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The ground-state wave function for a quantum electron gas is approximated by /=4&D, where D is

the ground-state ideal-gas wave function and 4 = exp, [—(/2)Z, .&.u(r. .)] . Three-body correlation
functions in the energy are approximated so that the energy is a functional of only pair-correlation

functions. The variational principle is applied by utilizing the functional derivative of the

pair-correlation function with respect to u(r). The three- and four-body correlation functions in the

functional derivative are approximated in a consistent manner. Use of the Kirkwood superposition

approximation for the many-body correlation functions in the functional derivative gives unphysical

results. A new approximation to the functional derivative is obtained by using the convolution

approximation for the many-body terms. This gives a reasonable result for the asymptotic form of the

wave function. The hypernetted-chain functional derivative combined with the convolution

approximation for the energy gives the same asymptotic form, When the random-phase approximation

to the energy is used with the Gaskell-Broyles-Sahlin —Carley functional derivative, the equation may
be solved analytically, giving the same result obtained by Gaskell. The asymptotic form is the same

as the two previous methods, namely, u-(e/h)(m/np)'f tr.

I. INTRODUCTION

We will assume the wave function for the ground-
state electron gas is of the form

14=Dexp —— u x&&2

where D is the wave function for an ideal gas of
spin- —,

' fermions and u(r) is a real function to be
determined. In the thermodynamic limit, the en-
ergy is given by Eq. (2. 21) of Ref. 1;

(1.2)
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where o(=ff'/2m, Er is the ideal-gas energy, v(r)
= es/r, G =g- 1, and the n-body correlation function
is defined by

f f +*+dr,+t . dFF
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Several variational calculations' have been
made with the trial wave function in Eq. (1.1).
While diverse approximations were employed in
the calculations, most authors'~ restricted the
wave function by using a parametric form for u(r).
One purpose of this paper is to explore the result
of allowing arbitrary variations of u(r). At the
same time, we will be investigating the adequacy
of various approximations to the many-body corre-
lation functions.

The Euler-Lagrange equation for the ground-
state wave function may be obtained by taking the
functional derivative of the energy with respect to
u(r). To do this, the functional derivatives of the
two- and three-body correlation functions are
needed. Lee and Broyles' have derived the exact
expression,
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The over-all sign is different from that of Lee and
Broyles, because their u(r) is defined as the nega-
tive of ours.

Using their method, one may also derive the
exact functional derivative of g "':
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Since the latter functional derivative is so com-
plicated, even for n=3, we will only consider the
alternative of directly approximating g ' in the en-
ergy so that it is a functional only of pair-correla-
tion functions; then, only Eq. (1.6) is needed to
obtain the Euler-Lagrange equation. Thus, ap-
proximations are needed for g"' and g' '. It will,
generally, be impractical to solve the equations
which will be obtained; however, it will be possible
to obtain some information about the wave function
from these equations. In particular, we shall as-
sume that for very large particle separations

u(r) a/-r (1.8)

N

5V= - 5u(r)dr .cur (1.10)

If we consider a variation which is the same for
all r, 6u(r}=e, then Vis unchanged. Hence

and shall obtain the value of the constant from the
Euler-Lagrange equation. It will be necessary to
assume that G(r)= g(r) lis-short ranged, i. e. , it
falls off at least as fast as r for large x; but, it
will not be necessary to assume any particular
asymptotic form for G(r). We will also obtain the
slope of u at the origin under the assumption that
for small r

u(r)- (const)+ br .
The Kirkwood superposition approximation

(KSA) will be used in Sec. II. In Sec. III, the con-
volution approximation ' (CA) to g~" and g' ' will
be used to get the functional derivative and the
asymptotic form. In addition, an approach employ-
ing the random-phase approximation' (RPA) and
the Gaskell-Broyles-Sahlin-Carley (GBSC) for-
mula ' will be presented in Sec. IV. In this case,
an analytic expression for the Fourier transform of
u(r) will be obtained. In Sec. V, the hypernetted-
chain (HNC) functional derivative is combined with
the CA to the energy.

