-
lengths, the shear-wave peaks are very much
flattened out when the relaxation approximation is
used. This discrepancy is owing to our neglect of
the long-time tail of the memory function n&(k, t).
In order to appreciate the effect of this tail, let
us represent the transverse memory function
through the two-time exponential formula

n, (k, t) = [I —n(k)] e ' '&' ' + o. (k) e ' '& . (4. 10)

We see, using the machine data for n, (0, t) shown
in the Sec. III (Fig. 1), that an excellent fit is ob-
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0.5

0 ~ ~ i ~

riO 2.0 Q r(0

O.pt

I ~ i a

2.P 4J r 0
i I ~ ~ ~

2p op
2 3 4-

FIG. 5. Short relaxation time in the two-term approxi-
mations for the memory function of nq(k, t) and n~ (k, t).
The solid curve is v&'(k), and the dashed curve 7&(k) (time
in units of vp).

0
0 05 + 0 15 e o 20 Q

FIG. 3. Transvers e-current correlation functions
ReC, (k, ~)/2zas afunctionof ~ (units io ). From left to
right, and from bottom to top, the six curves are for k
=0.752, 1.366, 1.931, 2. 534, 3.182, and 3.812 (units
0. ). The dash-dot line is the molecular-dynamics re-
sults and the solid curve is the relaxation-approximation
results. The crosses are the results of the approxima-
tion with the memory function (4.10).

tained with r& = 4. 72, n (0) = 0. 128, and

~,(0) = [q/G„(0) —~~,]/(I —n) = o. 68 .

We see the appearance of two times: one ~&,

which is of the order of the molecular-relaxation
time, the other v'&, which is much larger.

We expect that the tail is due to some collective
effect. The spatial extension of this tail can be
measured through the decay of n(k) and is seen to
be of the order of several interparticle distances.

Fitting the molecular dynamics C, (k, oi) with the
memory function given by (4. 10), we obtain the
curves shown in Figs. 5 and 6 for v&(k) and o, (k).
In the latter case, a smooth extrapolation to 4 = 0
seems to lead to a value of o (0) which is s~aller
than 0. 128 and may be of the order of 0. 1. It can
be seen that, given the errors on C, (k, f), and
those, somewhat smaller, affecting i)(t), there is
no real discrepancy there.

We see in Fig. 3 that an excellent fit is obtained
for the wave vectors between 1 and 2 o"'. For the
lowest value of k (k= 0. V52o '), shear waves ap-
pear in the model and not in the molecular-dynam-
ics results. This discrepancy is, however, within
the computational uncertainties. The presence of

the long-time tail lowers the value of the wave vec-
tor for which shear waves appear: It is easy to
see that in the two-relaxation-time approximation
this critical wave vector k, is determined by solv-
ing for the smallest root of

(dr o!(1 +) T& T& (T& T&}
4 2

—2ai, [av&+(I —n) ~&]+1=0,

where airs is related to k by (4. 5).
We thus obtain k, = 0. 56o ' (with cr = 0. 128) in-

stead of A, = 0. '780 in the single-relaxation-time
approximation.

The lowering of the value of the critical wave
vector is one consequence of the lorig-time tail.
Another conseiluence, which is more important,
is the large enhancemerit of the shear wave peaks
in agreement with the molecular-dynamics experi-
ments. This enhancement may be thought of as a
precursory of the solidlike behavior in the neigh-
borhood of the transition line.

For the largest value of k considered here, u(k)
is negligible, and the single-relaxation-time ap-
proximation is practically recovered. This dis-
crepancy of the fit with molecular dynamics is due
to the well-known inadequacy of.the exponential
memory function which becomes more apparent
when the small time region is weighed more, i.e„
at high k's. In order to illustrate this statement,
we plot in Fig. 7, for the case where k = 0. 750"' and
4=3.8o ', the memory function directly deter-
mined using (S.8). It is compared with the two-
exponential approximation (4. 10) (dotted curves).

0.5

FIG. 4. Single relaxation
time v~(k) for the transverse-
current correlation function.
The circles are our result
and the crosses are those of
Chung and Yip (Ref. 6) (time
in units of vp).

0
~ kr-'

0 1 2 3 4

FIG. 6. Coefficient 0. (k) of the long-time tail of the
transverse memory function (4.10).
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"n,
1

0.5

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

12

FIG. 7. Memory func-
tion yg&(k, t) for k=0. 7520"
(solid curve) and k =3.810 '
(dashed curve). Dots are
results of the two-expo-
nential approximation
(4.10).

