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The ground-state energy of the “X, =1/3” and “X, =1/4” superlattice states of He’ and He* adsorbed on
graphite is calculated via a variational wave function incorporating Jastrow factors. The single-particle
factors in the wave function are constructed as an expansion in an orthogonal basis set and the Jastrow
terms incorporate only lateral correlations. The ground-state energy is calculated using the Nosanow cluster
expansion. The stability of the superlattice states is examined and both are found to be unstable at zero
pressure. Estimates of the stability of these states to “melting” indicate the *“X, =1/3" state is stable and
the “X, =1/4” state is less stable or possibly unstable. The sensitivity of the results to reasonable
substrate-induced many-body corrections to the adatom-adatom potential is found to be significant.

I. INTRODUCTION

The physisorbed films of the light rare gases are
the experimental systems for the study of two-di-
mensional quantum fluids and solids.! This is not
only a result of the small adatom mass and weak
adatom-adatom interaction, but also of the weak
adatom-substrate interaction and increased impor-
tance of zero-point motion owing to the two-dimen-
sional character of the film. The structure of the
substrate surface can have a decisive role in deter-
mining the structure of the adsorbed film. How-
ever, helium adsorbed on graphite is one system
where for most film densities this is not the case. 3

The basal-plane surface of a graphite substrate
is such that there is little hindrance to the motion
of a helium atom along the surface. The basal
plane consists of hexagonal rings of carbon atoms,
with a point of minimum potential energy for the
adsorbed helium atom which exists along a perpen-
dicular to the surface and passes through the center
of a hexagon (the adsorption site). However, the
ground state of a single helium atom adsorbed
upon this surface is a very delocalized Bloch wave. 2
In fact, the Wannier state constructed from the
lowest band of Bloch states is about 10 °K above
the ground state. Yet, even though the substrate
does not dominate the dynamics of the adatom, un-
der certain circumstances it could conceivably
" play an important role. Specifically, it could sta-
bilize phases or states of the film which would be
energetically unfavorable if the adatom-substrate
interaction depended solely upon the perpendicular
distance between adatom and substrate. There is
experimental evidence that at particular values of
film density, this is indeed the case—the structure
of the helium film ground state being a superlattice
of the basal-plane structure.® That is, the helium
adatoms form a two-dimensional lattice whose in-
variant translations also leave the substrate lattice
unchanged.

The strongest evidence for the existence of such
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superlattice states is for the “X,=3” state. In this
structure, the helium adatoms are visualized as
forming a simple triangular lattice with the adat-
oms located at adsorption sites which are a

factor of v3 farther apart than nearest-neighbor
adsorption sites. Thus % of the total number of
adsorption sites are occupied. There is weaker
evidence for the existence of a “X, =" state. This
differs from the previous state only in that the
nearest-neighbor occupied sites are spaced at a
distance equal to twice the distance between near-
est-neighbor adsorption sites. In this case, ; of
the sites would be occupied. The helium-helium
nearest-neighbor separation for these superlattice
states, 4.25 and 4. 90 A, respectively, is 15-30%
larger than that of the lowest-density bulk solid.

The present calculation is concerned with the
ground-state energy and stability of the superlat-
tice states for both He® and He* adsorbed upon
graphite. For this purpose, a variational wave
function incorporating Jastrow factors is used, and
the ground-state energy computed using the Nosa-
now cluster expansion.*® The interaction between
the helium atoms is represented by a semiempiri-
cal hybrid potential, " and the helium-graphite inter-
action by a helium-carbon Lennard-Jones potential
summed over the lattice of carbon atoms,

The stability of the superlattice states under zero
pressure is examined by comparing the superlat-
tice ground-state energy per particle to the single-
adatom ground-state energy. Rough estimates of
the stability of the superlattice states to “melting”
are made using ground-state Jastrow wave-func-
tion calculations which exist in the literature®!°
for the two-dimensional helium liquid.

