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We have investigated the phase behavior that results when an infinitely weak and long-range
attractive potential is added to the following hard-core lattice gases: the triangular-lattice
gases with exclusions up to first, second, third, and fourth neighbors, and the square-lattice
gases with exclusions up to first, second and third neighbors. Three of the systems con-
sidered have realistic (i.e. , argonlike) phase diagrams, complete with a first-order solid-
fluid phase change, a first-order liquid-gas phase change (with a critical point), and a triple
point. Three other systems have a first-order solid-Quid phase change. The remaining sys-
tem has a first-order liquid-gas phase change along with a higher-order transition that is not
of the typical solid-fluid type. We find that when the hard-core system has a second-order
or first-order phase change to begin with, the addition of the attractive potential spreads the
transition out into a first-order phase change with temperature-dependent coexistence den-
sities that bracket the density at which (or density interval over which) the original transition
takes place. We also find that the presence or absence of realistic phase behavior for the com-
bined system appears to be dependent upon the shape of the hard core as well as its range.

I. INTRODUCTION

In order to better understand how the existence
of phase transitions depends on the nature of the
intermolecular potential in systems of real mol-
ecules, we have calculated the equation of state
for several lattice-gas systems of particles de-
fined by a pair potential that includes a hard-core
repulsion and an infinitely weak long-range attrac-
tion. ' These models have many of the essential
features of real systems and are reasonably tract-
able to analyze with high precision. We particu-
larly address ourselves to the two complementary
questions: In what ways does the inclusion of long-
range attractions between molecules modify the
phase-change behavior already existing in lattice
gases of hard-core molecules, and in what ways
does the inclusion of hard-core repulsions modify
the phase-change behavior already existing in
simple lattice gases with single-site cores and
long-range attractions 'P

In a lattice-gas model, molecular positions can
be thought of as being restricted to the sites of a
regular lattice, and multiple occupancy of sites is
forbidden. This exclusion of multiple occupancy
provides a hard core in the simplest version of
the model. The repulsive part of the potential be-
tween real molecules may be approximated by an
extended hard-core potential in which a certain
number of surrounding sites (in addition to the oc-
cupied site) are forbidden to other particles. Al-
ternatively, the lattice gas may be thought of in

terms of a cell picture in which molecules move
freely on the lattice of Wigner-Seitz cells asso-
ciated with the lattice structure. The potential en-
ergy between two molecules is a function of the
distance between the cells that contain the two
molecular centers. The extended hard core of the
site picture corresponds to an exclusion volume in
the cell picture, which is the volume of those cells
that are forbidden to other particles. The corre-
spondence is shown in Fig. 1 for the examples we
treat in this paper. We shall have occasion to re-
fer to both pictures.

Calculations by many authors indicate that ex-
tended hard-core lattice gases have order-disorder
phase transitions and also suggest that if the ex-
clusion range is sufficiently large the transition
becomes first order of the solid-fluid type.
If, on the other hand, only multiple occupancy of
sites is forbidden and there are either finite at-
tractions between nearest neighbors or very long-
range weak attractions, there will be only a single
first- order phase transition of the liquid- gas type
(i.e. , with a critical point). ~ '~ It would seem
reasonable to expect therefore, that if one were
to consider a lattice gas with a pair potential that
includes both an extended hard core and suitable
attractions beyond the core, one would find a re-
alistic phase diagram with two phase transitions,
one of the solid-fluid type due to the repulsions and
the other of the liquid-gas type due to the attrac-
tions. The extent to which that expectation is re-
alized in some appropriate models is the central
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concern of this paper.
One model of interest in this regard has already

been considered by Runnels, Salvant, and Streif-
fer, ' who studied a square lattice gas with first-
neighbor exclusions and a second-neighbor finite
attraction of strength co. They found a single phase
transition of the solid-fluid type that is second-
order for high enough values of the reduced tem-
perature kT/ur and is first order for lower values
of the reduced temperature. They found no evi-
dence of a liquid-gas type phase transition with a
critical point. Another model has been studied by
Runnels, Craig, and Streiffer, ' who looked at the
triangular lattice with first-and-second-neighbor
exclusions and third-neighbor attractions and
found a first-order solid-fluid type phase transi-
tion but no liquid-gas transition. Qrban, Van Craen,
and Bellemans" considered a square lattice with
exclusions up to third neighbors and fourth-and-
fifth-neighbor attractions, -g& and —f, with g &1.
They found a realistic (i.e. , argonlike) phase dia-
gram but their results were somewhat limited by
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FIG. 1. Extended hard cores and the corresponding
exclusion volumes for the hard-core reference systems
that we consider. e denotes an occupied site, while +
denotes all neighboring sites upon which occupancy is for-
bidden. C. P. indicates that when a weak long-range
attractive potential is added to this system a critical point
will appear. R indicates that a realistic coexistence
curve will result.

the considerable numerical uncertainty associated
with treating such a complicated Hamiltonian by
approximation methods. From these studies it is
difficult to draw any general conclusions as to how

the interplay between the repulsions and attractions
in a real system affects the presence and nature
of the phase transitions.