Before any approximations are made, two rela-
tions will be obtained, which are satisfied by the
exact functional derivative. These will be useful
in testing and understanding the approximations
which will be considered in later sections. The
change in potential energy V due to an arbitrary
variation 5u(r) away from any function u, (r} is

d —0
5u(r) )„,

(l. 11)

Similarly, from Eq. (1.5), g(r) is unchanged under
such a variation:

5g(r»)
eu(r)

(1. 12)

Note that the functional derivative given by Eq.
(1.6) satisfies this relation.

II. KIRKWOOD SUPERPOSITION APPROXIMATION

The KSA for g'"' is given by

g'")(ri, ",r.)= ~ g(r&, )
$& J&n

(2. 1)

. Applying this approximation, with n =3, to Eq.
(1.3) gives'

fO td rE=E,+ —,'p G(r)v(r)dr+ —,'np g(r)( d
dr

dr

+ 4o)p
~
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Using the KSA for g' ', g' ', and g ', one can
obtain an approximation to the functional deriva-
tive'

5g(r„)
5u(r)

= —g(r)5(r —r») —2pg(r)g(ri~)G(r —r») .
(2.3)

Becker' took the functional derivative of the en-
ergy, given by Eq. (2. 2), and utilized Eti. (2. 3) to
obtain an integrodifferential equation for u. He
then obtained the asymptotic form of u. Unfortu-
nately, his treatment contains several errors;
the most serious of these involves a sign error in
obtaining his Eq. (41) from Eq. (37). When the
correct sign is used, the final result for the
asymptotic form of u(r) is

u(r ) +i (e/5 )(-m/mp)'t2/r . (2. 4)

This imaginary result is unacceptable. The impli-
cation is that the KSA has made the Euler-Lagrange
equation inconsistent.

Let us now examine this calculation in more
detail. The KSA to the Euler-Lagrange equation
for u may be written

2 4——g(r)v (r) ——pg(r) ' v(t)g(t)G(r —t )dt —2V ~ Q(r)[Vu(r) y J(r)])t -g(r)Vu(r) ~ [Vu(r) + 2J(r)]

- 2pg(r) g(t)G(r - t )Vu(t) ~ [Vu(t)+ 2J(t)]d t —pg(r) X'(I+ 2pG)+ 2pG(k) ) = 0,-p - - I* X'(k-1)G(l)d I
21r

(2. 5)

where

(2. 6)
J(r) = V„[pX(n)G(n)/O ]',

and the tilde and the superscript J' denote the

(2. 7)
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J(r)-- Vu. (2. io)

It can then be shown that for large r only the
first, second, and last terms of Eq. (2. 5) con-
tribute to order r"', the other terms fall off at
least as fast as r . Furthermore, the integral in
the last term is finite at k = 0 and does not contrib-
ute to this order. Hence, for large r, Eq. (2. 5)
reduces to

2ea 4e 4' 3
+ +p =0

o.r (2. 11)

or

2ea 4mcPp

ar (2. 12)

Solving this for a gives the imaginary result stated
in Eq. (2.4).

To understand why this approximation does not
work, we integrate the KSA to the fuiictional deriv-
ative given by Eq. (2.3) to obtain,

d t =g(r)
~

1- 2p
~

G(f)c(r - t )d t ~ 0.
" 5g(r)

K2A

(2. 13)
Thus, Eq. (1.12) is not satisfied by the KSA func-
tional derivative. .

The first two terms in Eq. (2. 5) are the variation
of the potential energy. As stated in Eq. (2.12), the
sum of these terms is asymptotic to 2e /rar. Since
the sum multiplied by r is finite everywhere, the
integral condition in Eq. (1.11)cannot be satisfied,
because the integral does not converge at large r.
Hence, it appears that the unacceptable error was
in the use of the KSA to calculate the furictional
derivative, rather than in approximating the three-
body term in the energy by the KSA. While this
result indicates that there is a serious problem in
using the KSA functional derivative on the electron
gas, it does not necessarily indicate that its ap-
plication to helium is incorrect. Because the in-
teratomic potential is short ranged, errors in the
functional derivative at large r may not be fatal.

