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The behavior of interacting electrons is dominated by the Coulomb repulsion in the limit of zero
interparticle separation. Hence, in this limit the derivative of the two-particle correlation function is

equal to the two-particle correlation function itself divided by the Bohr radius. Because correlation
functions can be obtained from linear-response functions, the relation between the correlation function
and its derivative can be used as a criterion for the validity of approximate linear-response functions,
Some of the more familiar dielectric functions and spin susceptibilities are discussed in this context. For
these response functions it is shown that the electric and magnetic response should approach the same

(q -00) asymptotic limit.

A gas of interacting electrons imbedded in a
uniform positive background is an unsolved theo-
retical model of a real metal. A great deal of in-
formation on the properties of this model could be
obtained from a knowledge of its linear-response
functions. ' The ground-state energy, plasmon
dispersion relations, correlation functions, and
the compressibility can all be obtained simply
from the dielectric function.

The electron gas (at zero temperature) is charac-
terized by one parameter —the density. For very
high densities, a simple approximate self-consis-
tent calculation of the dielectric and magnetic re-
sponse, the random-phase approximation (RPA),
is expected to give accurate results because the
kinetic energy is dominant. For an electronic
density corresponding to the conduction-electron
density in real metals, corrections to the RPA are
believed to be important. These "exchange and
correlation" corrections cannot be calculated
exactly, but a number of approximate expressions
for these corrections have been. suggested.
There are a number of checks on the validity of
approximate response functions, including oscilla-
tor-strengthsum rules and the compressibility
sum rule.

%e wiQ show that simple physical arguments
on the form of the two-particle correlation func-
tions can be used to obtain a criterion for the
validity of linear-response functions. For sim-
plicity the dielectric function will be discussed first
and the generalization to the magnetic (spin) re-
sponse function will follow.

As has been frequently emphasized, a dielec-
tric function should yield a positive two-particle
correlation function g(r). Physically, g(r) is
proportional to the probability of finding two par-
ticles separated by a distance r. This function
is normalized so thatg(x)-1 for large I . We
would like to point out here another condition which
g(r) should satisfy. This condition is

() ()9g ~ p Qp

where ap is the Bohr radius. This relation follows
because when two electrons approach sufficiently
close to each other, the pair wave function" g(r)
and the pair correlation function which is propor-
tional to lg(x) I are determined by the solution to
the two-particle Schrodinger equation

s' s'

For simplicity, it is assumed that the two elec-
trons are in a relative s state. Higher angular-
momentum terms in g(r) do not contribute to g(r)
or g'(&) as & approaches zero. The symbol 8
represents a complicated operator, but as long as
it is bounded it does not influence the results.
The mass p, is & the electron mass because r is
the relative separation of the two electrons. Ex-
palldlIlg lJ)(r) 111 a poweI' sel'les iI1t'

g(x)=a+br+. . . ,

and eIluating terms diverging like 1/r as r-0 on
the left-hand side of EIl. (2),

—(li'/p) b+e'a= 0,
leads to

((x) = 1+ (1/2ao) r
and since g(r) is proportional to g*(r) g(r),

A more formal discussion of this result is pre-
sented in the Appendix.

The derivative of g(r) at r = 0 determines the
large-q limit of the structure factor S(q). Since
S(q) can be obtained from the dielectric function,
this asymptotic limit and EIl. (1) can be used as
a criterion for the va1.idity of approximate dielec-
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tric functions. The pair correlation function is
given by

I -g(r) =
o q sinq~ [1—S(q)]dq, (6)

3
2'vg p

0

where qz is the magnitude of the Fermi wave vec-
tor. When q is large, 1 —S(q) can be expanded in
powers of 1/q . The constant and 1/q terms must
be zero if g(x) is to be finite. The following equa-
tions define 3(q), a function which goes to zero
like 1/q for large q:

V,«created by the polarization potential:

V.ff(q, ~)=[I-G(q, ~)]V,.i(q, ~) .
The induced potential is then given by

V,.i = —(Vo+ V.sr) v, Xo (14)

The dielectric function &(q, ~) is defined as the
ratio of the externally applied potential to the total
potential:

Vo/e = Vo+ Vp, g,

8 (q) = 1 —S(q) —o'/(I+q ) (7)
which means that

where

o. =iim(q'[I-S(q)]} as q- (8)