II. BASIC HAMILTONIAN: TRIAL GROUND STATE
AND CLUSTER EXPANSION

The Hamiltonian Hy used to describe the system
of N atoms adsorbed upon a substrate surface con-
sists of the kinetic energy of the N adatoms, the
interactions between these adatoms, and the inter-
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actions between the adatoms and the substrate,

The substrate is assumed to be rigid and unaffected
by the state of the adsorbed film. The adatom-
adatom interaction is represented by a two-body
central potential v(p;;), where p,; is the distance
between the ith and the jth adatom. The adatom-
substrate interaction is represented by a nonsep-
arable single-particle potential U(F; z,), where T,
is the position vector in the surface plane of the
jth adatom and z; is its position perpendicular to
this plane. The z =0 plane is the plane of substrate
surface atoms with the substrate occupying the
entire negative z half-space. The Hy for such a

system is
i -nt 2 h )
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with m being the adatom mass and V2 being the
two-dimensional Laplacian., Typically, the poten-
tial U is repulsive at small z, attractive at large
z, and has a minimum at about a few angstroms
away from the surface. #%!! If the surface has a
crystalline nature, then U has a two-dimensional
periodic behavior,

The trial ground state used is a slightly modified
version of the Nosanow trial ground state used for
bulk quantum solids.® For an N-atom system, the
trial ground state for the adsorbed film is

- -
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where
¢y (T, 2;)= ¢(Fi_ﬁi’zl) (3)

and R, is a two-dimensional lattice vector of the
superlattice. For the cases considered, every
adatom sees the same environment. The ¢; are
normalized so that (¢,| ¢,)=1. The overlap be-
tween neighboring ¢; is assumed to be negligible,
so exchange effects are not considered. The Jast-
row factor f(r) is, following Nosanow, chosen to be
of the form

flr)=e™4" | (4)

with «(r) being an analytic function which is a rea-
sonable fit to the interatomic potential », and B
being a variational parameter. The advantages of
such a form for f(r) when doing cluster expansions
have been known for some time.® Note that only
lateral correlations are incorporated into the wave
function. *** This simplifies the calculations and
is justified by the narrowness of typical adatom
wave functions in the z direction, 2

The Nosanow cluster expansion gives a prescrip-
tion for the calculation of the ground-state energy
Eo=(¥ I Hyl¥ ) as a summation of the cluster
terms involving matrix elements (¥, | H,| ¥, ) with
M=1,2,...,N. The cluster expansion is, of
course, useful insofar as this summation can be
well approximated by a cluster expansion involving
only small values of M. The evaluation of E; for
the ¥, of Eq. (2) and the Hj, of Eq. (1) follows di-
rectly from the general form of the expansion, >8
The first few terms of the expansion are given in
Table I. The calculation of the ground-state wave
function and energy then reduces to the truncation
of the sum for E, and the minimization of E; as a
function of the variational parameters. For this
purpose, the single-particle function ¢, is expanded
interms of some relevantbasis set with the expansion
coefficients treated as variational parameters.

III. INTERATOMIC POTENTIALS AND SINGLE-
PARTICLE STATES

The two-body potential used for the helium-helium
interaction is the Morse- V), potential, a semi-

TABLE I.
film,

N
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=

Nosanow cluster expansion for the adsorbed
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Ey = Egy + Eggp + Egy, ete.,
where
U; = U(Fj,zj),
T;= g (ij +a—:;2-) Ing(r,, z;) ,
Vi = V(T =F;1)
for
V) =v) — (1*/2m)V? Inf(r)
and

fij =f( I;; _Fj l).
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TABLE II. Parameters for the Morse-Vpp helium-
helium potential and Lennard-Jones helium-carbon po-
tential.