Fourier transform

G(k)= f G(w)e '"'dr. (2. S)

If we assume that G(r) is short ranged and that
u(r)-a/3, then at large 3 the leading terms are of
order r '. The large-r form is determined by the
small-k contributions from the Fourier transforms.
To get the small-k behavior of X we replace g by
unity in Eq. (2. 6) and use a Fourier-transform
identity to obtain

X(k)-ku(k)-4'/k as k-o. (2. 9)

Also, since the pair-correlation function is nor-
malized so that C(0) = —1/p, we find that for large

The slope of u(r) at the origin can be obtained
rather easily. For very small r, the first term
and that part of the third term containing V u
dominate Eq. (2. 5). This gives

2 ea 4g(r) du(r)
3 4 d3. (2. 14)

Hence,

u'(0) =- mea/ffa=- 1/a, , (2. iS)

where ao is the Bohr radius. Note that this result
depends only on the local term in the functional
derivative, i. e. , that part which contains the. 6
function. On the other harid, the approximation to
the functional derivative involves only the nonlocal
part.

III. CONVOI. UTION APPROXIMATION

The CA to g' ' was introduced by Jackson and
Feenberg. It was later' extended to g'4'. %'u and
Chien then stated and proved the approximation to
g~"' for arbitrary n. The CA was derived with the
requirements that the correlation functions be sym-
metric in all of the coordinates and that the sequen-
tial relations be satisfied:

p fg'""'(r„... , r„„)dr„„=(N n)g'"'(r-„. ;., r„).
(3.1)

Even though the KSA does riot satisfy the sequen-
tial relations, in the derivation of the KSA to the
functional derivative it was assumed that

gK8A /gK8A g / g (3.2)

and then the sequential relation was used with n =4
in deriving Eq. (2. 3). Hence, the CA may give
better results than the K&A. The CA for g' ' is

(3 )g (rl rat 3) g12g13g23 G12G13 23

+ p f C„G„G,4dr4. (3.3)

This approximation has the disadvantage of the re-
sulting g' ' not necessarily being non-negative,
while the KSA to g' ' is always non-negative. In-
serting Eq. (3.3) into Eq. (1.3) gives

E= Ez + —,p G(r) v(r) dr+ ,cap g(r) d
—drdu(r)

dr

py 4mp
~

' Gaa(1+ G12+ G13)V,u, a
~ V,u13 dr, adr13

I 3—o'p
~

~

G G24G34V1u12 ~ V u dr1adr dr
(3.4)

This expression may be rearranged to give a more
compact expression,

E=Ez+-2'otp f Gvdk/(2K) + ,'np f k u Sdk/(2K)—
+-,'up f Gvr VT'dr, (3.5)
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where T is defined by

T=Su

and S is the structure factor,

8=1+pG .

(s. 6)

(3.7)

satisfies E41. (1.12). A more compact result may
be obtained for the double Fourier transform of the
functional derivative:

= —S (k)6(k —1)+G(k- 1)S (l)/(2m) . (3. 15)

The Euler-Lagrange equation can now be ob-
tained by setting the variation of the energy, with
respect to u(1), to zero:

—i(k)+ pk u + VT ~ VTe '"drl2, , " «.„- 6G(k)
Q ) 6u 2v3

21'u(1)S(l)
2 6T(r)+

(2 )3
-2

~ V ~ GVT dr=

where P has been defined as

( )
(3.8)

From the definition of T in E41. (3.6), we find

6T(r) S(l) e"'
+p

"
k

6G(k) e'"'dk
6u(f) (2n)3 ~ 6u(1 ) (2v)3

Inserting this result in the previous equation gives

2l u(l)S(l)- 2S(l)[V (GVT)] + P(k) dk =0,
6u

(s. 10)

u(l) 4@a/l

and, therefore, 4

S(l )-I'/4vpa.

asl 0, (3. I'7)

(s. 16)

The divergence theorem can be used to show that
[V ~ (GVT)] is zero at l=0. Then, the first two
terms of E41. (3. 11)dominate P at small l,

Substituting this result into Eq. (3. 10) gives the
CA to the Euler-Lagrange equation

2l 3u(l)S(l)- S (l)P(l) —2S(l)[V ~ (GVT)]

—S'(l) f S'(k)P(k)G(k-1) dk/(2v)'= 0. (3.16)

We will now examine E41. (3. 16) at small l.
From our assumption about the large-x behavior
of u,

P(k) = (2/n)v(k)+ pk u (k)+ [VT ~ VT]
See/o. +16m a p

l
(s. 19)

—2pu(k)[V ~ (GVT)] . (3. 11).

