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Electron-Impact Ionization of Ne and Ar in the Eikonal and Born Approximations
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Utilizing the first Born approximation and an eikonal/closure approximation plus Bethe's
generalized-oscillator-strength (GOS) formalism, we evaluate s- and p-shell ionization of Ne and Ar.
Partial-wave contributions to the GOS are calculated using an analytic independent-particle model (IPM)
whose parameters have been established in previous work on excitation GOS's. For single ionization of Ne
and Ar shells (E shell excepted), total cross sections and cross sections differential in the energy of the
secondary electron are calculated for electron-impact energies near threshold to 10 keV. The
eikonal/closure approximation which is developed in detail for large atoms differs from the Glauber theory

by not assuming sudden passage of the projectile in which the time dependence of the bound electron and

the energy transfer to the projectile may be neglected. In the single-scattering limit, the theory produces a
simple factor multiplying the usual Born approximation amplitude, which leads to improved agreement with

experiment at low energy.

I. INTRODUCTION

Electron-impact ionization of heavy atoms is an
important process in many applications, e. g. ,
studies of energy deposition in the upper atmo-
sphere and in biological systems. However, the
analysis of heavy atoms is complicated by their
many-electron nature, particularly when one con-
siders scattering theories of higher sophistication
than the often used Born approximation.

The many-body nature of the atom is approxi-
mated in the present work by an independent-parti-
cle model, a technique which is often used in the
study of large nuclei. ' A series of studies has
established a simple independent-particle model
for atoms in which a two-parameter analytic poten-
tial approximates the common attraction binding
all electrons to the parent ion. One-electron (oc-
cupied) energy levels are accurately computed in
this model based on suitable values of the two pa;
rameters and reasonable elastic differential scat-
tering cross sections ' have been obtained for
collisions of electrons with rare-gas atoms. The
model has also been used previously with the gen-
eralized-oscillator-strength (GOS) formalism to
calculate electron-impact excitation of Ne, Ar,
Kr, and Xe.

The electron-impact ionization process is con-
sidered in the present work using the eikonal ap-
proximation as well as the standard Born treat-
ment. ' Recent studies applying the Glauber high-
energy approximation to electron-hydrogen colli-
sions' ' have obtained substantial improvement
over the Born approximation for elastic and in-
elastic scattering. The Glauber theory is based on
the eikonal approximation and on the assumption of
sudden passage of the projectile in which the target.
particles may be regarded as immobile. The sud-
den passage assumption is in the spirit of the im-

pulse approximation' but also entails neglect of the
energy transfer in a reaction. However, as pointed
out by Franco, ' the neglect of the energy transfer
in the Glauber theory is a weak assumption at large
impact parameters (corresponding to small scat-
tering angles), where the eikonal approximation is
best established. In the present work, an eikonal/
closure approximation is developed which incorpo-
rates nonzero energy transfer into the Glauber
eikonal theory in a consistent way. The effect of
large energy transfer is to reduce the ionization
probability for large- impact-parameter collisions.

The eikonal theory is developed in several stages
in Sec. II, where the eikonal approximation (with-
out the sudden passage assumption) is discussed.
The independent-particle model is used to simplify
the many-electron scattering matrix element to a
determinantal form involving one-electron matrix
elements. From this result, approximations of in-
creasing tractability are obtained by using the in-
dependent-particle potential to represent the dis-
torting potential due to Z- 1 inert core electrons
on a one-electron transition. The one-electron
transition matrix element is approximated by use
of closure to sum over intermediate virtual transi-
tions. Finally, the scattering amplitude is sepa-
rated into a single-scattering term plus a distortion
term. The resulting single-scattering term, which
will be referred to as the eikonal/closure approxi-
mation (without distortion), consists of a universal
factor multiplying the Born amplitude.

In Sec. III we discuss the calculations which em-
ploy the partial-wave GOS formalism for electron-
impact ionization of closed subshells. Comparisons
of our GOS calculations (based on the Green-Sellin-
Zachor potential~) with the work of McGuire'~'6
and Manson" (who used a Hermann-Skillman' po-
tential) have been briefly reviewed elsewhere. '
Results for the outer-shell ionization GOS of Ne
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are presented. The Bethe surfaces of Ne are
developed as a series of cuts at constant ejected
electron energy and constant momentum transfer.
Section IV presents cross-section results for single
ionization of Ne and Ar shells (K shell excepted)
based on the eikonal/closure approximation (with-
out distortion) and on the Born approximation.
Comparisons are made with the experimental
data. Concluding remarks are made jn Sec. V.

II. EIKONAL FORMALISM

A. Eikonal Approximation for Inelastic Scattering

The eikonal approximation is based on approxi-
mating the exact scattering wave by a set of
straight-line rays which propagate through the in-
teraction with fixed impact vector b parallel to
what is generally defined to be the z axis. Although
other choices have recently been proposed, we
follow Glauber in choosing the s axis parallel to
the average momentum k= —,'(k, +k&) for inelastic
as well as elastic collisions. This choice is also
motivated by studies of the corrections to the
Glauber approximation for potential scattering.

For elastic scattering, the fact that the momen-
tum transfer K=k, —k& is perpendicular to Glaub-
er's z direction occasions a simplification in the
theory and calculations. For inelastic scattering
the component K, = (k, —kz)/21 k ) is nonzero but, to
retain the simplifications, it is generally ignored.
The object of the present development is to in-
corporate nonzero E, into the Glauber-type eikonal
theory.

In the following statement of the eikonal approxi-
mation, we use atomic units in which energies are
expressed in units of the Rydberg (R= e /2ao =13.6
eV), lengths are expressed in units of the Bohr
radius (ao= 0. 529 A), and masses are expressed in
units of the electron mass.