The molecular-dynamics experiments yield the
Fourier transform of this function, the so-called
intermediate scattering function,

(5. 9)F(k, t) =& p (0)p ((t)&/& ~

This last relation defines K„(k). It reduces to
(3. 17) for k = 0. Equation (5. 5) includes the as-
sumption that the w dependence of the generalized
thermal conductivity can be neglected.

In terms of the correlation function for longi-
tudinal currents, the dynamica1. -structure factor
is easily obtained as

S(k, (i)) = (I/m) Re[C, (k, (d)/~'] . (5. 3}

V. LONGITUDINAL-CURRENT CORRELATION AND
DYNAMICAL-STRUCTURE FACTOR

The longitudinal-current correlation function is
given by

j=N j=N
(', (k i)=k Z v (i)e ' ''"' Z vz'(0)e' 's' ')

j=i j=1
(5. 1)

The Fourier-Laplace transform of this function
ls

2

C, (i, w)=a4 (-i++ .
( )

+N (k,~v)),—z+S k
(5. 2)

C, (k, ~)=~o

with

o 2—l(d+ .
S(k)

+DE k

+ "0 ~ 1 (5. 3)
S(k) —i(() + ak

where N, (k, t) is the memory function for longi-
tudinal currents. For small wave vectors and fre-
quency, this must reduce to the hydrodynamical
limit'

1
n, (k, (d)= ' 1/ ( )

' (5. 10)

There, the time average includes 56. 000 values
for the initial time with a time step of 0. 1287o.

The wave vectors have been grouped as in the
transverse case, but with one exception: The low-
est group for the transverse currents belonging to
k =0.75' ' is the average of two groups of wave
vectors of equal lengths 4 =0.63o ' and &=0.880 ',
which are calculated separately in the present
case. The results obtained from the computer ex-
periment for S(k, +) are shown in Fig. 8. It is
seen that, for the smallest wave vectors consid-
ered here, there is a secondary peak at finite fre-
quency. Its maximum corresponds to a value of
(d/k nearly equal to the macroscopic sound veloc-
ity. This structure could be observed experi-
mentally using the long-wavelength neutrons avail-
able in high-flux reactors.

As in the transverse case, we first try a sim-
ple relaxation approximation by writing

D = (I/~p) (3 n+ 5) (5.4) We can fit the curves of Fig. 8 very well and ob-

The small-time expansion of C, (k, t) defines the
value of N, (k, 0). A form which includes both this
information and the hydrodynamical limit is

2

(i, (i, td)=
(

~,' — ') y(k)) I, (i, ~)
0.05 0.05 0.0$

with

n, (k, 0)=1 .

(u(~) y(k) —1
(S(k) —i&@+a(k) k

(5. 5)

0
iP

0.2

O.f 0.4

3 ](0

r
~ W

3 &g0

0.0$

Al
~ 4.

3

For ~, , we have the following expression, 27 in
terms of the two-body potential:

4V
~ K

0 1.5 0

[
', G„(k)+Z„(k)] .- (5.7)

2 2
2 1 d C) 2 P

)

eV j~g(u, = —, , =3(go~ —
] dr g(r), (1 —e )

FIG. 8. Function 2$(k, co)/x for eight values of k = 0.623,
0.752, 0.881, 1.366, 1.931, 2. 534, 3.182, and 3.812,
from left to right and from bottom to top (units of 70 ).
The crosses are the molecular-dynamical results and the
solid curve is the representation with the memory function
X, (k, ~) (5.5).
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tain the parameters a(k), y(k), and v, (k).
This fit presents some satisfactory aspects:

v, (k) tends for large wavelength to its hydrody-
namic limit,

(5. 11)

The same is true for a(k). Also, when k in-
creases, y(k) tends to 1. This latter quantity,
however, behaves quite badly when k is small.
For k= 0. 63, we obtain y(k) = 2. 4, and the extrap-
olation of the values obtained through the fit gives
y(0) =3.4 instead of the "exact" value y=1. 86. If
we impose, for the lowest wave vector, a value of
y(k) smaller than 2, the fit is completely spoiled.