Morse-Vpp Lennard-Jones
helium-helium helium-carbon
€=12.14°K €y=14.5°K
@=6.23 pp=3.34 A
p1=2.975 &
p,=3.5975 A

Ce=1.02x10%°K A®
Cy=2.T77x10%°K A®

empirical hybrid potential which reasonably ac-
counts for the virial coefficient data, the crossed-
molecular-beam scattering, and the theoretical
potential. ™ Although it may not be the very best
potential available, it is much better than the stan-
dard Lennard-Jones potential’ and is certainly ade-
quate for present purposes. The functional form is

EO(e-Zot(l-ﬂ/ol) _ Ze-a(l-n/pl)), P=py (
v(p)= 6 8 - 5)
- Ce/p"= Co/p" , P =Pz

with the numerical values of the parameters given
in Table II.

The interactionof a helium atom with the graphite
substrate is represented, in typical fashion, by a
sum over all carbon atoms of a two-body helium-
carbon potential.® The carbon atoms are assumed
to be fixed at their ideal lattice sites, with the sur-
face basal plane assumed to be geometrically iden-
tical to the interior ones. This assumed substrate
structure is an idealized one. The helium-carbon
interatomic potential used is a Lennard-Jones po-
tential, so U(T, z) is given by

u(F,, Zt)=%; & [(Po/Pu)lz‘ 2(00/911)6] ’ (8)

with €, and p, being the parameters characterizing
the helium-carbon pair and p;; being the distance
between the ith helium atom and the jth carbon
atom. In principle the sum in Eq. (6) extends over
all carbon atoms; in practice some truncation is
necessary. The details of the evaluation of U are
given in Appendix A.

While the helium-helium interaction is well char-
acterized, the same cannot be said of the helium-
carbon interaction. In recent calculations, the
parameters €, and p, were estimated by use of the
geometric mean interpolation rule using as knowns
the helium-helium and carbon-carbon param-
eters.*!® These estimates are 17.0 °K for &,and
3.34 A for p,. The extent to which such estimates
are reliable can be assessed by comparing such
estimates for unlike rare-gas pairs (e.g., helium-
argon) to those values of &, and p, deduced from

1655

crossed-molecular-beam experiments.!® Typical-
ly, the interpolation estimate for p, is within a few -
percent of the experimental fit, but the interpola-
tion estimate of &, can be too large by as much as
a factor of 2, The inference is that the interpola-
tion estimate for €, of the helium-carbon pair is
likewise too large. This assertion is substantiated
by the theoretical binding energies for helium
adsorbed on graphite being roughtly 30% larger
than experimental measurements indicate., The
interpolation values of &, and p, result in a the-
oretical binding energy of 189 °K, 2 while experi-
mental measurements place this number in the
range 145-155 °K, 17-1°

One way of circumventing the above difficulty is
to use the experimental data to fix the value of &y !®
For 13.5=%,=14.5 °K, the theoretical binding en-
ergy for a He* adatom upon graphite ranges from
about 140 to 156 °K.

The calculation of the binding energy of a single .
adatom upon a periodic substrate can be performed
in a straightforward manner.®2° The single-
adatom Hamiltonian H, is

‘ﬁz(vua—ii)w(f,z) . )

H = 2m

Briefly, the ground state of H, is expanded in an
orthogonal basis set, suitably chosen and truncated.
Since the ground state 34(T, z) is a Bloch state, it
can be expanded as

¥ (T, 2) :RZ C;{» e R rv(2) R (8)
WV

with the two-dimensional vector K being a recipro-
cal-lattice vector for the direct lattice associated
with U(F, z). The set of functions M"(z) is an ortho-
normal basis of discrete states., The details of
M*(z) are given in Appendix B.

The single-adatom binding energy of a helium
atom is calculated using a seven-plane wave and a
six-M"(z) basis. The sum over K includes the
point K=0 and its six nearest neighbors. The sum
over v includes the six most fundamental modes.
With this 42-function basis and helium-carbon
parameters of 14.5 °K for &, and 3.34 A for p,, the
He* binding energy is 156. 3 °K and that of He® is
149.4 °K. For the purposes of the present calcula-
tion, this is in satisfactory agreement with experi-
ment. Thus these values of &, and p, are used for
the remainder of the calculation,