The eikonal T matrix can be cast in the form of
an impact-parameter representation in which the
impact vector b lies in a plane perpendicular to the
average momentum —,'(k, +kz) which serves to define
a z direction. The momentum transfer K=k, —k&
can be decomposed into parts K, and K, which are
parallel and perpendicular to the z axis. These
are expressed as follows:

K, = —,
' pW/v, p=[ —,'+2 (1 —v )' cos8] '

v = W/2Pv,

K =
I &il =PP(1 —v')'"sin8.

Here the scattering angle of the projectile is 8 (in
the center-of-mass system) and the wave number
P is given by

P= [,'(k', +k', )]'"= [M(Z- -—,'W)] "'.
S' is the energy loss of the incident particle. The

velocity v is defined by v =P/M in terms of the re-
duced mass M (M =1 for electron impact). The in-
elasticity pa.rameter v appearing in Eq. (1) is the
ratio of energy loss W to twice the average pro-
jectile kinetic energy. The c.m. energy is E.
Note that here and in what follows, the energy
variables often carry a factor ~ which is not pres-
ent in the a. u. system (e=k=m, =1). Also when
5'is set to zero, the usual variables are obtained
[K,=O, K, =2Psin —,8, P= (ME) ~o].

In terms of the above parameters the leading
order eikonal scattering amplitude takes the form
of a two-dimensional Fourier transform

Tgf 2
.

'

d be'"' (syl ~o(» br)le~) (4)

from which the differential cross section is ob-
tained as follows.

d(T ~k

dn k~
f~ (5)

y(r r (p /V)) eiSHrzlOvy(r r ) e-fBHrzJOb (zfa)

involves the "time "-dependent coordinate opera-
tors

The unitary operator governing the target atom
transition between energy eigenstates J&&) and (e&)
is

zbOO

Uz(b., b )= IeZzb& dz V(z; r„rp—
(6)

The operator Uo governs the "time dependence" of
the target in response to passage of the projectile
along a straight-line path r = b+ vtk in which the
projectile z coordinate plays the role of "time, "
i. e. , t=e/v. The symbol T in (6) is the time-
ordering operator applied to trajectory time e/v
Corrections due to curvature of the projectile's
path have been developed, " but they are com-
plicated and will be ignored for the present.

The above formalism deviates from Glauber's
original development by presence of P=P/(k) in
(6). Note from (1) that P=1/cos —,'8=1 for high-en-
ergy small-angle scattering, and thus P represents
a minor change arising from choosing the eikonal
propagation along the average momentum k. As
it stands, the leading approximation (6) of the
eikonal formalism contains important improve-
ments over the Born approximation which is ob-
tained by expanding (6) to leading order in the in-
teraction. The second- and higher-order powers
of the interaction present in Eg. (6) are correc-
tions to the Born term, and they must be retained
to obtain approximate unitarity.

The transition operator Uo is "time" ordered in
the parameter e/v because the Heisenberg "time"-
dependent interaction
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N

V(r; rr)= Z )r- r]) )rJ '

where the coordinate r„„ofthe atomic nucleus
relative to the atom's center of mass has been
ignored.

(8)

B. Independent-Particle Assumption

For simplicity, the target atom is described by
an independent-particle Hamiltonian H & which con-
sists of a sum of commuting one particle Hamil-
tonians h, as follows:

Hr =Hor+ bV, Hor =Q b, , b) =P )+ V,(r)) . (9)

In the approximation H&=H ~ each electron feels
the same central potential due to the nucleus and
N- 1 other electrons. Green, Sellin, and Zachor
have successfully parameterized the atomic inde-
pendent-particle potential by the analytic form

V,(r) = —(2/r) [(N- 1)n(r) + Z —N+ 1],

n(r)= [H(e"/' —1)+1] ', (10/

where parameter values H and d have been defined
by previous studies. For a neutral atom one of
course has N= Z. Correlation effects due to the
interactions in 5V are ignored in the model but they
are in a sense minimized by choice of an optimized
independent- particle potential.

Amus'ya et al. "have recently shown that cor-
relation effects can be quite important in GOS cal-
culations at small momentum transfer for electron
impact ionization of Ar. Our bound-state and final
continuum-state electron wave functions, which
are obtained by numerically integrating the radial
Schrodinger equation using the effective potential
above, may not be as accurate as those of Amus'ya
et al.

The eikonal framework of Eq. (4) is much sim-
pler in the independent-particle model because the
single-particle operators h& and r, commute with
the corresponding operators of the other electrons.
Substituting the approximation Hr =H r in (7) and
(6) simplifies the unitary operator Uo of Eq. (6) to
a direct product of commuting unitary operators
which act in the subspace of each target particle:

N

U, (b, b, )= '" '" ~ U"'(lb-b I)

(p / ) e&8Hrz/2vr e-ISHrz/2v

which do not commute at different values of the
"time. " The interaction V(r, rr) of course depends
on the collection of coordinates rr (—r—„.. . , r„„]
which specify the locations of the target particles
[the (N+1)'" one is the nucleus]. For electron
impact we have in Rydberg units

era)Bzihv ~ e tz-(8z/2v
(i2)

The phase y„(b) arises from the nuclear term in
the interaction, Eq. (8). In this approximation the
"time" dependence of the ith-electron coordinate
is governed by the independent-particle Hamiltonian

A simpler form of the factorization property,
Eq. (12), is very well known at high energy when
the "time" dependence can be ignored altogether.
Then one obtains the Glauber theory by approxi-
ma, ting X,= Phe/2e = 0. This limit is, however,
inappropriate to a class of inelastic-scattering
problems in which the Coulomb potential governs
large- impact-parameter collisions because setting
K, to zero produces an infinite forward-scattering
amplitude just as in the elastic channel. ' To avoid
singular results at small angles, one must retain
the "time" dependence in Eq. (12).

