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terms of the measured polarization. Because the
corrections are small we simply multiply the cor-
rection factors and ignore the difference between

P, P„and P in the correction terms:

&ii+&i & —&P )
(A5)
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A procedure which allows for both open and closed channels with exchange and orthogonality is

formulated for a multichannel scattering process, Noniterative integral-equation theory is used to solve

the coupled integrodifferential equations of the scattering problem from zero out to some transformation

point where the reactance matrix is projected out to its asymptotic value by using a matrizant
technique. The method is applied to a two-channel model which has some of the features of a ls-2p
approximation for e-H scattering.

I. INTRODUCTION

In recent publications, ' several expansion or
numerical procedures have been employed for
studying low-energy electron-atom scattering with-
in the close-coupling formalism. The principal
difference between the expansion and numerical
methods is the technique employed in solving the
resultant coupled integrodiff erential equations.
Smith et al. ~ used a direct approach which con-
sists of only numerical integration techniques.
The expansion methods solve the scattering equa-
tions by using matrix techniques. In the present
work, we suggest an alternative direct procedure
that maintains a high degree of numerical accuracy
and stability without sacrificing a raaid execution
time on a computer.

A noniterative integral-equation method (NIEM)
as applied to direct potentials is well known.

However, the utility of the technique has not been
recognized until recently. In a series of papers,
the NIEM has been reviewed and extended some-
what to treat the solution of a nonrelativistic scat-
tering problem.

In the present work, we present a modified and
more compact formalism that treats, completely,
a multichannel scattering problem in which direct-,
exchange-, and orthogonality-potential terms are
included. The formalism is discussed in Sec. II,
and application is made to a model problem in
Sec. III. Section IV contains a brief discussion.

II. FORMALISM

In this section we present the NIEM as applied
to a multichannel scattering problem. The equa-
tions that arise in the close-coupling formalism
of an electron-complex. atom scattering problem
may be described by the coupled integrodifferential
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+ Z 5( ) Mj,~P~(r), i,j = 1,2. . . , &, (1)
x

where N is the number of channels, l; and k; are
the angular momentum and wave number for chan-
nel i, V and W are direct- and exchange-potential
matrices, and P~(r) is the reduced radial part of
the atomic electron orbital associated with the label

The M are the undetermined Lagrange multi-
pliers that ensure that the incident-electron wave
function is orthogonal to all the bound states ~ of
the atom. F is a square matrix, which represents
the reduced radial part of the electron wave func-
tion, with j denoting the incident channel and i the
outgoing channel. We allow' for the possibility that
a channel can be open or closed.

The exchange potential for this problem can be
described, in general, by the expression

Q W; „(r)F~(r) = Q B)'~' 1', (Pp, , F„g, r) Pp (r),
(2)

with

Y,(A, B;r) = q., A(x) B(x)x' dx

where

"
A. (x) B(x)+r &t+1

t „=Max( fl, . —l„f, fl, —l; f),

t ~= Min(l p + l„, lp + l;),

and /, , is the angular momentum associated with
the atomic state p; . The prime on the summation
in Eq. (2) denotes a sum over only exchange terms
and, thus, the composite index is defined as n;
= (t, i, n, p~, p„), and B; ~' are the exchange potential
coefficients. All values of t consistent with the in-
dicated lower and upper limits are included in the
sum over a; . The exchange terms cited here are
not separable and, therefore, require a different
treatment to that of Sams and Kouri.