The basic nature of the quantum states and band-
structure shape is virtually unchanged upon re-
ducing &, from 17.0 to 14.5°K. The only noticeable
change is a shift upwards and very slight compres-
sion of the band structure, 2

IV. CLUSTER EXPANSION FOR HELIUM UPON
GRAPHITE

The particular nature of the helium-graphite

system makes certain simplifications in ¥, reason-
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able a priori. Since the ground state of a single
adatom is nearly separable, ? the single-particle
term of ¥,—that is, the ¢; term—is written

04T, 2)=9,F) 25 C"M"(2) )

with the C? to be determined variationally, and the
MP(z) functions being the same basis set used in
Sec. III for the single-adatom Bloch state. The
single-adatom ground state is nearly cylindrically
symmetric, 2 so that it is reasonable to use a cy-
lindrically symmetric form for w,(i",). Further-
more, the calculations for the bulk solid® showed
little effect upon replacing a Hartree single-parti-
cle term by a Gaussian. Therefore, the form
chosen for y;(F,) is the Gaussian form

4y (F)) = (4/2m) 2 A0 R (10)

" where A is a variational parameter. This choice
for ¢, means that Eq =7 2AN/4m and Egyp = Eggp=0.
Finally, the narrowness of the M*(z) functions
simplifies the calculation of Ey,, since, for values
of 7;;=17; —7;| where ¢;¢, is not negligible,

[ dz; dz;| M7 ()| Po(oy )| M (2,))| 2= 0(ry;)  (11)

to within 1%.

The cluster expansion for (¥, |Hy,|¥,) is trun-
cated by neglecting Eg,; and all three-body and
higher clusters, so that E, is calculated via

Eo=Eur+Eny+Eey . (12)

The variational parameters are determined by
minimization of this truncated series. Higher-
order terms can then be calculated in order to as-
sess the effect of their omission. The functional
form used for u(r)is

=2a(1-r/py) _ Ze""“"/"l’

ulr)=e 0sy<w (13)

with the values of parameters a and p, being those
of Eq. (5).

The energy per adatom is, using Eq.(12),
1 . 7n2A
N Eo= 4m

+ Z CVHW'CU
. li (Qudy) Vg, )F2rg ) 90y
2 @151 72y, 1 0y 7 (14)

€

H'= [T dz MY (M) [ drt ], @)
X[Evﬁw'—Um(Z)+U(I_', Z)], (15)
Vir)=v@)- (12/2m)V3 Inflr), (18)

with U, (z) and E” given in Appendix B. For a
given value of A, ¢ is minimized by the vector C”,
which is the eigenvector of H””' having the lowest
eigenvalue €°(4). Once €°(4) has been determined
numerically, it can be minimized as a function of
of A

The two leading corrections to € are €,y

=(1/N)Eg,y and €34 = (1/N)Ey,, with the main con-
tributions to these terms involving the nearest-
neighbor clusters.® The corrections are given by

I CAMUAUAT -
c” ,ZJ:( @1 fif10,) <¢1|U1|¢1>> , (17a)

¢ 1 E<<‘p1¢1wz L2 a2 i Vg 1a,)
W2 .;:i (Zplwlwllfuzfuafnz |¢1¢ﬂ/’z>

1#1

AR M
<‘P1¢ﬂf112|¢1¢1> ) i ()

©

b,=U0,)=2 c“c“'f dz, M (z,)M""(z,)
W' .

XU, z,). (18)

V. RESULTS, CONCLUSIONS, AND REMARKS

For the sake of convenience, the energy origin is
chosen to be E,, the ground-state energy of a sin-
gle adatom in the laterally averaged substrate po-
tential

U(2)=(1/9) [ [ & U, 2), (19)

with @ being the area of the unit cell. One advan-
tage of using E, as the origin is that the results are
then relatively insensitive to changes in the helium-
carbon Lennard-Jones parameters. Changes in g,
as large as 30% do little but change the value of E,.
Using the method of Sec. II, E,is - 149.1 °K for
He® and - 155. 8 °K for He*, Subtracting E, from
the results of Sec. III, the ground-state energy of
the single adatom in the potential U(F, z) is — 0.3 °K
for He® and - 0. 5 °K for He?,