The determinantal wave functions appropriate to
an atom in the independent-particle model take
their simplest form for closed-shell atoms such
as the rare gases. Then a single determinant of
the space states p& and spin states I|& suffices to
describe the atom's ground state,

le & =&~l Ai(1)xi(I)&142(2)e(2)& ' ' '14~(N)x//(N)&
(is)

where A~ is the antisymmetrizing operator for N
particles. The fine structure of the atomic levels
is ignored so that each level contains N„, = 2(2l+ 1)
electrons differing only in magnetic and spin quan-
tum numbers.

Before discussing the inelastic scattering, there
are several points which should be understood about
the elastic channel in the present formalism.
Elastic scattering is of course described by the
matrix element (e, ( Uo I s, & and since in Eq. (11) Uo

is a symmetric product, the result may be ex-
pressed as the determinant of an NxN matrix of
one-particle transition matrix elements:

s&(b) =(&& I UOI && &

="""'"D«&~.x.IUD" (b- b')
I ~.x.&

= e'"&'" [Det (P„I
UO" (b —b ')

I
g„&]'. (l4)

In the third line we have used the orthogonality of
spin states and assumed spin degeneracy to simplify
the original determinant to the square of the de-
terminant of an —,'Nx —,'N matrix involving only the
space states. In principle this elastic- scattering
amplitude could be calculated; however, that is un-
necessary in the present case. It is well known
that the elastic scattering can be equivalently de-
scribed by a potential (which is in general com-
plex). A recent treatment of this problem has been
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made by Joachain and Mittleman, ' who derive an
optical potential for elastic scattering.

An analysis by Berg, Purcell, and Green' has,
however, shown that the elastic scattering of elec-
trons by rare gases is adequately described using
exactly the same potential V,(r) as above. One

simply adjusts the parameter N to the value Z+ 1
to describe the interaction of the impact electron
with the neutral atom, exclusive of any polarization
effects. In the eikonal formalism, this means that
the electron-atom elastic-channel scattering can be
described by an impact-parameter amplitude o

S„(b)based on the potential V,(r) plus, in general,
a polarization potential V~(r). If needed, the imag-
inary part of the potential could, of course, be in-
cluded.

Inelastic scattering differs by excitation of one
(or more) electrons to excited states. The single-
particle excited states are calculated using the
model potential, Eq. (10), and are therefore or-
thogonal to each occupied level of the ground-state
atom. The simplest situation occurs when a single
electron (from say any state Q& of the nl shell) is
excited to an unoccupied level P with quantum
numbers designated by n. The excitation energy
is bc = & —g„, and the corresponding final-state
wave function for the atom is

Ie&& =&.Iy (1)xi(I)&" Iy. (~)x.(~)&

. . .
I y„(x)x„(x)&. (16)

The resulting inelastic amplitude &e&( Uo)e&& is a
determinant which differs from the elastic ampli-
tude, Eq. (14), since the jth row involves single-
yarticle transition matrix elements between each
initial state and the state P g . The full ionization
amplitude is obtained by expanding said determinant
about the jth row; and the result is that one obtains
a direct-ionization term equal to the jj matrix ele-
ment multiplied by its minor plus exchange terms
involving the other matrix elements of the row
multiplied by their respective minors.

The amplitude for direct ionization of an electron
from a specific initial state is approximated by
using, as above, a potential scattering amplitude
to describe the Z- 1 electrons which remain in
their original states. The resulting expression for
a direct transition is thus written as

&e& I U. I e&&
= &y.x. IUl" (b- b&) I y...,x..&S"(b)

+ exchange terms, (16)

where S„+(b) is the elastic scattering amplitude
corresyonding to the Z- 1 inert electrons and the
nucleus. The subscript A' designates a singly
ionized atom and the potential V,(r) of Eq. (10) can
be used for this elastic scattering factor. Since
we must in the end average over the magnetic and

spin quantum numbers, the use of the same spheri-
cally symmetric distorting potential for all nl shell
transitions is reasonable.

to obtain the following form for the single-particle
transition matrix element:

4 moO

2 p OO

« """""
I e.l) +(

CO

~58hz)/2v ~-hah gg/av1
lrg-r't

&&e~~"'2+" e '~"&~ "I y &+. ~ . (17)
1
rtt gl ~

Here the projectile coordinates r, =z, k+b, r2=zak
+b, and so on, all have the same impact vector b
but differing z coordinates, and the target coordi-
nates are designated by r '=z'k+b . A little ma-
nipulation casts the leading term here (which is
the Born amplitude) into the form

—(2f/v) &y. I

e'» "K,(K, Ib- b'I)
I y„,&,

K, =-,'PW/e, W=e
(16)

The modified Bessel function Eo appears by virtue
of the integral over z, —z', which takes the form

y OO 5K'8 ~ pd~ (O'+ I b b'I ')'@ -= 2KO(Ks I
b- b

I )
4 wOO

and the Hamiltonian operators on the left- and
right-hand side of the terms in Eq. (17) have taken
the values g and g„, appropriate to the eigenstates
on which they act. Note that E, plays the role of a
screening parameter. If the Coulomb interaction
(r- r 't ' were exponentially screened by a factor
e "' " ', one would obtain (p, +KB)'~~ in place of K,
in the right-hand side of (19). Thus nonzero K,
has the same effect as E,= 0 with nonzero p, , i. e. ,
screening.