In this article we consider the way certain varia-
tions in the repulsive and the attractive parts of
the potential affect the macroscopic behavior of a
lattice gas. We have added an infinitely weak and

long-range attractive Kac potential to the following
two-dimensional hard-core lattice gases (see Fig.
I): the triangular lattice with exclusions up to
first, second, third, and fourth neighbors and the
square lattice with exclusions up to first, second,
and third neighbors; these hard-core lattice gases
will be referred to as &-1, 4-2, 4-3, 4-4,
0-2, and 0-3. The Kac potential was chosen be-
cause it is thought to be a good first approximation
to more realistic potentials and because its effect
can be analyzed exactly. Using the equations
of state of the hard-core lattice gases already
given in the literature, along with the work of
Lebowitz and Penrose, "we determine the equa-
tions of state for several hard-core lattice gases
with weak long-range attractive potentials. From
an examination of the coexistence curves we find:

(a) In three of the systems considered, the co-
existence curves are remarkably like those of a
system of simple real molecules such as argon
molecules, having a first-order solid-fluid phase
change, a first-order liquid-gas phase change with
a critical point, and a triple point.

(b) The addition of the attractive potential to the
potential of the hard-core lattice system acts to
spread out the solid-fluid type phase transition
that exists in the hard-core lattice system alone.
If it is second order before the attractive potential
is added it becomes first order. If it is initially
of first order it remains first order but spreads
out further to have temperature-dependent co-
existence densities that bracket the density interval
over which the original transition took place.

(c) It appears that the existence of a realistic
coexistence curve with a critical point depends not
only on the range of the core but also on the
"roughness" of the exclusion volume.

In Sec. II we describe in general terms the
methods used to obtain the coexistence curves and
in Sec. III we discuss the details of the calculation
for each model giving in particular the coexistence
curves in p-T space. In Sec. IV we present our
conclusions.

II. METHOD

The thermodynamic properties of systems of
molecules with hard repulsive cores and weak
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long-range attractions can be deduced from the
properties of the hard-core system alone using a
result of Lebowitz and Penrose. ' They considered
a classical system of particles with two-body in-
teraction potentials of the form

v(r) = q(r)+ y"4'(y r),
where r is the distance between particles, v is the
dimensionality, y is a positive parameter, and 4 (r)
satisfies certain restrictions, one of which is that
it be nonpositive. The term q(r) is called a ref-
erence potential (which tor the models considered
in this paper will be the potential energy of the
hard-core system alone) and the term y"C'(yr) is
often called the Kac or Kac-Baker potential in
acknowledgment of its initial use. The Kac po-
tential, whose range is proportional to y ', has the
property that in the limit as y- 0 it becomes an
infinitely weak and long-range attractive potential.
It is sometimes referred to as a "weak and long-.
range tail" term. Lebowitz and Penrose found that
in the Van der Waals limit, y- 0, the equation of
state is given by

P(P, T) = M. C. [P„g(p, T) —anp ],
where M. C. denotes the well known Mmcwell con-
struction, P„,(p, T) is the pressure of the refer-
ence system, p is the density, 7." is the tempera~-
ture, and

n= —lim y"j 4'(yr)d" r .
y» 0

Similarly, the free-energy density a(p, T) and the
chemical potential p(p, T) are given by

(2b)

a(p, T) = C. E. [a..~(p, T) —-'&p']

and

0(P, T) = Inf[p, ,,f(p, T) —np], (4)

where C. E. denotes the convex envelope and Inf
denotes the infimum, which is the lowest value of
a function taken by that function when. it is multi-
valued.