The integral solution of Eq. (1) is

F~~(r) = 6~5~&G;"'(k;r)+ G,
' '(k, r) J GI"(k&x)S;&(x)dx

—GI"(k;r) f G,
' '(k, x)S,J(x) dx+ G,' '(k;r)

x J G,.
' '(k,.x)S,.&(x) dx, (3)

with
1, i open

0, i closed,

where S is the source term on the right-hand side

equations

.k;,IF,,(r) = Z [1;„(r).~;„(r)]F„,(r)c
d l;(l;+ 1)

dr'

of Eq. (1), and G; '(k;r) are the appropriate Green's
functions that are defined as real diagonal matrices'

k'~'r j (k r)
G,'"(k,r) =

(2K;)'~'ra, . (x;r),

k( ry( (k(r),
G; '(k(r) =

—(2xg)' rb (, (~(r),

i open

i closed
(5)

i open

i closed,

where j,(x) and y, (x) are spherical Bessel and Neu-
mann functions, a&(x) and b, (x) are appropriately
defined modified spherical Bessel and Neumann

functions, and the closed-channel modified wave
number is x; =

I 0; I . The boundary conditions asso-
ciated with the scattering problem are satisfied with
the following Green's functions:

G"'(k,r) - r'*",
r-0

k, ~ sin(k;r —l;2g), i open
G'"(k r)-

r-~
(2 )-1/2 ~.r

—k, '~'cos(k;r —l;2m), i open
G,'"(k;r)-

—(2a ) 'i'e "'

i closed

i closed.

~P;q(r) = GI" ( k )rH;)'(r) —G; '(k;r) H;g'(r),

H(", (r) = b;, —J, G;"'(k(x)S;q(x) dx, (t)

H,.",'(r) = —J,
"

G,'. "(k,.x)S,, (x) dx.

In contrast, Sams and Kouri retain the normaliza-
tion term. If all the channels are open, the asymp-
totic boundary conditions on Q and F are

g;~(r) - k,.' [A;~sin(k;r —l;2m)+B;icos(k;r —lcm)],
(8)

F;~(r) - k, ' [5;q sin(k;r —l; &m)+R;q cos(k~r —l;2m)],
y w aO

where A;& and B;; are the asymptotic limits of the
functions H;"~'(r) and H ~'(r), respectively, and

R;& is the reactance matrix. Since g is a solution
of Eq. (1), the linear combination

y;, (r) =& i;.(r)A.; '

is also a solution of Eq. (1). Noticing that g and
F also satisfy the same boundary conditions, we
can conclude that they are identical by uniqueness.
Therefore, the reactance-matrix elements R;& can

Furthermore, note that the index j in Eq. (3) not

only denotes the incident channel, but also ti e dif-
ferent independent solutions corresponding to chan-
nel i.

Another solution Q to Eq. (1) is defined by neglect-
ing the normalization term as in variable-phase
theory
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be determined from knowledge of the asymptotic
behavior of the unnormalized function i() from the
equation

R&g=Q B;„A„g '. (10)

Next, we allow for closed channels. Unlike Hams
and Kouri, ' we do not explicitly solve open- and
closed-channel equations. For a closed channel i,
the solution )),&(x) grows exponentially, while the
true solution F&&(x) decays asymptotically. From

the structure of Eq. (7), the solution )i)&& depends
only on the knowledge of ~P„~ for all n. Therefore,
in order to recover the open-open part of I";~, we
must force the closed-channel boundary conditions
on the closed-open part of &t);~, and again force the
open-channel boundary conditions on the open-open
part of )i);&. In particular, for a, two-channel prob-
lem, we can set )P2& to zero by placing &)) into upper
triangular form. i~

The unnormalized solution of Eq. (7) may be re-
written as

with

k;, (r)= k, G,"'tk r)+f G;""tr ~x) (K&V,„(x)rWi.(*))).,(x)+Zkr i,kt" P (x)) dx,

G& "(x~x) = G& '(k&x)G;"'(k&x) —G& '(k;x)G& '(k;x).

The exchange term may be rewritten so that Eq. (11) becomes

kx(r)=k &G, '(k r)+ G, ' (r)~x) Z V, „( )xV rt)x rE B)''P, (x)( „, P, , (y)kd(y)y'dy
0 0

-x '& y "' y dy ++5, m"P(x)+Z B&"&)P (x)x' '& y "' y
dy dx. (12)

"P ( )l (y) "P ( ))i) ( )

o y'+j.