Using Eq. (6), the pair correlation function is then

; Iim(q'[1 —S(q)]}.
) 8qz

From Eq. (1) we obtain the self-consistency rela-
tion between the large-q limit of S(q) and g(0):

g(0) = oo lim fq4[1 —S(q)]}.
8g y' q woo

The following is a review of the dielectric func-
tion with emphasis on the general analytic struc-
ture. Approximate forms of this linear-response
function and the implication of Eq. (11)will be
discussed later. Neglecting electron- electron in-
teractions, the polarization of an electron gas re-
sulting from a small externally applied potential
Vo(q, &o) can be calculated from perturbation
theory. This polarizability is

1 g f(k) —f(k+ q)x(, )-~
where N is the number of electrons, f(k) is a Fer-
mi function for an electron with wave vector k, and
E- is its energy. The electrostatic potential result-

k
ing from this polarization is V„,=e, Vo Xo, where
v, = 4oe /q . Interactions among the electrons
lead to further response of the electron gas to the
potential produced by its own polarization V„, .
However, the electronic response to the induced po-
tential is not simply V „Xo, because the electrons
tend to avoid each other. Instead, the electrons
can be viewed as responding to an effective potential

3 7l'Q ~ 3I-g(~) =, e "+, ~ qsinq&S(q)dq.
8 gg 2'Agp "0

(9)
The rapid convergence S(q) means that g'(x) can
be obtained by explicitly differentiating the first
term on the right-hand side of Eq. (9) and adding
it to the second term, which can be obtained by
differentiation within the integral sign. For r= 0,
this second term is zero, andfrom Eqs. (8) and (9),

v. Xo(q, ~)
1-G(q, ~)v, Xo(q, ~) ' (16)

/
G(q, ~)=-I

\ &(q, ~) —1 eRpa(q ~) 1)
(17)

using Eq. (16) and the definition of E'Rp„. Since
&(q, co) —1 is analytic and nonzero for Im(&u) &0,
its inverse must be analytic as well. G(q, &u) is
then the difference of two analytic functions and

so must be analytic in their common domain of
analyticity —the upper half of the complex & plane.
For large , both dielectric functions can be
written as a power series in I/u& and for both di-
electric functions

e(q, &u)- 1= —~~/ '+0(1/&o'), (18)

where ~ is the plasma frequency. Substituting
the expansion of Eq. (18) into Eq. (17), we have

G(q, ~)=G'(q)+S(q, ~), (19)

where G (q) is real and g(q, ~)-0 for ~-~. These
analytic properties of G(q, co) allow a causal inter-
pretation of the relationship between the polariza-
tion potential V„& and the effective potential V,«
mentioned earlier.

Approximations are necessary in order to obtain
actual values for the dielectric function. As was
mentioned, G(q, &u) is assumed to be zero in the
RPA. Most approximate forms for G(q, v) which
are numerically tractable assume that G(q, &o) is
frequency independent:, G(q, ~)-G(q). The "op-
timum" G(q) may not be the G (q) of Eq. (19).

Calculating G(q, &) is, of course, the major diffi-
culty. In the random-phase approximation (RPA),
G(q, &u) = 0 and &Rp~(q, ~) = 1+v, yo(q, &) because
the electrons are assumed to respond in the same
way to the potential produced by the induced polar-
ization as they do to the external potential.

As a function of &, the analytic properties of
G(q, to) are similar to those of e(q, ~); it is analytic
in the upper half of the complex plane and is bounded
as ~-~, and G*(q, —~*)=G(q, ar). This follows
because both dielectric functions have these prop-
erties along with the additional property that
e(q, &u) —14 0 for Im(&) &0. We write G(q, &u) as
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Perhaps the best-known approximations of this
type are those of Singwi et al. , in which V,«and
V„& are related to each other through the correla-
tion function g(v). If it is assumed that G(q, &u) is
independent of frequency, it is relatively easy to
calculate S(q) from the dielectric function, and the
self-consistency criterion of Eq. (11) can be ap-
plied to find the asymptotic form of G(q).

The structure factor is given as a frequency in-
tegral of the imaginary part of the inverse di-
electric function

-32 ""
S(q) = z z Im der . (20)28 Q'g „ CO

0

Only yo(q. tu) has an imaginary part if G(q) is
frequency independent. For large q, yo(q, &) is
complex orQy when

8'I' hqqz kq' Kqq~
2 vl 2&L 2' 2'

assuming e~= (h&) /2m. The condition that
q [1—S(q)] approach zero for large q [see Eq. (6)
and following comments] will be satisfied only if
G(q) does not diverge for large q, and if G(q) does
not diverge, the denominator of

Xp&.
e(q, a) 1+ (1 —G)yov,

can be expanded in a power series in 1/q'. To
order 1/q4 the frequency integrals can be done, and

we find

jected to the same potential with the opposite sign.
Neglecting interactions, the magnetic polarization
of the electron gas is related to the external po-
tential by the same polarizability [yo(q, &u)] which
determined the dielectric response. The resulting
magnetization is