For both the “3” and “4” superlattice states of
He!, E, given by Eq. (12) is not very sensitive to
changes in the variational parameters A and B. In
part, this is due to the competition of the “lateral”
and “substrate” contributions to E,. The Ey, and
the Ey,, terms combine to increase as a function of
the parameter A, while the Ey, term decreases.
The lack of sensitivity to variations in B is caused,
in part, by the increased value of A with the poten-
tial U(F, z) as compared to the potential U(z). Nu-
merical calculations show that 15% variations in A
and B about their optimum values cause less than
0.1 °K changes in E,.

For the “}” superlattice state, which has an
areal density p=0.0641 A%, the value of A which
minimizes E; is 40% larger than that value obtained
by replacing U(T, z) by T(z). For the “}’ state
(areal density 0.0481 A-?) the increase is 30%.

This shows the localization effect upon the adatom
due to the substrate potential. Furthermore, this
increase in the value of A causes a very slight but
significant decrease in Z, the average distance of
the adatom from the surface. This slight decrease
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TABLE III. Ground-state energies.,

Areal density Energy per adatom
(A2 K)

He! (Ey=—155.8°K)

Ideal gas 0.0 -0.5
Superlattice (X,=3)  0.06407 0.0
Superlattice (X, =% 0. 04805 +0.6
Liquid state 0. 06407 +0.6
Liquid state 0. 04805 -0.3
Liquid state 0. 036 -0.6

He® (E,=-149.1°K)

Ideal gas 0.0 -0.3
Superlattice (X,=3) 0.06407 +3.4
Superlattice (X,=3  0.,04805 +2.6

in z results in about a 0.4 °K decrease in E,. Sim-
ilar effects occur for the “}” superlattice state,
The He* ground-state energies, listed in Table III,
are 0.0 °K per adatom for the “}” superlattice state
and 0. 6 °K per adatom for the “}”’ state. The in-
crease in energy upon decrease in density is a re-
flection of the extent to which the higher-density
state is able to take advantage of the periodic sub-
strate potential. Table IV lists the appropriate
values of A and B. The parameter a in that table
is the helium-helium nearest-neighbor distance.
Rough estimates for the ground-state energy of
the adsorbed He* liquid can be made by using a trial
wave function in which the liquid ground state is
totally uncorrelated with the substrate. Thus ¢3¢

is written

N
wi=T (eI 6w, (20)
i=1 \ v 1<j<iin
with 7(r) being the Jastrow factor used in the two-
dimensional liquid ground-state calculations®!? and
the vector C’ is to be determined variationally.

The calculation of the ground-state energy per ada-
tom for the ¥1!? of Eq. (20) and the Hy of Eq. (1) is
simply the sum of two terms, since Eq. (12) still
applies. The first term is the ground-state energy
of a strictly two-dimensional He? liquid, and the
second is E,, the ground state of a single adatom

in the potential T (z). The evaluation of the first
term is given in Ref. 9 for the standard Lennard-
Jones helium-helium interaction. In view of the
difference in interatomic potentials and the lack of
substrate correlations in Eq. (20), any comparisons
between the liquid state and the superlattice state
can only be taken as suggestive, However, with
this reservation in mind, the results of Ref. 9 give
an energy per adatom of — 0, 6 °K for p=0.035 A2,
- 0.3 °K for p=0.0481 A2, and +0, 6 °K for p
=0,0641 A2, These values complete the He? sec-
tion of Table III.