As Lebowitz and Penrose point out, ' these
results can be applied to lattice systems and in
particular are applicable to the two-dimensional
lattice-gas systems studied here which have pair
potentials of the form

v(r, &)=q(rq&)+ limy 4(yr, ~), (6)
y" 0 .

where the reference potential q(r, &) is given by

q(r, &) =~ for particles occupying the same site
or sites within a certain neighborhood,

(6)
q(r, &) = 0 otherwise,

and C(x) is nonpositive. We assume it is also
smoothly behaved (e. g. , bounded and monotonical-
ly decaying) as }xI- ~ to avoid any behavior in our

model that depends upon oscillatory structure in
the potential. In treating a lattice system the in-
tegrals of continuum systems go over into sums
over cells or equivalently sums over lattice sites.
Equation (2b) becomes

o. = —limy"Z C(yr;q),
y"0 i

where g, denotes a summation over all cells or
sites. Information on the equation of state
P„&(p, T) for each choice of reference system is
obtained from accurate although nonrigorous cal-
culations previously made by other authors. Thus,
we see that if the equation of state for a lattice-gas
(or continuum) system is known, the equation of
state for that system with an infinitely weak long-
range attractive potential is readily determined.

We find that much useful qualitative information
as well as some exact information on the full sys-
tem can be obtained from an inspection of graphs
of simple thermodynamic functions of the reference
system. We will illustrate this using as examples
two of our simplest reference models, the trian-
gular lattice gas with nearest-neighbor exclusions
(4-1) and the square lattice gas with nearest-
neighbor exclusions ( -1). We will see that by in-
specting a graph of (&PP,/S p)r vs p (P= 1/kT) for
each of these reference systems we will be able to
tell at a glance that -1 with long-range attractions
will have a first-order solid-fluid transition but
cannot possibly have a liquid-gas transition with
a critical point and that &-1 with long-range at-
tractions will also have a first-order solid-fluid
transition, while a liquid-gas transition with a
critical point is not ruled out.

Both of these reference models possess a sec-
ond-order continuous phase transition with an in-
flection point in the I' vs p isotherm at the transi-
tion point p= pt. The evidence of Refs. 3-5 sug-
gests that at the inflection point the isotherms of
both these models are horizontal, implying that the
compressibility is infinite. This can be seen by
the sharp spike to zero in Fig. 2(a) (b;1) and Fig.
2(b) ( -1), which show plots of (SPP„f/&p)z vs p
for the two models. This function is simply re-
lated to the compressibility at constant temperature
Z, by

(
8P'

&~

(
par, )'

Referring to Eq. (2a) we see that if the quantity
[P„,( p, T) —qnp ] is a decreasing function of the
density p over some interval then the Maxwell con-
struction will yield a first-order phase transition.
If a critical point is associated with this transi-
tion then it is clear that the critical density p, and
reduced critical temperature (kT/n), are the solu-
tions to the equations
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FIG. 2. (a) Plot of (BPI'ref/Bp)& vs p for 6-1. When
a weak long-range attraction is added to this reference
system a critical point is found. The critical point will
be located by the point of tangency between the curve and
a straight line through the origin. (h) Same plot for -1
which cannot have a critical point when a long-range
attraction is added as a result of the absence of a point of
tangency. In each plot the sharp minimum at p& marks
the second-order solid-fluid transition of the reference
system. (Dashed lines indicate our best estimate of the
behavior of the curve in this region on the basis of the
data of Runnels and Combs. )

where k is Boltzmann's constant. It should be
noted that although a solution to Eqs. (9a) and (9b)
must exist in order for a critical point to exist,
these equations are not sufficient conditions for the

existence of a critical point because of further
constraints imposed by the Maxwell construction.
Thus, the solution to Eqs. (9a) and (Qb) represents
only a Possible critical point.

Throughout this paper we shall characterize a
solution of Eqs. (9a) and (Qb) as a tangency point
because we may interpret graphically the solutions
to these equations as the point at which the curve
(BPP„,/Bp)a vs p and a straight line through the
origin with slope pn are tangent to each other.
Thus we can say that a hard-core reference sys-
tem with attractions may possibly have a critical
point if there is a sagging "belly" in a plot of
(BPP„,/Bp)s vs p which allows the point of tangency
to be located. Vfe illustrate this point for 4-1 with
long-range attractions and show in Fig. 2(a) how

the location of the tangency point (potential critical
point) is determined. In contrast we see from Fig.
2(b) that for 0-l with long-range attractions it is
impossible to find a critical point because no point
of tangency exists.