Ignoring higher-order terms in Eq. (17) and
using the above Born term in Eq. (16) corresponds
to a distorted-wave Born approximation. ' How-

C. Eikonal/Closure Approximation

As already emphasized, the energy transfer
should not be ignored. To deal with it we must
calculate the "time" dependence of the operator
Uo" occurring in the transition matrix-element,
Eq. (16). This is done exactly in first order and
approximately in the higher orders by employing a
form of the closure approximation as follows. We
expand Eq. (12) for Uo~" in powers of the time-de-
pendent two- electron interaction

f Bhg/2v -fBhs/ao1
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ever, to obtain an approximately unitary amplitude
we must consider the higher-order terms. In the
Glauber theory this calculation is simple because
each h of (1V) is set to zero. We approximate h in
a somewhat more realistic way by allowing it to
take on values in the range & -h~&„, in such a way
that Eg. (17) can still be calculated. For example,
the second-order term of Eg. (17) is calculated by
inserting a complete set of single particle eigen-
states (&f&„& to obtain

z
2 p 00

dz e's &a+~ -, e ' '&'i~" ly &v )r, -r'J y
~00

ggy

&(&y I

I dz e&equi~/av e ~
1

lra- r 'I nl ~

(2O)
We approximate this term by fixing g„at the

average energy —,'(s + s„,) and then invoke closure
g~) $„&gb„[=1 to render the z, —z ' integrals to a
tractable form. The result is

d2f elks'SS (b)

&&&e x Ie'""T.(K.Ib-b'l)l e.i x.&. (24)

This is our basic approximation based on the ei-
konal formalism. An alternative statement of the
result can be made by introducing the scattering
amplitudes T„+(q) corresponding to e-A' elastic
scattering and T,(K~; K,) corresponding to e-e in-
elastic scattering, respectively,

ing nonzero E, into a consistent eikonal theory and
its derivation involves the rather arbitrary device
of splitting K, into n equal portions K„, K,». . . ,K
for an nth-order scattering. Since the screening
constant at large S is simply K„ i. e. , the sum of
the magnitudes of the pieces, it is, however, likely
that other divisions of K, would produce at least as
much screening at large S.

The direct inelastic scattering amplitude can now
be expressed by collecting the above results:

(I/2! )&y. le'""[- (2i/~)K, (-,'K. lb-b'I)]'Iy„, &,
(21)

where we have used the special case n = 2 of the
formula

Tg+(i)= .
I

d'I e"'[S (b)- Il

T,(K„K.)= . ~d'I e'""T,(K, lbl).

(26)

(26)
~ 00 ~1 gn-1

I„= dz, f(z, ) dZ f(z ) ~ ~ ~ dz„ f(z„)

1
~ OO

f2

dz, f(z, )~l (22).

The above procedure can be extended to evaluate
all the terms in the expansion of Uo"'. For exam-
ple, in the nth-order term, one fixes all the inter-
mediate-state energies at (I/n)(s —s„,) and then
uses closure to render the z, —z' integrals into the
form Eg. (22). In this way, the eikonal transition
operator Uo"' in (16) is replaced by an approximate
transition operator which, apart from a factor
e'~g" is

00 ~ ~ 1 "1
T.(K, lb-b'I)= 2 '

K, —K.lb-b'I
J

(23)
In this expression the screening effect of E, is the
oddly difference from the Glauber result. For the
exponentially screened Coulomb potential men-
tioned above, the Glauber result is obtained by re-
placing K, /n in (23) with (p, +K, /n )'@ and taking
the limit K, =O. For a Coulomb interaction, the
screening parameter p, is allowed to become very
small and this leads to the usual constant phase
times e"" ' '~" in place of (23). Since the modified
Bessel function Ko(x) falls off as x e ", one can
see that for large relative impact parameter
S—= Ib —b '(, each term of (23) is proportional to a
screening factor e ~~ ~.

Equation (23) is simply one method of incorporat-

A' A A' A'

(o) (b)

FIG. 1. Diagrams illustrating (a) the single-scattering
and (b) the double-scattering (distortion) contributions
to single-ionization. The ejected electron momentum is
k' and the heavy line represents the atom (A) or ionized
atom (A'). The double-scattering term is approximated
by a single-electron ionization in conjunction with an
elastic in a potential model of the ion.

Then Eq. (24) can be cast into a more convenient
form as follows:

T,.= T.(K,; K.) &~.x.I""'
I ~...x.&

+(i/2m') J'd gT„+(IK,—gl)T, (q; K,)

x&~.x.I""'"""'I ~.~.xd. (»)
Here the leading term is our eikonal/closure ap-
proximation for the single scattering (without
distortion) in which the eikonal amplitude T,(K~; K, )
replaces the usual Born amplitude Ts(K~) = —2M/
K . The second term corresponds to the leading-
order effect of the distorting potential.

Figure 1 illustrates this decomyosition of the
reaction amplitude into a single-scattering e-e
term plus a double-scattering term in which the
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= —,'iv(l+Q ) db b'J'o(Qb )T,(b'). (28)
+Q

In the first line the integration over directions of b
in Eg. (26) has been carried out and the result
divided by —2M/K . The second line is obtained
by integrating over the scaled impact parameter
O'=K, b and introducing the ratio of momentum
transfer perpendicular and parallel to z,

+ K k, k

+ K-kl k2 k( kg+ ~ ~ .

)v& /r'&

FIG. 2. Ladder-series diagrams for nonrelativistic
photon exchange, calculated in the eikonal approximation
to obtain a unitarized two-body amplitude. In the lovrer
line the bound electron makes a transition from the ini-
tial l nl) state through various intermediate states l y)
to the final state i o). In summing over the intermedi-
ate states using the closure approximation, the Pauli
exclusion principle is ignored, i.e. , already occupied
levels are included in the sum to obtain a simple result.

inert core of the atom A is approximated by a po-
tential. The atom (which is taken to have infinite
mass compared to an electron) is indicated by the
lower heavy line and the impact electron by the
upper lines. The momentum k ' indicates the sec-
ondary electron. The double wavy lines here for
momentum transfer are used to indicate our ap-
proximation to the inelastic e-e scattering. They
actually correspond to summing all ladder diagrams
for photon exchange as in Fig. 2 using the eikonal
approximation. By this we mean that both elec-
trons are constrained to move on straight-line paths
and each virtual photon exchanged in an nth-order
diagram carries 1/n times the z component of
over-all momentum transfer K,.