CLUSTER EXPANSION FOR SUPERLATTICE...
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The results tabulated in Table III do indicate spe-
cific stability conditions for the He® film. Both su-
perlattice states have a higher energy per adatom
than the adsorbed ideal gas, indicating that they are
not self-bound and can only exist under pressure.
On the other hand, the liquid calculation for p
=0, 035 A2 is highly suggestive of this state being
self-bound on the substrate surface, but at this
point, the 0.1 °K difference between the gas and the
liquid must be considered within the “noise” of the
calculation. The comparison of the superlattice
states to the liquid states suggest that the “3” state
is stable to melting, but the “}” state is not. Thus
at p=0.0481 A2, the liquid state seems energeti-
cally favored, but at p=0.0681 A2, it is the super-
lattice state which is so favored, However, the ten-
tative nature of the comparisons with the liquid cal-
culation must again be emphasized, and more de-
tailed comparisons must await a liquid ground-state
calculation with a better interatomic potential and
some estimate as to the substrate correlation in the
liquid state, What is quite noticeable from the cal-
culation is the small differences in energy for den-
sities below 0,068 A%, and this effect can be seen
in the experiments.!” Tables III and IV also list the
relevant values for He® superlattice and single-ada-
tom states. The behavior is quite similar to He®,
Comparisons with liquid-state calculations are not
made because of a lack of such calculations for the
fermion system.

Because of the small energy differences between
the states, the stability of these states may be af-
fected by many-body corrections to the helium-he-
lium interactions. For example, adatom-phonon
interactions can increase the attraction between he-
lium atoms by about 1 °K.2! The dielectric
effect of the substrate may also be of this magni-
tude.? To show the sensitivity of the calculation
to such effects, if the ground-state energy of the
“3” state is recalculated with an ¢, increased by
25%, this state becomes self-bound. Also, along
similar lines, the summation of two-body potentials
to obtain the adatom-substrate potential of the heli-
um-graphite system is only a model of the actual
substrate potential, although a commonly used one.
If the actual shape of the substrate potential is very
different from the result of such summations, this

TABLE IV. Wave-function parameters for the superlattice

states.
Ad® B
He! X,=3% 51 0. 07
X, =% 34 0.09
He® X, =3 46 0. 06
X,=% 31 0.07
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could also affect the stability., The sensitivity of
the calculation to these effects is caused by the
smoothness of the substrate potential, so that for
the superlattice states there is a delicate balance
between the substrate effects and the adatom-ada-
tom effects.

Calculations for the bulk helium solid show that
the effects of the higher clusters are small., In
view of the fact that these effects can be expected
to be smaller for the superlattice states, and with
the many-body corrections to the helium-helium in-
teraction not yet fully assessed, it is not worth-
while to fully explore the remaining cluster terms.
There are three main reasons why these remaining
cluster terms are smaller here than in bulk,

First, because of the two-dimensional nature of the
adsorbed state, there are simply fewer neighbors of
a given adatom, causing the higher clusters to have
a smaller weight than in bulk. Second, the inter-
atomic spacing for the superlattice states is larger
than that in bulk, and the cluster expansion is known
to converge faster for lower densities. Third, the
substrate potential causes a narrowing of the sin-
gle-particle Gaussians, and this also increases the
convergence of the expansion,

The two main improvements in the bulk-solid
calculation are the replacement of II,¢; by a corre-
lated Gaussian function and the use of a f-matrix
approach for the calculation of f(»).%-% In the bulk
solid, the correlated Gaussian form can be argued
on the basis of the translational invariance of the
basic Hamiltonian. Thus the correlated Gaussian
corresponds to a Debye model of zero-point motion
as opposed to an Einstein model. Since the sub-
strate potential breaks the translational invariance
of the basic Hamiltonian, these arguments cannot
be used, and it might be expected that the Einstein
model for ¥, has more validity for the superlattice
state than it does for the bulk solid. The effect of
the form of f(r) would also be expected to have less

effect for the superlattice states because of the
narrowing effect of the substrate potential. In par-

ticular, it is known that the Nosanow form for f(7)
is not adequate to describe the very small 7;; be-
havior of ¥, but this is just the region whose im-
portance is decreased by the narrowing effect.
However, exact quantitative effects can only be de-
termined by explicit calculation.
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APPENDIX A

Two approximations in the lattice sum for U(Y,
z) are used. The effects of both approximations,
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tested numerically against the limit of Eq. (6),
are found to result in errors which were less than
0.1 °K for all regions of space where the helium
wave functions are not negligible.