The solution to (11) can be written as

with

$,.~(y) = (C)&q'(y)+ Q )p&'"'(y) C„'y ',
mA m

&z; = Ns(i)+ 1, . . . , Ns(i)+Np(i)

r t x

)i) „'(r)=5 p5; G,'"(k;~)+ G; '"(~ix) Z V;„(x))1)„' '(x)'+Z B,' 'P, (x) „, i P,, (y))i)„' '(y)y dy
0

"'y'dy dx+5, „B& G&2 '&(/~x)D& &(x)dx, (1,5)
0 0

and

0,
g (0() g (+i)

i i e= o=&1, 2, . . . , gN(i)

otherwise

a given pair (m, o. ' ). If D„™=D'"', then the
corresponding column vectors are related by

~( m)
(0.m) ~m (e'm)

Ir) m
~m

0,

D '= PP (x)x', o.; =1,2, . . . , Nz (i)

P~(x), n&=Nz (i)+ I, . . . , N«(i)+Np (i)

where Ns (i) is the number of exchange terms in
channel i, and Np (i) is the number of orthogonality
terms. For a given pair (m, n„), we can generate
a column vector )I)& ~~ using Eq. (15). Similarly,
another column vector ll&,

' ™can be generated for

In addition, computation time can be saved by mak-
ing the observation that the auxiliary function g& '

can be evaluated without any matrix inversions.
The constraint condition that determines the con-

stants I,"is

f P),(x) g;f(x) dx = 0. (1'7)

We impose the constraint that the radial function
must be orthogonal to all the atomic orbitals. We
further introduce the quantity
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P, (r)/r"', o; = 1, 2, . . . , N
& (i)

E &G(&)(r)

a~(r),
(18)

n; =N«(i)+1, . . . , Ns (i)+Np (i)

so that Eqs. (18) and (14) may be combined to yield

where / =1,2, . . . , 2N, and x&x, .
Substituting Eq. (7) into Eq. (22) yieMs

yg 2N
~' (r) = KM„(r)Z„(r-),

CfJ' q-1

C&~&) f E&G(&)(~) y (~) dy (19)
M&„(r) = G& &'&(k&&r) G& G&(0;r) V&G(r)(-1) ',

with
with

1, o. ; = 1, 2, . . . , Ns (i)

0 otherwise.

P-nP j
p=

P-n, P &n

p &n

Qp=
2, p&n

Substituting Eq. (13) into Eq. (19) yields a set of
simultaneous equations to be solved for the con-
stants C " namely, q —n, q&n

2, q~n

1, q&n.

C&&&& D&G(&, 0.)+ Q C&8((()D((((&,&)((()+ my im (20)

dZ pj
df'

(1)dH;; ()

rG (kP'&E Vg (&) &' s(&&)
n

|"(2) ap V,.„~
n

(22)

with

D4""=f, E'""(y))P."~'(X)A, P=o, P;

Noting that the exchange and orthogonality terms
exhibit the short-range behavior of the atomic electron
orbitals, we have that the upper limit of the integral
in Eq. (19) is basically the range of these orbitals.

The unnormalized solution &t& can be determined
at a transformation point xt by integrating the
homogeneous solution &I)&o& and the particular solu-
tions &t('

' of Eq. (15) from zero to r, . This val-
ue of ~ is the point at which the integrals involv-
ing exchange and orthogonality terms have con-
verged. Once the auxilia, ry functions are obtained,
the constants D

&
i' ' are simply determined from

Eq. (21). Then, the constants C &&' are computed
by matrix inversion from Eq. (20). Hence, the
solution P (r, ) may be determined from Eq. (13).
Note that any further contribution to &I&(r) for r &r,
comes only from the direct potential V(r). Know-
ing ((r&), H' '(r&), and H' '(r, ), we may either
continue integrating g(r) to a point where the po-
tential vanishes, or we may project" the & ma-
trices to their asymptotic value by a, technique giv-
en below. Finally, we obtain the reactance ma-
trix from Eq. (10).