We can trace this puzzling result to our neglect
of the long-time tail which is related to the shear
viscosity. Our simplified memory function de-
pends on two times: a first time v., which is of the
order of 0. 6 and another time 1/ak which for the
smaller wave vector is of the order of 3. This
second time is substantially larger than the first
one. It is of the same magnitude as the long re-
laxation time ~& of the transverse memory func-
tion. It appears from these results that the in-
clusion of the long-time tail in the transverse
memory function is necessary. When it is ne-
glected, the fit can only be obtained by artificially
raising the coefficient y(k) —1 of the thermal dif-
fusion term: Then due to the similarity in the re-
laxation times, this term offers, for wave vectors
of the order of 0. 6, a fair simulation of the tail
term which has been neglected.

We shall complete this analysis with the inclu-
sion of the tail term in the longitudinal memory
function. Due to the closeness of the bulk relaxa-
tion time with ~&(0), we can use for the longitudinal
memory function the expression

n, (k, t)=[1 —o,, (k)]e ' '&' '+o,, (k)e ' '& (5. 12)

with

n((k) = 3—q(0) a(k)/[3 q(0)+ t'(0)] . (5. 13)

The free parameters are now p(k), y(k), and
v, (k). a(k)/pG-~ is plotted in Fig. 9; we see that it
extrapolates correctly to the value of the heat con-

0 k~-&

P f 3 5 C

FIG. 9. Dashed curve gives y(k) and the solid curve
a(k)/pC& which are two parameters of the memory func-
tion N&(k, v). fa(k)/pC& is in reduced units. ]

Zwanzig and Bixon have generalized the Stokes
expression for the friction constant to finite fre-
quencies. As in the derivation of the Stokes law,
the particle whose self-motion is studied is coupled
to the medium, described macroscopically,
through hard-sphere boundary conditions. In
order to calculate the frequency-dependent force
acting on the particle, one has to solve the lin-
earized Navier-Stokes equation with transport co-
efficients generalized to finite frequencies. This
can be done analytically if the full coupling with
thermal diffusion and the k dependence of the
transport coefficients are neglected.

Zwanzig and Bixon have used a simple visco-

p.s

8»

FIG. 10. Autocorrela-
tion function of the velocity
(time units 10 3 sec) ob-
tained in the Zwanzig-
Bixon model (dashed
curve), and in the case of
the representation (4. 10)
for q(t) (dash-dot curve).
The solid curve is the
molecular-dynamics re-
sults.

ductivity given in Sec. III. y(k) now tends smoothly
to the value y= l. 86 which should be reached for
k= 0. It should be noted that y(k) is practically
equal to 1 as soon as k is of the order of 2. The
coupling with the thermal modes is then negligible.
~, (k) is very close to ~&(k) for all values of k's.
These relaxation times have been obtained inde-
pendently by fitting the longitudinal and transverse
correlation function, respectively.

Given the computational uncertainties, the dif-
ference between those two relaxation times is not
significant. The fit obtained for S(k, ~) is, on the
whole, very good. For the highest values of 0 con-
sidered in thj's study (k around 3, i.e., of the order
of 1 A ' in argon), there are clear discrepancies
for large frequencies. For these relatively high
wave vectors the tail term and the heat-coupbng
term are negligible. We are, therefore, in the
rather uninteresting case where a simple memory
function, short ranged in time, is sufficient. The
discrepancies are due, as in the transverse case,
to our use of a memory function of the exponential
type, and should be removed by a more careful
choice of the shape of that memory function. Much
more interesting appears to be the region of lower
wave vectors, now accessible with the help of high-
flux reactors: it should be possible to observe
there the collective effects which we have tried to
describe in this paper.

VI. CONNECTION WITH VELOCITY-AUTOCORRELATION
FUNCTION
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elastic theory for the transport coefficient. We
repeat their computation because we feel that it is
interesting to see what becomes of their result
when no parameter at all is adjusted: here, every-
thing is available from the molecular-dynamics
computation. As in Sec. III, we choose slip bound-
ary conditions and a hard-sphere diameter chosen
to fit the structure factor (d= l. 02). The compu-
tation involves the isothermal velocity of sound
given in Sec. II and the shear and bulk viscosities
given in Sec. III. The shear and bulk relaxation
times are obtained as q/q(0) and $/$(0), respec-
tively. We then obtain the dotted curve of Fig. 10.
We see that a surprisingly good agreement is ob-
tained. An important feature is missing: The ve-
locity-autocorrelation function of the LJ fluid near
solidification presents an extended negative region,
whereas the model leads to oscillations. Zwanzig
and Bixon suggest that a more sophisticated fre-
quency dependence of the transport coefficients
might remove this discrepancy.