Since many workers plot their results on a graph
of (Bp/BPp, „f)s vs Pp„f it is also useful to see how
the presence or absence of a solution to Eqs. (9a)
and (Qb) is reflected in such a graph. Because
p(Bp/BP)& (Bp/Bp, )&,-it follows from Eqs. (9a) and

(Qb) that the possible critical point will be located
at the point where (B'p/BPp, '„f)a= 0 and Bp/BPp, „,is
a maximum. At this point the values of p, (Bp/B pp„,$,
and P„,(p, T)--,'o.p will be the possible critical
values p„(uP), ', and P,(p„T,). Thus we can
say that a hard-core reference system with at-
tractions may have a critical point if there is a
maximum followed by a minimum in a plot of
(Bp/BPg„, )s vs Pp„, . As an example of this point
we see that the maximum followed by a minimum
in Fig. 3(a) is evidence of the possible existence
of a critical point for ~-1 with long-range attrac-
tions. The lack of this behavior in Fig. 3(b) shows
that there is no possible critical point for 0-1 with
long- range attractions.

An examination of these reference-system
graphs can also tell us something about the phase
behavior of the full system by allowing us to read
off the location of the spinodal points for each iso-
therm. Since the coexistence densities will brack-
et the spinodal point densities, the location of the
spinodal points gives us a good indication of where
the coexistence densities will lie. The spinodal
points are the maximum and minimum points of
the van der Waals loops at which (BpP/Bp)s= 0 or
(BpP„,/Bp)a= a, pp, which is just Eq. (9a). [Thus
the critical point is a special spinodal point at
which (BapP/Bpa)s = 0.j Graphically the spinodal
points for each reduced temperature, kT/z, may
be determined by the intersection of the curve
(8pP„,/Bp)a vs p and a straight line through the
origin with slope Po. The use of this technique
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will be made clearer by using as an example h-1
with long-range attractions [Fig. 2(a)]. A straight
line through the origin with slope Po & (Pn), will in-
tersect the curve at two spinodal points to the right
and left of p= p„ indicating a first-order transi-
tion with infinite critical temperature (i.e. , a
solid-fluid phase transition). At Pa= (Pu)e there
are three spinodal points corresponding to a crit-
ical point and a first-order phase transition. For
P & & (Po.), there will be four spinodal points corre-
sponding to two first-order phase transitions and
for Pn» (Po.), (temperature below the triple point)
there will be two spinodal points corresponding to
one first-order phase transition.

From an examination of this type we can see
what happens to the phase transitions of the refer-
ence systems when the long-range attractions are
added. In general, if the reference system has a
second-order phase transition it will spread out to
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FIG. 4. Plot of pp vs pP for d-1 with long-range attrac-
tions for a temperature k T/n = 0.0472 which is below the
critical temperature and above the triple-point tempera-
ture. The density increases in alphabetical order. The
crossover point J3 marks the first-order liquid-gas transi-
tion and the crossover point H marks the first-order
solid-fluid phase transition. The stable isotherm for this
system is ABHI. High- and low-temperature behavior is
not shown.
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FIG. 3. Plots of (Sp/9Pp, ~)& vs Pp,& for (a) b,-1 and
(b) -1. Such plots typify the way matrix workers display
hard-core lattice-gas results. The critical value of kT/n
can be read in the case (a) as shown.

become first order when an attractive potential is
added. If the reference system already has a first-
order transition, i.e. , (8PP„,/Bp)s is zero over
a finite density interval with coexistence densities
p„~~~„~ and ppfq+3Q pf p

then that system with the ad-
dition of the attractive potential will have tempera-
ture-dependent coexistence densities, p~„d(T) and

p, ««d(T), whose minimum difference [p», «(T)
—p, «„«(T)] occurring at T = is equal to [p„,« „,

Pliuutd ref]'
The above considerations give us a necessary

condition for a critical point and a qualitative in-
dication of the thermodynamic behavior of systems
of hard-core molecules with attractive interactions.
In order to obtain the coexistence curves and phase
diagrams it is necessary to make a Mmnvell equal-
area construction on the equation of state or an
equivalent construction on some other thermody-
namic function. We choose to find the coexistence
curve by graphing the chemical potential versus the
pressure for each value of the reduced tempera-
ture and thereby finding the stable isotherm which
minimizes the free energy. We choose to use this
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the full system and enables us to see if a neces-
sary condition for the existence of a critical point
is satisfied. In order to complete the picture
quantitatively it is necessary to make a Maxwell
construction. In the manner described in this sec-
tion we examine qualitatively and quantitatively in
the next section a number of different hard-core
reference systems to which we add long-range at-
tractive potentials.

III. SPECIFIC MODELS AND RESULTS

In this section we discuss the results obtained
for each model by the methods described in Sec. II.