D. Relationship to the Born Approximation

For the present, we do not calculate the effects
of the distorting potential but concentrate on the
rather simpler single-scattering term in Etl. (2V).
The large impact-parameter collisions which con-
tribute strongly to forward scattering are expected
to be more affected by the improved treatment of
K, (inelasticity) than by distortion effects. Thus
the approximation we use is calculationally similar
to the usual Born treatment. To expressly isolate
this difference as a simple factor we calculate the
ratio of 7, to the Born amplitude as follows;

—KS P
db bZ, (K,b) T,(K,b)

Q-=K /K, = (1- v )'~ (sine)/v. (29)

Numerical calculations have been made of this
factor which is applicable to any e-e single scatter-
ing with energy transfer to a virtual photon. Be-
cause of its presumably wide range of applicability,
we have developed analytic curve fits to I E(Q, v) ( .
The direct numerical results along with the analytic
curve fits to the function are plotted in Figs. 3 and
4. The curve fit we use is given by the formula

-1

0. 54+ 0.441~'+ O. 0119m' (3o)

Q =4(vK/W) (1 —K /4P )-1, P =M(E- —,'W),
(31)

and for electron impact, M = 1. Note from (31) that
the optical limit (K - 0) for fixed energy loss W
requires Q'- —1, whereas the physical range of Q'
is positive as seen from (29). Lassettre, Skerbele,
and Dillon have given arguments which show that
in the limit K -0, the cross section for electron-
impact ionization should approach the photoioniza-
tion cross section in which F(Q, e) is replaced by
unity. This requirement is not incompatible with
(28) because the integral (which is convergent for
Q & —1) tends to infinity as Q ——1 but the factor
1+ Q tends to zero. It is conjectured that the limit
is F(Q, v)- 1 as K - 0; however, the analytic
function (30) is seen to be deficient in this respect
and probably should not be used outside the range
given in Fig. 3.

Owing to neglect of the distortion effects which
are present in the second term of (27), the correc-
tion factor ( F(Q, v) [ to the Born approximation is
always less than unity and is a decreasing function
of Q, i. e. , of the sine of the scattering angle.
This behavior is not expected to be universally
realistic when distortion effects are included.
Hence the reliability of the single-scattering term
of (27) [in which T,(K~, K,) is equal to —2ME(Q, v)/
K ] is presumably limited to small scattering
angles. Integrated cross sections are dominated
by small-angle scattering events, however, and
this limitation is not serious unless one ii specifi-
cally interested in the large-angle differential
scattering.

For the present, the factor I E(Q, n)l has been
evaluated at kinematical conditions appropriate to
electron-impact ionization. The results are equally
applicable to proton ionization at the same velocity
and Q values.

The parameter Q used here is a function of the
impact energy E, energy loss 8', and momentum
transfer K of the impact particle as follows:
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IF(Q, v)1

o. l (-

0.01
0.1 IO

Q = Kg/Kg
100 1000

FIG. 3. Absolute magnitude
squared ( I'(Q, v) ( of the ratio
of the unitarized e-e scattering
amplitude to the Born approxi-
mation is plotted as a f'unction

of the scaled momentum trans-
fer @=HAEC~ for various veloc-
ities v which are in units of G.c.
The curve fit function of Eq. (30)
produces the points indicated by
X 0

E.Effect of the Exclusion Principle on Closure

In reality, the situation is not as simple as de-
picted above because the closure approximation
must be handled with more care. The difficulty
arises because we have neglected the exchange
terms in (16), which, in addition to providing ex-
change mechanisms, also enforce the exclusion
yrineiple on the direct one-electron transition.

Because of the Pauli exclusion principle, a sin-
gle-particle state I P„)which is already occupied
by one of the atomic electrons is not an admissible
intermediate state for the direct single-particle
transition of another electron. The determinantal
wave function of the complete atom vanishes if two
electrons occupy the same single-particle state.
Thus the sum over intermediate states must prop-
erly be limited to just the unoccupied single-parti-
cle states.

The projection operator onto the unoccupied
states is written as

lF(o, v)l

O.I-

O.O I

IO IO IO

I I I I I I

IO"

IMPACT ENERGY E(eV)

FIG. 4. Same information as in Fig. 3 is shown as a
function of electron-impact energy E in eV at fixed values
of the scattering angle 8 for an energy loss W of 1 By.

and we note that it does not commute with the posi-
tion operator r ' of the bound electron. For hydro-
gen, p is unity, since no states are excluded by the
Pauli principle. The deviation of p from unity ob-
viously increases as the target atomic number in-
creases. Although the effect is expected to be non-
negligible for heavy atoms, a detailed treatment
is beyond the scope of this paper.

However, we note that it is possible to param-
etrize the effect of the incompleteness (pe 1) by
proceeding in the spirit of the optical model. The
matrix element in (17) is simply a complex number
for each value of the imyact parameter b. Thus a
function p(b) can be found such that correct matrix
element, incorporating the projection operator p
of (32), is equal to

r, (p;ff, ib-b i)

-=p- ~ —"P lf, -'lf. lb-b'I —. (33)
v n ' nt'

The parameter p is here inserted in the same way
that the operator p enters and this permits the
Born approximation (p = 0) and eikonal/closure ap-
proximation (p = 1) limits to be readily obtained.

A constant value p has the effect of shifting the
velocity v in (23) to v/p. Thus a factor
I E(Q, v/p) I scanbe obtainedfrom (28) or (30) and as
p- 0 the high-velocity behavior ) E) - 1 is obtained
indicating a smooth connection with the Born ap-
proximation.