We shall show that this is indeed the case. We
keep the same single-relaxation form for the bulk
viscosity but use (4. 10) to build a frequency-de-
pendent shear viscosity with two relaxation times:

(6. 1)

where n, v& and ~& are given by (4. 11).
Using this expression for the shear viscosity,

we obtain the dash-dot curve in Fig. 10. This
curve now presents a negative tail at the few per-
cent level which coincides at large times with the
molecular -dynamics results. The discrepancies
at smaller times are evidently due to the basic
roughness of the model. The general agreement
appears more remarkable when one tries to vary
the parameters of the model. For instance a vari-
ation of the shear viscosity by 20/o leads to results
which are clearly worse than before.

We cannot use a value of ~ smaller than 0. 128,
which is as we have seen a rather high value. The
results would be improved by increasing that value
to 0. 15. It is probable that the thermal diffusion

which was neglected acts as a supplementary long-
wavelength long-time damping which can be simu-
lated by increasing the role of the long-time tail
of the shear viscosity a little.

A last remark is the following. For low fre-
quencies, the friction can be represented by

m 3 m

As pointed out by Zwanzig and Bixon, due to the
square root (6.2), the frequency spectrum of the
velocity-autocorrelation function will show a cusp
for small e's. The size of the domain of frequen-
cy where this root term predominates determines
the extent of the time region when the t ' be-
havior due to this cusp should appear. It is to be
noted that the role of the long-time tail in q(t) is
to reduce very substantially the size of the cusp
(it appears only for ~ & 0.05).

The times where the velocity autocorrelation
could become positive and behave like t are,
in that case, so high as to lead to completely unobserv-
able effects in a molecular-dynamics computation.

VII. CONCLUSIONS

The study of the LJ fluid near its triple point
has demonstrated the existence of a tail extending
at large times in the Kubo function which defines
the shear viscosity. This tail has observable con-
sequences. First, there should be an enhance-
ment of the shear viscosity and a lowering of the
ratio of the bulk to the shear viscosities when one
approaches the solidification line. A further and
more direct evidence for this tail could be ob-
tained through the analysis of coherent-neutron-
scattering experiments to be made with the long-
wavelength neutron available with the high-flux
reactors.

We are now undertaking a similar study at lower
density.

ACKNOWLEDGMENT

The authors had many interesting and stimulat-
ing discussions with Professor B. J. Alder.

*Laboratoire associe au Centre National de la Recherche
Scientifique. Postal address: Laboratoire de Physique Theorique et
Hautes Energies Batiment 211, Universite Paris Sud, Centre
d'Orsay, 91, Orsay, France.

'L. Verlet, Phys. Rev. 159, 98 (1967).
'D. Levesque and L. Verlet, Phys. Rev. A 2, 2514 (1970).
'B. J. Alder, D, M. Gass, and T. E. Wainwright, J. Chem.

Phys. 53, 3813 (1970).
A. Rahman, in Neutron Inelastic Scattering (International

Atomic Energy Agency, Vienna, 1968), Vol. I, p. 561.
'L. P. Kadanoff and P. C. Martin, Ann. Phys. (N.Y.) 24, 419

(1969).
C. H. Chung and S. Yip, Phys. Rev. 182, 323 (1969).
A. Z. Akcasu and E. Daniels, Phys. Rev. A 2, 926 (1970).

'N. K. Ailawadi, A. Rahman, and R. Zwanzig, Phys. Rev. A
4, 1616 (1971).

R. Z. Zwanzig and M. Bixon, Phys, Rev. A 2, 2906 (1970).
' J. P. Hansen and L. Verlet, Phys. Rev. 184, 151 (1969).
"J.L. Lebowitz, J. K. Percus, and L. Verlet, Phys. Rev.

153, 250 (1967).
' L. Verlet, Phys. Rev. 165, 201 (1968).
' D. G. Naugle, J. H. Lunsford, and J. R. Singer, J. Chem.

Phys. 45, 4669 (1966).
"J.D. Weeks, D. Chandler, and H. C. Andersen, J. Chem.

Phys. 54, 5237 (1971).
"L. Verlet and J. J. Weis, Phys. Rev. A 5, 939 (1972).
' R. Zwanzig and R. D. Mountain, J. Chem. Phys. 43, 4464

(1965).