A. Triangular Lattice Gas with First-Neighbor Exclusions and
Weak Long-Range Attractions (6-1)

FIG. 5. Schematic plot of the relevant Maxwell con-
structions according to Eq. (2a) in the P-V plane for a
system with a realistic phase diagram such as 4-1 with
long-range attractions. (a) T& T„(b) T= T„(c) T& T„
(d) T = Ttrgpie point~ (e) T& Ttrigepogng

construction rather than the Maxwell equal-area
construction because in this way the uncertain data
around p= p, are avoided. The coexistence densi-
ties are determined by the crossover point on this
graph (see Fig. 4). In Fig. 5 we illustrate sche-
matically the behavior of isotherms found from Eq.
(2a) before and after the Maxwell construction is
made for the case of 6-1 with long-range attrac-
tions.

%e have emphasized that the conditions stated
in Egs. (9a) and (9b) are necessary for the exis-
tence of a critical point but not sufficient. Vfe find
that in some of our cases the tangency point never
appears as a critical point because it is lost within
the Maxwell construction on the other (solid-fluid)
phase transition. In Fig. 6 we illustrate schemat-
ically this behavior for the case of b, -2 with long-
range attractions. This "critical point that never
appears" also occurs in b -4 with long-range at-
tractions.

%e have seen that if we know the equation of
state for a hard-core lattice gas we can calculate
the equation of state for the same hard-core lattice
gas but with an additional infinitely weak long-
range attractive potential. A consideration of
graphs of (BpP„,/Sp)~ vs p and (Bp/Bpp„, )~ vs pp„,
tells us qualitatively the behavior to be found in

(a) J V (b)

FIG. 6. Schematic plot of the reievant Maxwell con-
struction in the P-V plane showing how a "possible criti-
cal point" [i.e. , the distinguished point of tangency on a
graph of (BPprez/Bp)& vs p] can be lost within the Maxwell
construction. This behavior occurs when long-range
attractions are added to 6-2 and to 6-4. (a) T &Tc, (b)
T= Tc, (c) T& Tc.

Gaunt investigated the reference system for
this case by deriving exact low-density and high-
density series expansions which he studied and
extrapolated using ratio and Padb approximant
techniques. Runnels and Combs studied the same
system independently by using a computerized
transfer-matrix method to find exact solutions for
systems of infinite length and finite widths of up
to 21 lattice sites and then extrapolating their re-
sults to infinite width. The two sets of results
proved to be in excellent agreement. In both
studies it was found that at p = 0. 84 po (where po,
the close packing density, is —', ), the hard hexagons
exhibit an order-disorder transition, at which point
the compressibility p '(sp/BP)r appears to become
infinite [see Fig. 2(a)j.

An analysis of the data of Gaunt and of Runnels
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0.045—

0.040-

high-density (and activity) series expansions and
Pads approximant techniques. Both groups con-
cluded that a single first-order phase transition
occurs. Orban and Bellemans found the coexis-
tence densities to be pf&u&d=0. 68 pp and psogf d

= 0. 80 pp. Although a construction for this model
similar to that of Fig. 2(a) does not rule out the
possibility of a critical point (i. e. , there is a point
of tangency), we find that once the Maxwell con-
struction is made, a critical point never appears
(see Fig. 6). The resulting coexistence curve is
shown in Fig. 8.

0.035 0.2 0.4 0.6
P/P,

I

0.8 1.0
C. Triangular Lattice Gas with First-, Second-, and Third-

Neighbor Exclusions and Weak Long-Range Attractions (6-3)

FIG. 7. Coexistence curve for 6-1 and weak long-range
attractions.

and Combs in the manner described in Sec. II
showed that a possible critical point exists at
p/p0=0. 333+ 0.002. Since the data of Gaunt and
of Runnels and Combs are in agreement and are
both extremely reliable except in the vicinity of

p, , these combined data were used to find the equa-
tion of state and the coexistence curves for the sys-
tem when a long-range attractive potential was
added. By plotting the chemical potential versus
the pressure, the coexistence curve was obtained.
The coexistence curve is shown in Fig. V. The
second-order phase transition of the reference
system has spread out to become the first-order
solid-fluid transition of the full system. A liquid-
gas transition with a critical point has developed,
and there is a triple point. (Notice the kink on the
left-hand side of the coexistence curve at the
triple-point temperature. This is to be expected
in all model systems in which a Maxwell construc-
tion is used. ) The critical quantities are