F. Relationship to Other Theories

The fact that the eikonal/closure approximation
yields a kinematical factor times the Born ampli-
tude suggests a similarity with the impulse ap-
proximation (IA) and with the approximation of
Vainshtein, Presnyakov, and Sobelman (VPS)."
Coleman ha recently reviewed the IA and VPS
methods and has shown the relationship of the VPS
theory to an extended impulse approximation.

The idea behind the IA and VPS methods is to
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treat the scattering of the projectile electron (e)
and an immobile bound electron (e') as a Coulomb
scattering process. Due to the energy transfer,
an off-energy-shell scattering amplitude is needed.
The VPS approximation and extended impulse ap-
proximation includes, in addition, what we have
called distortion effects; i. e. , effects due to the
Coulomb potential of the nucleus are included (ap-
proximately) in the e-e' scattering amplitude.
However, both approximations ignore the time
dePendence of the bound electron which provides
the principal new effect in the eikonal/closure ap-
yroximation of Eq. (27).

In the IA and VPS methods, the target atom ini-
tial and final states provide distributions of initial
and final momentum values for e' over which the
e-e' potential scattering amplitude must be aver-
aged. With few exceptions, a peaking approxima-
tion is used to evaluate this average. A sharp
peak is presumed in the forward e-e' scattering
amplitude allowing evaluation of the momentum
distribution only at the corresponding values of e'
momentum. As a result, both the IA and VPS
methods obtain results similar to the first term of
(27) but with different factors in place of the e-e'
scattering amplitude T,(K„, K,). However, Cole-
man cautions that the peaking approximation is
likely to be valid only at extremely high energies.

It is worth noting that a peaking approximation
could be applied to the second term of Eq. (27) to
approximate the distortion effect. The resulting
formula would then bear a strong analogy to the
VPS approximation. However, a much more re-
liable (but also more difficult) calculation would
proceed directly from (27).

Since the principal new effect of the present de-
velopment is included in the eikonal/closure ap-
proximation (without distortion) and the peaking ap-
proximation is dubious, our present calculations
are made neglecting the distortion term of (27).

III. IONIZATION FORM FACTOR: GOS CALCULATIONS

The ionization- cross- section differential in en-
ergy loss 5', and the element dQ of solid angle is,
in our single-scattering approximation,

d o 4k' (E(Q, v)) 1
dWdA k) K4 2(2 Io+ 1)

~~„, Z dS'II(k', K)xtx 12 (34)
f5 QV

II(k ', K) I
dk',

dW K (2l~+1) „„ (37)

so that the double-differential cross section takes
the form

d2o
~k ((E(Q, v)[2 1 df

d~dg p +2 Q7 dgJ (3S)

With the exception of the factor ( E(Q, v)(', this is
the standard expression as derived originally by
Bethe and more recently by Mott and Massey, 3

Massey and Burhop, and by Budge.
Performing a series of mathematical manipula-

tions of the matrix element (35) (McGuire' and
Berg ' give details) we have

Z (2l' I+) Z (2l+1)
dW ma Z r.=o s=lt'- lol

llo
0 00 Iil lto I

where („'~'2'3 ) is a Wigner 3-j symbol4~ and the re-
duced matrix elements are

ir iso= J Pi~'(k r)j~(Kr) Pg, (r)dr. (40)

In this expression P„, (r) is the radial bound-state
wave function, P,.(k'r) is the radial continuum
wave function, and j,(Kr) is a spherical Bessel
function.

In the present calculations of df/dW, the poten-
tial V, of (10) is used. Accurate numerical inte-
grations of the radial Schrodinger equations for
both P„, (r) (using the Hermann-Skillman code)
and P, .(k'r) (using the Noumerov method) are per-
formed. Table I lists the potential parameters H
and d which have been determined to give accurate

of the ionizing reaction which promotes an electron
of nl shell to a single-particle continuum state with
asymptotic momentum k ' is

1(k', K)=g„-.Ie~"'Iy„,.). (35)

The final state Pp. is normalized per unit energy
T= k' .and solid angle according to

8 ~ IA"")=5(k —k )~ (0 - & ), (36)

and thus asymptotically approaches [k'/2(2v)'] '+
times a phase-shifted Coulomb wave.

The generalized oscillator strength (GOS) for the
ionization process is (after performing the spin
sums)

with the factor E(Q, v) as given in Sec. II repre-
senting the only difference from the Born approxi-
mation. An average is performed over the N„,
= 2(2 la+1) equivalent spin and magnetic substates
of the n/ shell. Also we sum over final spin ori-
entations and integrate over the directions k ' of the
ejected electron's momentum k '. The form factor

Ne

2. 2188
0.7145

Ar

3.4687
0.9971

5. 5066
l. 0550

Xe

6. 8051
1.1752

TABLE I. Potential parameter values used in the
model.
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excited-state energy levels for rare-gas atoms.
In this respect, the potential (10) is superior to
the Hermann-Skillman potential' used by Manson'
and McGuire ' '

Our calculations of the GOB are performed with
I and I values in (3S) limited to a maximum value
of 13. McGuire, who has used a similar limit (12)
for his calculations, ' '6 has discussed the likely
errors introduced by this truncation. Also the
direct computation ' of (40) is presumably superior
to the method qsed by McGuire, which employs a
series of straight-line segments to approximate
r V(r), where V(r) is the Hermann-Skillman poten-
tial. Reference 19 contains comparisons of our
GOS values with those of Manson and McGuire.

Calculations have been performed for outer and
inner shells of neon and argon. The outer-shell
GOS results for Argon have been discussed in Ref.
19. For neon, we present typical outer-shell GOB
results which provide the dominant contribution to
over-all ionization.