1'?00 LEVE SLUE, VER LET, AND KURKI JAR VI

' P. Schofield, Proc. Phys. Soc. Lond. 88, 149 (1966).
"J.Mc Donald and K. Singer (private communication).
' B. J. Alder and T. E. Wainwright, Phys. Rev. Lett. 18, 988

(1967).' M. Ross and P. Schofield, J. Phys. C 4, L305 (1971).
2'M. Wertheim, Phys. Rev. Lett. j.o, 321 (1963); E. J, Thiele, J.

Chem. Phys. 38, 1959 (1963).
N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51, 635

(1969).
A. Rahman, Phys. Rev. A 136, 405 (1965).
J. P. Boon, J. C. Legros, and G. Thomas, Physica (Utr. )

33, 547 (1967).
'A. de Bock, W. Grevendonk, and W. Herreman, Physica

(Utr. ) 37, 227 (1967).' J. M. Luttinger, Phys. Rev. A 135, 1505 (1964).
P. G. de Gennes, Physica {Utr.) 25, 825 (1959).

P H YSI CA L RE VIEI A VOLUME 7, NUMBER MAY 1973

Kinetic Theory of a Dense Gas: Triple-Collision Memory Function
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We study the phase-space density-correlation function $(r t;p p') for a dense classical gaswithrepulsive

interaction using the language of memory functions. We derive the kinetic equation for S which is

valid at all wavelengths and frequencies but limited to second order in the density (triple collisions).
This model equation is, on the one hand, an extension of the earlier work of Mazenko to the next
order in density and, on the other hand, an extension to arbitrary wavelengths and frequencies of
some suggested generalizations of the linearized Boltzmann equation, The memory function for this

kinetic equation is shown to be compatible with symmetry properties, sum rules, and the conservation
laws. As an illustration of the hydrodynamics, we calculate the shear viscosity and show that the term
linear in density agrees with an earlier calculation by Kawasaki and Oppenheim. We also give the

analogous kinetic equation for the single-particle correlation function.

I. INTRODUCTION

A growing amount of attention has been focused
on the time-dependent. fluctuations of a classical
many-body system. The principal object of inter-
est is the correlation function

S(r - r ', t t' p p ')-

= ((f(rpt) —(f(rpt) ))(f(rpt) —(f(r p t )))),

where f(r pt) is the local density in phase space,

f(rpt)=Z 5(r- r (t))5(p-p, (t)), (2)

and the sum runs over the particles in the system,
with the phase coordinates (r, p„). The brackets
denote a thermal-equilibrium average. Among the
interesting quantities which can be determined from
S are the neutron- and light-scattering spectra'
and the transport properties. One of the most
practical ways of calculating S consists in con-
structing and solving the appropriate kinetic equa-
tion. This equation contains S and the memory
function Z, which accounts for the effects of inter-
particle collisions. Approximations for S are
phrased in terms of approximations to Z, since the
kinetic equation enables one to take into account the
secular effects in S due to streaming in phase
space. Among the useful approximations to Z which
have appeared recently are a weak-coupling expan-
sion by Akcasu and Duderstadt and Forster and

Martin, an expansion to first order in the density
m by Mazenko, 5 ~ and also a renormalized theory
for self-correlations by Mazenko. ' One of the
present authors has pointed out a simple derivation
of the low-density memory function.

The calculation of Befs. 3 —6 and 9 are either
implicitly or explicitly restricted to dilute systems,
the weak-coupling memory function being a special
case of the low-density memory function. A power-
series expansion of Z to each order in the density
is not permissible for all wavelengths and frequen-
cies, since divergent terms would arise from cer-
tain events involving four or more particles (in
three dimensions). ' The divergence would begin
in the third-order term of Z. This situation has
led to the development of renormalized theories,
in which clusters of particles are not isolated but
are allowed to interact in an approximate way with
the rest of the system. The associated memory
functions contain contributions from all orders of
the density expansion, and the transport coefficients
are not analytic in the density. The early memory
functions of this kind were appropriate to relatively
dilute systems, ' ' but that restriction has recently
been removed.

Although renormalized theories have the greatest
current importance in the theory of dense gases, it
is also of some interest to understand the remain-
ing well-behaved terms in the density expansion of
Z. This paper is concerned with that term, which