Using the same methods that they applied to the
preceding case, Orban and Bellemansv investi-
gated this reference system and found a first-
order phase transition with coexistence densities
p„„«=0. 81 pp and p„,«= 0. 98 pp, where pp ='7.
Using the techniques discussed in Sec. II we find
the possibility of a critical point. The best Pade
approximants for the low- and high-density series
of Orban and Bellemans were used to find the
equation of state and to make the Maxwell con-
struction. We find that the critical point persists
even after the Maxwell construction is made. We
were not able to map out the full coexistence curve
because of a singularity in the Pade approximant
for the low-density series of the chemical poten-
tial. We are certain, however, of the existence of
the two-phase transitions, the location of the crit-
ical point, and of the fact that this system has a
triple point. The critical quantities are

p, = (0. 303 a 0. 002)po,

(k T/n), = 0.001 7 62 a 0.000 001,

(P/n), = 0.000 2779 s 0.000 0006,

p, = (0. 333a 0. 002)po,

(&7/o ), = 0.046 166s 0.000 001,

( P/ n.), = 0.001 894 a 0.000 004,

(PP/p), =0, 370+0.002 . kT

0.06

Here and throughout our paper the uncertainties
represent informal estimates rather than standard
deviations or other formal measures of error.

0.04

B. Triangular Lattice Gas with First- and Second-Neighbor
Exclusions and Weak Long-Range Attractions (6-2) 0,02

The reference system for this model was studied
by Runnels, Craig, and Streiffer, who used the
transfer-matrix techniques for lattices with widths
of up to 14 sites, and by Orban and Bellemans, 7

who also used the transfer-matrix techniques for
widths of up to 14 sites as well as low-density and

'0 0.2
I

0.4
I

0.6 0.8 I .0

FIG. 8. Coexistence curve for E-2 and weak long-range
attractions.
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kT
0
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gives us an indication of how the bump or lack of it
in plots of (sp/spy, „,)~ vs pp, .„[see Figs. 3(a) and

3(b)] affects the coexistence curve.

F. Square Lattice with First- and Second-Neighbor Exclusions
and Weak Long-Range Attractions (H-2)

0.005—

0 l

0.2
I I

0,4 0.6
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0.8 I.O

FIG. 9. Coexistence curve for b-4 and weak long-range
attractions.

(P' /p), = 0. 367 + 0. 002 .

E. Square Lattice with First-Neighbor Exclusions and Weak
Long-Range Attractions (0-1)

Runnels and Combs and Ree and Chestnut, using
transfer-matrix techniques, and Gaunt and Fisher,
using series-extrapolation techniques, have studied
this system and have concluded that, like the trian-
gular lattice already discussed, this system of hard-
square molecules exhibits a second-order phase
transition. It occurs at p, = 0. 74 po, where po = -,',
at which point the compressibility appears to be-
come infinite. An examination of the data indicates
that it is not possible for this model to exhibit a
liquid-gas phase transition [see Figs. 2(b) and 3(b)].
Using Pads approximants for the series of Gaunt
and Fisher and using the data of Runnels and Combs
(whose widest lattice in this case was 22 sites), we
obtained the equation of state and the coexistence
curve. Upon addition of the long-range attractions,
the second-order continuous transition found in the
reference model spreads out to become first order.
The coexistence curve is presented in Fig. 10. It
is useful to compare this phase diagram to those
of Figs. 8 and 9, in which the tangency points were
suppressed by the Maxwell construction. This

D. Triangular Lattice Gas with First-, Second-, Third-, and
Fourth-Neighbor Exclusions and Long-Range Attractions (6-4)

Orban and Bellemans' also investigated this ref-
erence system and found a first-order phase transi-
tion with coexistence densities p„„,d= 0. 79 po and

p„„,-~=0. 88 po, where po-— 9. Using the best Pads
approximants to their high- and low-density series
expansions we calculate the equation of state and
make the Marvell construction. Although a pos-
sible critical point is found, it does not appear after
the Mmnvell construction is made. Thus, no liquid-
gas transition occurs, although the presence of the
tangency point is felt in the rapidly changing width
of the coexistence curve. The coexistence curve
is shown in Fig. 9.
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FIG. 10. Coexistence curve for .-1 and weak long-
range attractions. Bashed lines indicate our best esti-
mate of the behavior or the curve in this region based not
only upon our o~n results but also on the results obtained
by H. Narang [Masters thesis (State University of New
York at Stony Brook, 1972) (unpublished)].