We now need the CA to the functional derivative
of G, in order to evaluate the last term of E41.

(3.10). The exact expression for the functional
derivative of g, E11. (1.6), contains both g'3' and

g '. The CA expression for g ' contains 58
terms. ' When it is applied to the four-body term
in E41. (1.6), the result is

p f g' '(r„r3, r3, r3+r)dr3= pQg»g(3)-4g»g(4 )

+ 2p[1+ G(r)+ G,3]F(r» r)-
+ p f,3 „[G(r„—r)+ pF(r„—r)]dr3

+4p' ff G14G33G34&(r34 r)dr3dr4, (3. 12)

where we have defined

Hence, the integral in the last term of E41. (3. 16)
is finite at l =0, because the integrand is finite
everywhere and G(k-1) makes it short ranged in
k. Retaining only those terms of order l in Eq.
(3. 16), we obtain contributions from the first two

terms,

2l 2 e2l2 l2 ~0
p 2mnp a p

(s. 20)

(3.21)

Hence, solving for a, we get

a = (e/1)(m/vp)'~',

in agreement with Gaskell and the result from the
effective-potential method of Dunn and Broyles. '4

The variation of the potential energy enters Eq.
(3. 16) through the first term in P(l). At small l,
the leading term is

F =G' and a(~)=G(~)+-,'pF(~) (s. is) —(2/u)S (l) v(l)-0(l ). (3. 22)

Inserting this result and the CA for g43' into Eq.
(l. 6) gives the CA to the function derivative:

6g(r»)
6u(r) g»6(r —r»)-—2p[1+ G(3.)+ G„]H(r»- r)

—4P
~

G13G33 ff(r 13 r ) dr3

31/—2p
~

G,4G33 34 ( 34 r)dr3dr4. (3. 14)

With some tedious but straightforward algebra,
one may demonstrate that this functional derivative

Therefore, the condition of Eq. (1.11) is satisfied,

„l(~(~))a (&~(&) ) -n
(3. 23)

Thus, both conditions on the functional derivative,
derived in Sec. I, are satisfied by the CA.

Tedious but straightforward manipulation of Eq.
(3. 16) for large'l reveals that the leading terms
are of order l . Setting the sum of the coefficients
of these terms equal to zero gives the same result
as obtained in Sec. II for u'(0).
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IV. RPA AND GBSC RELATION

S = 1+p G = SI/(1+ puS, ), (4. 2)

where SI is the structure factor for an ideal Fermi
gas. Then it follows from Eq. (4. 2) that

=- S'(k)5(k- I), (4. 3)

which is the same as the first term in the CA ex-
pression given by Eq. (3.15). Setting the variation
of the energy with respect to u(I) equal to zero then
gives

——pS v+ —
O, pl Su ——'np l S u =0. (4. 4)

This algebraic equation may be solved using Eq.
(4. 2) to give

2vS~

e+ (e +2pevS~)'~
(4. 5)

where & = al . This is the same result obtained by
Gaskell. This is to be expected, since the ap-
proximations appear to be equivalent, but the deri-
vation is much simpler here.

Note that the asymptotic form is the same as that
found using the CA in Sec. III. Also, u'(0) is easily
shown to be the same as that obtained in Secs. II
and III. Furthermore, both conditions on the func-
tional derivative, Eqs. (1.11) and (1.12), are
satisfied.

u=

V. HYPERNETTED-CHAIN AND CONVOLUTION
APPROXIMATIONS

In this section, we will obtain some properties
of u(r) which are directly applicable to a recent
variational calculation, which used the CA for the
energy, Eq. (3. 5), and the HNC integral equation
to obtain g(r). Here, the HNC functional derivative
will be applied to the CA energy expression. The
HNC approximation is'

g(r) eu(r&-u(r) (5. 1)

Variational calculations' have been performed,
using the GBSC relation, to obtain g(r) and the RPA
for the energy. Both of these approximations are
expected to be good only for high densities. How-

ever, this section has been included because, within
these approximations, the Euler- Lagrange equation
may be solved analytically. The RPA' for the en-
ergy may be written'

E= &,+-,' p f G~dk/(2n)'+-, '((.p f k'u'Sdk/(2(T)' .
(4. 1)

Note that this is the same as the CA expression,
except that the last term of Eq. (3. 5) is missing.