The projection procedure comes from noting that

Integration of Eq. (22) yields

Z( )=Z(r, )+f M(r) Z(r)dr,

Z(r) = Z (r, ) + f M(x) ' Z(x) dx,

which may be combined to yield

Z( ) = [I +f M(r) dr] Z(r, )

where the reactance-matrix projection equation is
obtained from Eqs. (7), (8), (10), and (24):

R(ca) —[S&& & .R(r )+S&~ 2&] ~ [S&~ ~& .R(r ) yS&~ 2&]

(25)
with

—S(1;1) S(1,2)

S(2, 1) S(2,2)

R(r, ) =H"'(r, ) H"'(r, ) '. (28)

If the asymptotic form of the direct potential is
substituted into Eq. (24), the resulting matrix S
may be evaluated in terms of the standard incom-
plete sine and cosine functions.

From the reactance-matrix projection equation
(25), we see that the corrections applied to R;,(r, )
are asymmetric for i+j. Therefore, for some
scattering problems, the long-range behavior of
the direct potential especially near threshold may
cause the projection procedure to be inaccurate if
the value chosen for x, is too small. It may be
necessary to choose a larger value for x, so that
the symmetry and convergence of the reactance
matrix are acceptable.

+ f M(r) f M(x) ' Z(x) dxdr . (23)
~t 7g

If the last term in Eq. (23) is neglected, ' we ob-
tain the simple projection equation

Z(~) = S(~, r, ) Z(r, ),
(24)



NONITERATIVE INTEGRAL-EQUATION APPROACH TO. . .

IH. APPLICATION To A MODEL PROBLEM

1589

The formalism discussed in Sec. II is applied to a model two-channel problem described by the coupled
equations

where

(
d l)(i&+1)

+ k, F,&(r) = Q V,„(r)F„&(r)+2YO(P„F,~; r)P, (r)+ M, &P, (r),

V,g(r) = —2(1+ I/r)e

Vq2(r) = 24/r —(—,
' r + 2r+ ~ + 14/r+ 24/r + 24/r )e ",

)/2 256 srp / 4 32 128 255 ')

3
(

Slrm 3 9 27r 81r )

(27)

lg=0, lp=1 .

The level splitting is chosen to be 0.75 Ry, so that k& =k~+0. 75. This model is a truncated version of a
ls-2P approximation for 8-II scattering. The model contains (i) long-range off-diagonal dipole coupling,
(ii) one exchange term in each channel, and (iii) one orthogonality term in each channel.

The unnormalized solution to E(l. (2V) is

)/);, (r)=5„G,'"(k,r. )+f "dxG ' '(r
i

x) Z V, „(x))/)„;(x)+2P;(x) ~

i

——— P;b)(/)&q(y)dy

0

+(2C, +M, ) f; dxG,""(r.ix)P,(x).
= (/)(,

) (r) + Z (/)~u„) C„+Z )/);
' M„;, (as)

where the auxiliary functions are defined as
~x

)/)$g"'(r)=5 05;yG) '(k;r)+
~

dxG ' '(rex) Z V;„(x) /'y)')( )+x2P;( ) xdyi ———iP;(y)(/), 'P(y)
+p 4 p

+5„(25.,+5.,) dxG,""(rix)P,.(x) . (a9)
dp

Note that the inhomogeneous terms for e = 1 and
~=2 differ only by a factor of 2, so that their aux-
iliary functions are related as

(3O)

The exchange constant is

C;q = fo P((y) $(,(y)y 'dy

(31)

with

C!,. '= fo P;(y) 0!,. '(y)y 'dy,
and the orthogonality constant is determined by

(32)

with

M,' '=f P, (y))/', '"'(y)dy .

We solve E(l. (2V) by the NIEM method as fol-
lows.