This reference system was studied by Bellemans
and Nigam who used the same techniques as those
employed by Qrban and Bellemans for the 6-2 case
as well as an approximate closed-form method
originally due to Rushbrooke and Scoins. Belle-
mans and Nigam felt that their studies using the
matrix techniques for widths of up to 12 sites sug-
gested the possibility of a weak transition at high
densities p/pa=0. 92 (where po=-,') and that no evi-
dence for a transition existed using the low- and
high-density series- expansion technique. Using
the method of Rushbrooke and Scoins they found a
second-order phase change (without a horizontal
inflection point) with a discontinuity in the com-
pressibility at p/po = 0.807. They were able to rule
out the possibility of a first-order phase change as
well as a second-order one with a horizontal in-
flection point. This system was also studied by
Ree and Chestnut who used transfer-matrix tech-
niques for widths of up to 18 lattice sites. They
felt that their studies indicated that there may be
a third-order phase transition with a discontinuous
jump in 92p/spy, 2 (i.e. a cusp in the compressibility)
at p/pa=0. 95. Thus the studies to date on the
square lattice with first- and second-neighbor ex-
clusions are inconclusive.

We have chosen in this paper to use as our ref-
erence-model results the results of Ree and Chest-
nut, who found that at most there is a third-order
phase transition. Since it is generally found that
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G. Square Lattice with First-, Second-, and Third-Neighbor
Exclusions and Long-Range Attractions (0-3)
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FIG. 11. Coexistence curve for -2 and weak long-
range attractions. Boxed region shows one conjectured
possible form of the coexistence curve in the vicinity of
p/p0=0 ~ 95 that appears consistent with the conclusions
of Ref. 8.

the matrix-method results and series-expansions
results are reliableandhence reproduce one another
except in regions where anomalies exist (i. e.
around transition densities) we have used Padh ap-
roximants for the high- and low-density series of
Bellemans and Nigam to find the equation of state
for the system when an infinitely weak long-range
attractive potential is added. The existence of a
pronounced "belly" in the plot of (spP„,/sp)~ vs p
together with the lack of a dip at any higher density
(there is only a cusp in the graph at p = p, ) indicates
that a critical point will surely be present. The
Mmovell construction was made on this equation of
state and as expected the resulting coexistence
curve showed a liquid-gas phase transition with a
critical point and no first-order solid-fluid phase
change but instead a subtle higher-order transition
that is not markedly different for higher tempera-
tures than the transition that existed before the at-
tractive potential was added. The special behavior
found for this reference system can probably be at-
tributed to the lack of a unique close-packed con-
figuration for this system (i.e. , rows of molecules
are allowed to slide freely with respect to each
other).

The coexistence curve for this model is shown in
Fig. 11. The dashed lines denote that the compu-
tations could not be done in the temperature region
indicated because of uncertain reference system
data around p= 0.92 po. The critical quantities are

p, = (0. 360'a 0. 004)po,

(k T/a), = 0.036 833 a 0.000 001,
(P/~), = 0.001 228 a 0.000001,

(PP/p) =0. 3VO+0. 004 .

This reference system was studied by Bellemans
and Nigam using the techniques that we have pre-
viously mentioned in connection with Ref. 6. They
found strong indication of the existence of a first-
order phase transition. Qn the basis of the best
Pade approximants to their low-density and high-
density series, the equation of state was calculated
and the Maxwell construction made. Using the
methods described in Sec. II the critical point on
a diagram similar to that of Fig. 2(a) was located
and was found to persist after the Maxwell construc-
tion was made. The realistic coexistence curve
obtained is shown in Fig. 12. Critical quantities
are

p =(0 330+ ~ 003)po (pa= s) ~

(kT/n) = 0.026 238 aO. 000001,

(P/a), = 0.000 6339+0.000 0002,

(PP/p), = 0. 366+0.004 .
IV. CONCLUSIONS

The phase behavior that results when an infinitely
weak and long-range attractive potential is added
to seven different lattice-gas reference systems is
summarized below.

(a) In three of the systems considered, a-1 with
attractions, 6-3 with attractions, and -3 with at-
tractions the coexistence curves are realistic. By
realistic we mean having a first-order solid-fluid
phase change, a first-order liquid-gas phase change
with a critical point, and a triple point.