The GBSC relation ' is

The Euler-Lagrange equation obtained from Eq.
(3. 5) is given by Eq. (3. 10). It may be written

Q(k) = —2k u(k)S(k)+ 2S(k)[V ~ (GVT)] (5.3)

where we have introduced

Q(k) = P(l) d I, (5.4)
4

with T and P defined in Eqs. (3.6) and (3. 11).
Utilizing the symmetry of the functional derivative,
we may write

r
q(k) = i" P(l) d I .5u(f') (5. 5)

We now require the HNC approximation to Q. This
can be accomplished by applying the same method
as used in Sec. II of Ref. 16 to obtain an integral
equation for Q(k). Equation (5. 5), here, corre
sponds to Eq. (2. 9) of Ref. 16 and P corresponds
to —V* in Ref. 16. The integral equation for Q is
then given by Eq. (2. 11)of Ref. 16,

Q= —S (gP) +S (G[(S -1)Q/S ] ] . (5. 6)

Equation (5.6) must now be solved using the ex-
pression for Q in Eq. (5.3). First examine the
small-k limit. The first term of Eq. (5. 3) domi-
nates at small k. Using the small-k limits of u
and S given in Eqs. (3. 17) and (3.18), we find

Q(k)- —2k /p. (5. 7)

Since the last term in Eq. (5. 6) does not contribute
to this order and g may be replaced by unity, Eq.
(5. 6) reduces to

—2k /p- —k P(k)/16(('p a . (5. 8)

a = (e/k )(m/7(p)'I', (5. 9)

in agreement with previous results.
To examine the small-x, large-k limit, replace

S by 1 in Eq. (5.3). Also, replace T(r) by u(r) and
retain only the V u from the last term. This gives

4g(r) du

r dr

Equation (5. 6) reduces to

q(r) - g(r)P(r), -
but

P(r)- 2e(r)/o(.
Hence, we find

2 du e
X Ch nr

or

(5. 10)

(5. ii)

(5. i2)

(5. ia)

We may now use Eq. (3. 19) for the small-k form of
P and solve for a. We obtain

where

N= pG~/S. (5. 2)

u'(0) = —1/a,
as before.

(5. 14)
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VI. CONCLUSIONS

The KSA to the functional derivative has been
shown to be unsatisfactory for the electron gas.
This is illustrated by the appearance of a long-
range term in the variation of the potential energy,
which should not be present. However, no evidence
has been found to indicate that the KSA to the three-
body term in the energy is poor. Indeed, numeri-
cal calculations indicate that the KSA and CA ener-
gies are in good agreement in the metallic density
region. The combination of the RPA and the
GBSC relation gives an acceptable asymptotic
form; however, these two approximations are gen-
erally limited to high densities. The CA gives the
same large- and small-r results as the GBSC-RPA.
Because of the additional terms present in the CA
formulas, the CA may be valid at lower densities
than the GBSC-RPA. This has been confirmed by
a parametric variational calculation in the metallic
density region of the electron gas.

All four methods give identical values for u (0),
except for the GBSC-RPA; this is because the
local term in the functional derivative is not ap-
proximated. The GBSC-RPA does approximate
this term by replacing g(r)5(r —r ') by 5(r- r ').
However, the energy is approximated by replacing
g(x) in the second term in Eq. (l. 3) by unity.
These two errors cancel to give u'(0) = —I/ao.

The CA, GBSC-RPA, and HNC-CA methods give
the same asymptotic form for u(r). Hence, we
feel that it would be advantageous if parametric
variational calculations were to incorporate these
limits in the parametric form chosen for u(r).
This economy would then allow additional param-
eters to determine the other features of u(r) more
accurately.
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It is shown that the radius of curvature R" of the photon echo is related to the radius of curvature
R of the first pulse and R' of the second pulse by l/R"=2/R' —1/R and yields a focusing effect
for the photon echo.

I. INTRODUCTION

The anomalous response of an atom or molecule
to a sequence of two saturating pulses of visible

or infrared radiation has led to the unusual effect
which is known as the photon echo. ' After the
initial observation of this effect, subsequent ef-
forts were directed toward a studys and an explana-