0.5

0.2
d'ItIt

O. I

0.05

0.02

Q.OI
0

I I I

I I

2
I I I

4

T (Ry3

6 IO

Neon Ionization GOS,

The most hydrogenlike atom in the present study
is Ne, for which Figs. 5 and 6 illustrate our cal-
culational results. These plots depict "cuts" at
constant T and X of the Bethe surface df/dW for
Ne ionization. Inokuti has cited the importance

PIG. 6. Model calculations of the total GOS in units
of (By) vs T at constant K for Ne. The K2 values for
the curves are as follows (pp );

a-10 f-2 k-7
b-0. 1 g~3 l-8
c-0.5 h-4 m-9
d-1.0 i-5 n-10.
e-1.5 j-6

2
I I I I I I ( f I

Q. I
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0.02

00I I I I I I I I I I I I I
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K

a-10
b-9
c-8
d-7
e-6

f-5
g 4
h-3
i-2
j-1.8

k-1.6
l-1,4

D1-1 ~ 2
n-1. 0
o-0.8

p-0. 6
q-0. 4
r-0. 2
s-10 6.

FIG. 5. Model calculations of the total GOS in units
of By" vs K at constant T for Ne. The energy (T) values
for the curves are as follows (By):

of the Bethe surface as being its comprehensive
representation of the inelastic scattering phenome-
non.

We note that at large values of E and T, our
surface is similar to the hydrogenic case with the
Bethe ridge extending out into the E'= T plane and
being approximately centered over the E~ = T line
as expected from energy conservation in the quasi-
elastic sca,ttering limit. Figure 6 displays the only
qualitative change between our Ne calculation and
hydrogenic results. As one starts at T=O. O Ry
and goes to higher energy for the E =10 curve,
the GOS builds up to a maximum at T =0.6 By be-
fore falling off whereas in the hydrogenic case, the
maximum would be at T=0. O Ry. Thus the most
probable secondary electron energies are nonzero,
which, of course, is not the case in hydrogen.

IV. CROSS SECTIONS

The cross sections for ionization are calculated
in two steps. The first integration of (38) is over
angles of scattering of the primary electron to ob-
tain the cross section do/dT= S(E, T) differentia—l
in energy of the secondary electron. Employing
x=—E =k, +k& —2k&k&cose to convert the integration
over dA= 2'(cosa) to one over the momentum
transfer squared x, the result is
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where

p X+
V

2

+X
(41)

10 I I I I I I I II I I I I I I lli

NEON

w "'
x+=2ME 1 — + 1——

2E E

dTS(E, T).

The eikonal/closure factor is calculated as in (30)
using the connection between x and Q as given in
(31).

The parameter p indicated in (41) is zero if one
wishes to obtain the Born approximation or unity
to obtain the full eikonal/closure result.

Single-ionization cross sections are calculated
by integrating over the secondary electron energy &

~Z-I) I2
o(E)= f (43)

Al

E
CP

LO

b

Ol-

LLl 0.01—
b

X X X~

The upper limit of integration corresponds to the
midpoint of the total distribution due to primary
plus secondary electrons. Thus we follow the con-
vention of counting electrons with kinetic energies
T & —,'(E- I) as secondaries and the balance as pri-
maries. This rule is not rigorous and would pre-
sumably be improved upon at low energy by a
treatment of exchange effects in computing the total
electron distribution.

The comparison of theory with experiment is
most readily accomplished by first considering the
ionization cross sections. Figures 7 and 8 present
shell by shell partial contributions to Ne and Ar
ionization cross sections in both the Born and ei-
konal/closure approximations. The outer-shell
results in the Born approximation are in reason-
able agreement with McGuire's Born-approxima-
tion calculations, "which are shown for compari-
son. Our result;=; for Ne are consistently higher
than those of McGuire. Clearly, the outer-shell
electrons dominate the process at all energies;
however, the inner-shell contributions are not
negligible at high energy. The innermost E shell
has been omitted in both cases. At high energy
the two theoretical curves are in good agreement;
however, the eikonal/closure approximation pro-
vides a marked reduction in the cross sections at
low energies relative to the Born approximation.

Figures 9 and 10 show our single-ionization
cross sections (summed over subshells) for Ne and
Ar. The experimental data, obtained from the
review by Kieffer and Dunn, ' are from various
experiments as indicated (see Ref. 24 for original
sources). We show maximum and minimum ex-
perimental cross-section values at representative
energies, and these are based on measurements
of total ion current. Thus the experimental points
include multiple-ionization effects which are not
in the theoretical curves. Kieffer and Dunn pre-
sent data which show that the single-ionization
cross sections for Ne and Ar tend to be about 10 to

0.001—

IO

2p 2s

I I I I I IIII
10

(eV)

Is

104

FIG. 7. Partial cross sections for ionization of Ne
shells. Vertical bars represent ionization threshold en-
ergies for shell indicated. Dashed lines are Born ap-
proximation results; solid lines are eikonal/closure ap-
proximation results; &&'s are results of McGuire, Ref.
15.

15~%%d tower than the total (or gross) ionization data
points given in Figs. 9 and 10 at energies above
200 eV.

For this reason the theoretical single-ionization
curves should be compared to the lower experi-
mental points in each plot. Also we note that the
average of experimental data compiled by Green
and McNeal for E up to 1000 eV tends to pass be-
tween the extremes shown in Figs. 9 and 10.

For Ne, the eikonal/closure approximation pro-
duces more accurate results than the Born ap-
proximation near the peak cross-section values;
however, we note at high energy a disturbingly
large difference between our calculations and the
experiments. The discrepancy of about 30% at
high energy in Fig. 9 arises partially from inac-
curacies in the GOS near threshold. Our outer-
shell calculations tend to agree with those of
McGuire to about 10% at high energy (Fig. 7); thus
both calculations appear to yield higher than ex-
pected total ionization cross sections when inner-
shell effects and multiple-ionization effects are
included. The agreement with experiment is not
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FIG. 8, Partial cross sections for ionization of Ar
shells. Vertical bars represent ionization threshold en-
ergies for shell indicated. Dashed lines are Born ap-
proximation results; solid lines are eikonal/closure ap-
proximation results; x's are results of McGuire, Hef. 15.

unreasonable, however, in Fig. 9. It is possible
that polarization effects, which can be important
near the ionization threshold, are limiting the ac-
curacy which can be attained with the present inde-
pendent-particle model wave functions.