~(q, ~) = i.'Xo(q, ~)B(q, ~) . (23)

G (q, ~) = —,
'

[G~(q, ur) + G,(q, ~)], (24)

where the subscripts Q for parallel and a for anti-
parallel) denote the relative spin orientations of
the electrons producing the effective potential and
the electrons experiencing that potential. The
functions G~ and G, need not be the same. The dis-
tinction between G, and G& becomes important when
calculating the magnetic response because the in-
duced effective magnetic field is proportional to
the difference between these two functions:

B,« = GM/p2, (25)

When electron-electron interactions are included,
this magnetization leads to an effective magnetic
field B,«. The effective field arises because spin-
up electrons respond differently to the (spatial)
polarization of spin-up electrons than they do to
polarization of spin-down electrons. When calcu-
lating the dielectric response it was not necessary
to distinguish the effects of parallel and antiparallel
electrons on each other. However, the function
G(q, e) could have been written as

1 —S(q) = ~ [1—G(q)] + 0Sqp 1
3 7TQpg lg

(21)
where

G = z (Gp- Ga) .

g(0)=lim[1 —G(q)] as q-~ . (22)

Combining Eqs. (11)and (21) the final form of the
self- consistency condition is

The total magnetization is

~ = V'Xo(B+Ba~),

which leads to

(2V)

A realistic calculation of the magnetic suscep-
tibility of an electron gas is more difficult than the
corresponding calculation of the dielectric function
because of the Lorentz force. We will discuss
here only the effect of the magnetic field on the
electron spin and ignore spin-orbit interactions.
There is no clear proof that this "spin susceptibili-
ty" is a good approximation to the total magnetic
response of interacting electrons, because the
Landau-Peierls orbital diamagnetism has been
neglected.

When only the interactions of the spins with the
magnetic field are considered, the calculation of
the susceptibility is closely analogous to the di-
electric calculation. An infinitesimal external
magnetic field B(q, ~) is directed along the z axis
and produces a spin-dependent potential. Spin-up
electrons are subject to an external potential
Vo, (q, ~) = iJ.,B(q, ~). (p, is the magnetic moment
of the electron. ) Spin-down electrons are sub-

2 XpX= Pe ) G
~ (26)

g(&) = -'[g&(~)+g.(~)] . (29)

Because of the Pauli exclusion principle, g&(r) and
sg~(x)/&r vanish as x approaches zero and
g(&)- —,'g, (r). A Fourier transform of the magnetic
structure factor S(q) yields the two-particle spin

As was the case for the dielectric function, the real
difficulty lies in obtaining an appropriate form for
G(q, ~). This function has the same analytic prop-
erties as G(q, &u) and can also be viewed as a caus-
al response function.

En order to relate the magnetic spin susceptibility
to the pair correlation function, the spin directions
must be explicitly noted. The function g(x) defined
earlier is actually the sum of pair correlations
between electrons with parallel and antiparallel
spins:
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correlation function
p 00

g(r) = z
~

q sinqr [S(q) —l]dq,2' g
0

where

8'(~) = [S (~) -8' (~)]

(30)

and the magnetic structure factor can be obtained
from a frequency integral of the imaginary part of
the spin susceptibility:

8(q) = q 2
~ Im[X(q, ur)]d(o, (32)

weqs .~

0

As was done for the dielectric function, we
examine the implications of the standard approxi-
mation in which G(q, &u) is assumed to be frequency
independent, G(q, &o)- G(q). If this approximation
is made, the large-q limit of S(q) can be obtained
from an expansion of X(q, e). This leads to

I-S(q)=- '
4 G(q)+o~

8q~s - ( I,

moq4
(33)

As in the dielectric case, the asymptotic form of
S(q) determines the short-range limit of the spin
correlation function:

~(0) =
8

' »mfq'[I-&(q)]),
8 q2

so that

g(0)= —lim[G(q)] as q-~ .

(34)

(35)

X/l4 Xo
~((&- I)/&, I-zo(0)~, XO

' (38)

The large-q exchange enhancement" is given sim-
ply in terms of the zero-range two-particle corre-
lations.