The first approximation is the treating of all
basal planes except the first or surface plane as
two-dimensional continuums, The sum over car-
bon atoms in a lower plane becomes an integral
which can be evaluated analytically.® The second
approximation is the truncation of the sum over all
carbon atoms in the first plane such as to include
only those carbon atoms within a distance p,. The
contributions of the remaining carbon atoms in the
first plane are calculated via the continuum ap-
proximation. The final result for U(T, z) is

o0 2wl (3]
() -os(2)

B o () o) 1}

Al
with a being the basal-plane carbon-carbon nezELr-)
est-neighbor distance and 7 the distance between
basal planes. The values for these parameters
are ¢=1.415 A, 7=3.50 A, and p,=10.32 A.

APPENDIX B

The basis set M¥(z) is the set of bound-state
solutions to the Schridinger equation for the
adatom (mass ) in a Morse potential?®

Um - D(e-%(z-zo) _ ze-B(z- zo)) , (Bl)

with D, zy, and 8 chosen in such a manner that
ap=(2/B) @mD/n?)'? ~1 is a positive integer. In
particular, a, is fixed at some convenient value,
with D and z, adjusted so as to minimize the
ground-state energy of the adatom in the potential

U&= W/9) [ [, a% UG, 2) (B2)

with @ being the unit-cell area, Tests for the ef-
fect of the finite basis set can be made by increas-
ing ag. The basis set so determined for the cal-
culations in Sec. II are defined by the parameters

D (OK) Z2p (A) Qg

He® 322.0 3.19 12
He! 312.3 3.115 12

The energy spectrum for these states is given by

2v—-1

EV=-D<1-—
a0+1

2
) y V=l"'i1+%ao-
(B3)

The numerical evaluation of any matrix element
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involving

. 02
(MY ()| Py | m¥(2))
is achieved via
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-7
2m

. 92 ,
<Mv I glMu>=Eu5W

(M| U 2)|M¥y .  (B4)
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Scaled Particle-Quasilattice Model of Liquid Water™
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A quasilattice model for liquid water is formulated which in first approximation is based on the ice VII
and ice Ic structures. Values of the work required to create a molecular vacancy are computed from the
observed density and scaled particle theory of liquids. The isothermal compressibility of water is computed
and is in good agreement with experiment. A modified Stokes-Einstein relation for the nuclear relaxation
time is shown to give good agreement with recent deuteron relaxation data.

As is well known, ! liquid water exhibits anoma-
lous characteristics in density and compressibility
versus temperature as well as other unusual phys-
ical properties. The temperature dependence of
density, isothermal compressibility, and rotational
correlation times of most liquids may be reason-
ably well accounted for by a simple quasilattice mod-
el of the liquid state in which it is assumed that the
short-range structure of the liquid is face-centered
cubic with molecular vacancies.? However, water
has a decidedly tetrahedral structure as was clear-
ly shown in the recent molecular-dynamics calcula-
tions of Rahman and Stillinger.3 In the present
work we propose that in zeroth approximation a
suitable quasilattice for liquid water is the body -
centered-cubic ice VII structure with molecular
vacancies. We will compute the density p of the

liquid from the density p, of the hypothetical ice
VII quasilattice and the probability p, of a molecu-
lar vacancy as follows?:

p=ps(1-p,) . )

In Eq. (1), p, is equal to e™*/*T where w is the
reversible work required to form a vacancy of mo-
lecular dimension. w is conveniently calculated
from the scaled particle theory of liquids? in which
w is expressed in terms of temperature (T), pres-
sure (P), number density (p,), and cavity radius
(7#) as follows:

w(r)=4% 173 P+Ky+417%0,(1 - 26/7) , 2)

where K,, o, (surface tension), and 6 are ex-
pressed as a function of 7, P, and p, in Ref, 4(b).
Equation (2) is valid for 7> 0, where o is the colli-