For Ar the agreement between theory and experi-
ment at high energy is much better. However,
below 100 eV, the Born approximation gives about
double the experimental cross section, and the
eikonal/closure result about one-half the experi-
mental result. In Fig. 10 we also show an inter-
mediate theoretical curve based on p= 0. 6 (corre-
sponding crudely to partial closure) which does fit
the experimental data rather well. Thus for Ar
the results are about equally poor for the Born
and eikonal/closure approximations and only by
parametrizing the effect of the Pauli principle
via p = 0. 6 is decent agreement with experiment
obtained. Of course, using a nonunity value of p
is at the present time a heuristic device. Still the
procedure permits improved estimates of the sec-
ondary electron distributions in energy. Figures
11 and 12 show the secondary electron distributions
for Ne with p=1 and Ar with p=0. 6. These distri-
butions are thus compatible with the cross sections
shown in the corresponding curves in Figs. 9 and
10. The data points are from the experiment by
Opal, Beaty, and Peterson ' at 500 eV. In gen-
eral, the agreement of theory and experiment is
good, with some notable exceptions in the vicinity
of 10-eV secondary electron energy. These dis-
crepancies at low secondary electron energy are
possibly due to core polarization effects and also
multiple-ionization processes which we have ig-

I I I I I I III
NEON

I I I I I I III I I I I I I II

o ASUNDI, KUREPA

0 SMITH
x RAPP, GOLDEN

Al

6
40

~o. )

FIG. 9. Comparison of theoretical
single-ionization and experimental
gross-ionization cross sections for
Ne. Dashed line is Born approxi-
mation. Solid line is eikonal/closure
approximation. Data points are from
Ref. 24.
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FIG. 10. Comparison of theo-
retical single-ionization and experi-
mental gross-ionization cross sec-
tions for argon. Dashed line is
Born approximation. Lowest solid
line is eikonal/closure approxima-
tion with p=1, intermediate solid
line is same with p=0.6. Data
points are from Ref. 24.
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nored, The distortion and exchange effects which
also have been ignored are not expected to cause a
large effect at this impact energy (500 eV).

V. CONCLUDING REMARKS

is doing. At the present time, there is need for
more angular distribution data.

The success of the eikonal/closure approxima-
tion for heavy atoms is partial and thus does not

The calculational procedures to obtain the Bethe
surfaces and cross sections for many-shell atoms
are, at this time, rather long and costly but not
prohibitive. Thus we conclude that the independent-
particle model of Green, Sellin, and Zachor pro-
vides a quite reasonable method of calculating
ionization GOS's for a number of atoms over a
wide range or energy losses and momentum trans-
fers. The use of an analytic potential lends the
calculation an adaptability which is not now present
in the self-consistent field method.

Our results on the Bethe surface indicate that
there is much more structure for low E and T
values than might have been expected from the use
of hydrogenic wave functions for the ejected elec-
tron. This fact indicates that there is a need to
use realistic wave functions in GOS calculations.
To obtain good agreement with photoionization ex-
periments in the optical limit (K3-0), it may also
be necessary to account for polarization effects or
simply to use more accurate wave functions such
as computed by Amus'ya ptal, . Note that the in-
dependent-particle model used in this work does
give quite good total cross sections at i=4 KeV in
Fig. 10. The effect of correlations on the GOS
demonstrated by Amus'ya pta$, at this energy does
not seem to affect the total cross section. On the
experimental side, measurements of angular dif-
ferential cross sections for heavier atoms are
quite rare. If the incident energy is high enough,
measurements of this kind can be converted into
GOS's for comparison with theory and will indi-
cate how well or poorly the analytic potential model
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FIG. 11. Distribution in energy T of the secondary
electrons in electron-impact ionization of Ne. , Results
are based on eikonal/closure approximation (p= 1}. Data
points are from Ref. 25 for 500 eV.
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FIG. 12. Distribution in energy T of the secondary
electrons in electron-impact ionization of Ar. Results
are based on eikonal/closure approximation (p = 0.6).
Data points are from Ref. 25 for 500 eV.

tractable. Clearly 6& can have a substantial
screening effect of the long-range forces.

The distortion effects which we have not calcu-
lated can be included in a straightforward way, as
discussed in Sec. II, to make the calculation of
cross sections reliable at low energy. Since a
reliable means of incorporating the effect of the
Pauli principle on single-particle transitions is
not presently available (either in the Glauber or
eikonal/closure approximations), the theory is
probably limited to light atoms. A clean test of
the eikonal closure theory would be obtained for
hydrogen, where other theoretical results are
available.

For applications which demand reliable cross-
section values at low energies and/or heavy atoms,
it appears necessary at present to use more de-
tailed but more empirical modifications of the
Born approximation such as that of Green and
Dutta or else resort to an extension of the dis-
torted-wave Born approximation along the lines of
the work of Sawada et al.

Inner-shell ionization has been shown to be a
small (10'%%uo) part of the single-ionization Ne and
Ar cross sections. However, a much more sub-
stantial contribution can be anticipated to the aver-
age energy loss per ionization due to the more
tightly bound inner shells. Also the subsequent
production of multiple ionization due to Auger
mechanisms once an inner-shell vacancy is pro-
duced tends to increase importance of inner-shell
calculations.

permit broad conclusions to be drawn. However,
the method does incorporate nonzero energy trans-
fer 6& into a consistent eikonal theory and remains
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