(b) Three other systems, a-2 with attractions,
b -4 with attractions, and -1 with attractions fail
to have a critical point and have only one first-or-
der phase transition of the solid-fluid type.
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FIG. 12. Coexistence curve for@-3 and weak long-range
attractions.
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(c) The phase behavior of -2 with attractions
appears to be unusual but this may be a result of
the fact that the phase behavior of the reference
model has not been clearly established owing to
problems associated with the lack of a unique close
packed configuration. ' If we assume that the ref-
erence model has at most a third-order order-dis-
order phase change (as suggested by Ree and Chest-
nuts) we find that the full system exhibits a typical
first-order liquid-gas phase change with a crit-
ical point in addition to a higher-order phase
change.

It is of interest to compare three of our specific
results with those of other workers. 6-3 with
fourth- and fifth-neighbor attractions has been
studied by Qrban, Pan Craen, and Bellemans, "who
found a realistic phase diagram qualitatively sim-
ilar to ours for 6-3 and a long-range attractive.
tail. b, -2 with third-neighbor attractions has been
studied by Runnels, Craig, and Streiffer, who found
a first-order solid-fluid type transition but no liq-
uid-gas-type transition in substantial agreement
with our result for 6-2 and a long-range attractive
tail. -1 with second-neighbor attractions has been
studied by Runnels, Salvant, and Streiffer, "who
found that if the second-neighbor attractions were
strong enough, the second-order phase transition
of the reference system becomes first order, in
agreement with our results for -1 with long-
range attractions.

It is clear at this point that the situation is much
more complex than the simplest version of the ex-
pectation mentioned in the Introduction, i. e. , that
by including long-range attractions and extended
hard-core repulsions in the same model, one will
automatically obtain a first-order solid-fluid transi-
tion owing to the effect of the repulsions and a first-
order liquid-gas transition due to the effect of the
attractions. We have seen in this study that the
inclusion of long-range attractions modifies the
solid-fluid transition that is primarily associated
with the bard-core repulsions and that the inclusion
of the hard cores modifies the liquid-gas transition
that is primarily associated with the attractions.
More specifically we can conclude:

(a) The solid-fluid-type phase transition of the
hard-core lattice gas is spread out by the addition
of the long-range attractions. Thus, if the hard-
core lattice gas has a second-order phase transi-
tion, it will spread out to become first-order when
an attractive potential is added, the coexistence
densities becoming functions of temperature. If
the hard-core lattice gas has a first-order phase
transition with coexistence densities p„,« „,and

p, ««d „„then that system with the addition of the
attractive potential will have temperature -depen-
dent coexistence densities p„,«(T) and p, «„,. d(T)
which bracket the original coexistence densities and

whose minimum difference [puu„d(T) —p„quid(T)],
occurring at T =~, will be equal to (p„,« „,

Pliquid ref)'
(b) The liquid-gas transition of the simple lat-

tice gas with long-range attractions is in some
cases eliminated by the inclusion of an extended
hard core, although in other cases it persists. The
reasons for this behavior are not clear but some
observations can be made. In this study we find
that the existence of the critical point appears to
depend not only on the range of the core but also
on its shape. Consideration of the exclusion vol-
umes shown in Fig. 1 will indicate that those sys-
tems that have realistic diagrams are the ones with
relatively smooth core perimeters. This is par-
ticularly clear in the case of the triangular-lattice
structure. Although -3 is not very smooth, it is
smoother than -l (we discount -2 because of the
peculiarities which have already been discussed).
Although the roughness of the exclusion volume as
well as its range appears to be playing a role in
determining the existence of the critical point, we
have found no reliable theoretical means of con-
structing a quantitative index based on these two
factors that would allow us to predict which sys-
tems would have realistic phase diagrams.

Finally, it is of interest to compare certain ther-
modynamic properties of our models at the critical
point with results for other similar models. One
index that appears remarkably insensitive to the
details of the hard core, at least in a given dimen-
sion, is the critical ratio (PP/p), . The critical
ratio for the models calculated in this paper vary
between 0. 36 and 0. 3V. These values are all very
close to the critical ratio of 0. 366 for a two dimen-
sional continuum system with hard-disk repulsions
and weak long-range attractions. In three dimen-
sions a continuum system with hard-sphere re-
pulsions and weak long-range attractions has a
critical ratio of 0. 359. A simple lattice gas with
a weak long-range potential has a critical ratio of
0. 386 rega, rdless of the dimensionality' and the
critical ratio of argon has been variously quoted
as21 P 29$ or P 3]4 22

We have shown how the systematic study of lattice
gases with hard-core repulsions and weak long-
range attractions helps to further our understanding
of how the phenomenon of phase transitions in sys-
tems of real molecules is dependent upon the nature
of the intermolecular potential.
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