(i) Obtain the auxiliary functions given in E(l.
(29) by using a convenient integration scheme. We
use the trapezoidal rule with a variable step size,
to integrate the equations. The power of the meth-
od comes from the fact that, as pointed out by Sams
and Kouri, ' the solution at a given value of y de-
pends only on previously calculated values of z.
For example, in E(l. (29) we replace the integrals
by quadrature sums,

(/)„(r„)=6 () 6,~G,
' '(kjr )+Z(d), G,""(r„ir,)

xi Q V,„(r )(/)„'g'(r )+2P, (r ) E(o,(r ' —r, ')

x)'&(&&) ( 1&& )(~ ) + a&& (m. , + as„&)s'&(y )),
where &~ are the weights of the quadrature scheme.
Now we have that there is zero contribution to the
summations over k and l from the terms k= m and

l = k, respectively. Thus, the right-hand side of
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tgis equation does not involve the unknown functions
at x

(ii) Solve for the constants C„, and 1', . Since
the constants C,'., ' and M,',. ' are determined in step
(i), C

&
and M„, are obtained by solving the set of

simultaneous equations given in Eqs. (31) and (32).
(ill) Compute the 1eac'taIlce Illatl'lx R('YI) alld step

out to R. From the information gained in steps
(i) and (ii), the unnormalized solution ((I ) given
in Eq. (2V) can be computed at some transformation
point I', . The matrix R(I', ) is then computed from
Eq. (26) using H"'(r, ) and H"'(y, ) of Eq. (7), and

this matrix is projected to its asymptotic value us-
ing Eq. (25) ~

We solve Eq. (2V) by another numerical proce-
dure in order to obtain solutions that may be used
as a standard against which results from the NIEM
may be judged. The numerical solutions are ob-
tained by integrating the equations outwards and
inwards by Numerov's method, with subsequent
matching to obtain a final continuous solution. The
asymptotic expansion method of Burke and Schey'~
is used to determine the reactance maxtrix. A
combination of these methods has been outlined by
Smith et al.

Table I gives reactance-matrix elements that
agree with the numerical standard within 0. 2/~.
Above and below threshold„a transformation point
of x, = 30 was found to yield acceptable symmetry
and stability, except for E=0.749 and E=O. 751,
where a value of x~ = 60 was required.

IV. SUMMARY AND DISCUSSION

We have presented a computational procedure for
obtaining accurate solutions to the coupled integro-
differential equations which describe a multichan-
nel scattering process. The true solutions to the
equations are obtained from unnormalized solutions
by forcing the boundary conditions associated with
the scattering problem. The unnormalized solutions
can be obtained in the interaction region, where ex-

TABI E I. Reactance-matrix elements at energies
below and above threshold. Column (NIEM) presents re-
sults calculated using the NIEM; (Standard) lists the
values obtained from another numerical procedure.

E (Ry)

0.1
0.2

0.5
0.7
0.749
0.751

0.80

1.0

Bii
A)i

~i i

R(2
R22

Rgp

Rgg

Bi2

Big
A22

NIE M

—1.471
—3.937

3.287
1.870
1.718
l.713
0.0071

—0.166
1.572
0.240

—2. 738
1.273

—0.193
0.686
0.891

—0.220
0.440

Standard

1.471
3.935
3.288
1.871
1.718
1.713
0.0071
0.166
1.572
0.240
2.740
1.273
0.193
0.686
0.891
0.220
0.440

ACKNOWLEDGMENTS

Special thanks are extended to Dr. D. J. Kouri
for his assistance in the initial steps of this work.
We also wish to thank S. P. Rountree and C. A.
Weatherford for their many conversations. We al-
so are grateful for the computing facilities pro-
vided by the I SU Computer Research Center.

change and orthogonality are important, by a sim-
ple technique analogous to the homogeneous and
particular solutions of differential-equation theory.
A procedure projecting the reactance matrix out to
its asymptotic value has been presented.

The NIEM presented here can be readily extended
to scattering problems where the dominant asymp-
totic potentials are Coulombic by using Coulomb
Green's functions.
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