Shaw' has derived the relation between g(0) and
G(~) [Eq. (22)] by utilizing an approximate dielec-
tric function proposei by Singwi et al. Our Eq.
(37) is a generalization of Shaw's result. Qver-
hauser used this asymptotic condition in his sim-
plified dielectric function. Vashista and Singwi
have argued that since Shaw's derivation was based

Combining Eq. (35) with Eq. (22), and considering
parallel and antiparallel spins separately, we have

Zp(0)=1 —Gp( ), Z.(0)=1—G.(") .
The restriction that g~(0) = 0 means that

Gp(") = 1

(37)

G.(")= 1 —2Z(0) .
Finally, we note that the assumption that G(q, &u)

and D(q, ~) are frequency independent implies that
X/p,

' and (e —I)/~, approach an identical large-q
limit which has an intuitively appealing form,

on a particular approximate dielectric function,
his results would not be true in general. We have
shown here that Eq. (22) should be satisfied by
any approximate dielectric function for which

G(q, &u) is assumed to be independent of &u if g(x)
is to have the right properties at &=0.

Of those approximate dielectric functions which
ignore the frequency dependence of G(q, &u) (most
notably the RPA, the Hubbard approximation, and
the various approximations of Singwi et al. ), only
the first two approximations of Singwi et al. satis-
fy the condition of Eq. (22). Although we consider
this point to be in favor of these two approxima-
tions, it should be remembered that these schemes
have some other difficulties. In particular, g(x)
itself is negative for small & and moderate or low
electron densities.

In recent times there has been some controversy
over the merit of various response functions.
Clearly the assumption that G(q, (u) and G(q, &u) are
frequency independent will eventually lead to in-
consistencies. One such inconsistency can be seen
by noting that the large-q limit of G(q, &u= 0) has
been calculated by Geldart and Taylor and

Rajagopal. ' This quantity is equal to 3. On the
other hand, if G(q, &u) is assumed to be frequency
independent, then our self-consistency condition,
Eq. (21), requires that G(q-~)= I-g(0), which is
always between & and 1 and is never 3.

Observable quantities such as the plasmon dis-
persion relations are influenced by the frequency
dependence of G(q, ~) and calculations of this fre-
quency-dependent effect using a variational form
of dielectric function show that it is not small.
We speculate that in the future our knowledge of
response functions will progress significantly only if
thefrequencydependenceof G(q, &u) andG(q, &u) is
accepted as an unpleasant necessity.

The author thanks Dr. A. K. Bajagopal for a
number of fruitful suggestions and for a careful
reading of the manuscript.

APPENDIX

In order to justify the results from Eq. (2), we
write the total wave function with the coordinates
for two of the electrons written in center-of-mass
coordinates:

( = g(x, R, x3, x4, . . . , t'„),
1 l~) = B+ g'Y,

In terms of the sarge coordinates, the total Hamil-
tonian is

H =Ho+H~,

e2
Ho ——— V„2

2p,
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h 8
a' "

2
Hq ——— V„— Z V„

4m ~ 2m, ,
1 1

+ e'Z~
, ~ iiy, —(R + r)l -[r; —(B —-r)l)+ 1

2" 1+e' Z
I&; —&g I

A density matrix p(r, x') is defined as

p(., ~ ) ~( (., R, .„.. . , .„)

xg(&', R, ~„.. . , ~„)d'R g d'~;
1=3

and the correlation function is

z(~)= p(~, ~) .
Since

e3
l~ Rw 3) ~

[
S ~

This term is finite because the three-particle cor-
relation functiong(x„x2, x3) does not diverge.
g(&„&2, &q) is proportional to finding particles
simultaneously at the points &&, &„atid r3:

lim, (*(r, R, x„.. . , r„),
0

x g(~', R, r„.. . , ~„)d'R g d'~,
f =3

=
~ g(xq, r~, r~, x4), d lsd ~

This term is also finite because the four-particle
correlation function is finite. The kinetic-energy
terms also should not diverge. The integrals

—Sv'~
lim l (*(r, R, x3, . . . , x„)

' ((*Hg)d3R g d'r; -=H(x') p(x, x') =Ep(x, x')',
5=3

Ho(&') p(&, &') = [E-H ~(&')l p(~, ~')

lf H~(r') p(x, r') does not diverge as x and x' go to
zero, the divergent terms on the left-hand side of
the above equation can be equated, and Eq. (l) will
be obtained. It suffices to show that individual
terms from the Hamiltonian do not diverage:

P 2

x g(~', R, ~„.. . , ~„)d'R g d'r,
4-"3

and

x q(~', R, ~„.. . , ~„)d'R f[d'~;
i=3

h2
lim

~

g*(~, R, ~„.. . , ~„) — V„'

x ((x', R, x, . . . , x„) d R g d'x,
1=3

are finite if the mean center-of-mass kinetic en-
ergy of two particles remains finite when they are
close together, and if the mean kinetic energy of
a third particle remains finite when two other
particles are close together. On physical grounds
we are convinced that these conditions are satisfied.
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