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Total and differential two-photon ionization cross sections are derived in the framework of
perturbation theory, assuming a simple one-electron atomic model. It is shown that for an unpolarized

target the angular distribution of the ejected electrons has the general form a+b cos'-0+c cos'0,
whatever the quantum numbers n, l, of the initial energy level, and the state of polarization {linear or
circular) of the incident radiation. The total transition rates for circularly and for linearly polarized

light are quite different from each other, For an arbitrary nl state, the theoretically allowed maximum

value of their ratio is 3/2. Further analytical and numerical results are presented for hydrogen. The
Appendix contains several useful summation formulas for spherical harmonics.

I. INTRODUCTION

Recent progress in lasers and electron detection
techniques makes it possible to design experiments
in which one measures not only total but also dif-
ferential cross sections of photoionization and
photodetachment processes. The ejection of an
outer electron may be consecutive to the absorption
of one or more photons from the incident beam.
Kith presently available lasers the first case oc-
curs only in negative ions, owing to the weak bind-
ing of the additional electron, whereas photoioniza-
tion of neutral atoms will generally be a multipho-
ton (i.e. , a higher-order) process.

For linearly polarized radiation and an unpolar-
ized target the angular distribution of electrons
emitted in one-photon dipole transitions can be
shown to have the universal form g+ 5 cos e. The
coefficients a and b depend on the photon energy
and on the quantum numbers of the initial atomic
state, and 8 is the angle between the momentum of
the ejected electron and the photon polarization.
This simple form follows from general symmetry
considerations and holds as well for one-electron
as for many-electron atoms and even for mole-
cules. ~ A detailed review of this subject has been
given recently by Cooper and Zare. ' They also
briefly discussed the two-photon ionization process
in the framework of perturbation theory, and
showed that the electron angular distribution still
retains a simple form, namely a+A cosae+ccos48,

provided a single term is retained in the sum over
intermediate states. It is our purpose here to
prove that this result holds in fact quite generally,
without any such drastic truncation of the sec-
ond-order matrix element. This is already known
to be true for atoms initially in s states. 3 A gen-
eral formula, valid for an arbitrary hydrogenic
state I'nlm), was obtained by Zernik a few years
ago. Unfortunately, hi.s analysis is somewhat
obscured by an inadequate choice of the coordinate
axes.

Most previous calculations of multiphoton ab-
sorption processes have explicitly assumed that
the incident radiation is linearly polarized. The
same assumption will be made in Sec. II, in which
we give first the angular distribution for an arbi-
trary one-electron state in a central potential.
Averaging over the magnetic quantum numbers in
this formula, which looks much simpler than
Zernik's, allows us to arrive at the result stated
above. The correct expression of the total cross
section, including an interference term previously
omitted, is also given. In Sec. 1II we derive the
corresponding formulas for circularly polarized
radiation. The angular distribution for unpolarized
atoms has the same simple form as in the preced-
ing case, with, however, different coefficients g,
5, c, and 8 now denoting the angle between the
momentum of the ejected electron and the wave
vector of the incident radiation. Integration over
angles yields a total cross section quite different
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from that for linearly polarized radiation. The in-
terest in this case has been stimulated by a very
nice recent experiment in which total three-photon
ionization rates of atomic cesium by ruby-laser
light have been measured for both linear and cir-
cular polarization. Finally, in Sec. IV we pre-
sent more analytical and numerical results for the
particular case of hydrogen. A few summation
formulas for spherical harmonies used in averag-
ing over rn are derived in the Appendix.

II. LINEARLY POLARIZED RADIATION

4 ~l ~
I

Throughout this paper we shall restrict our-
selves, for simplicity, to the one-electron central-
field model. As in the case of the ordinary (first-
order) photoeffect, a one can show, however, that
taking into account the internal structure of a
many-electron atom only complicates the algebra
without altering the general form of the angular
distribution.

In the nonrelativistic dipole approximation the
two-photon ionization differential cross section
given by second-order perturbation theory reads
(in atomic units)

do n ~ &fl ~ r I s) & s I ~ r ti)
I dQ 4g E)-E +~+ j0

(2. 1)
Here q and ~ are, respectively, the polarization
and energy of the incident radiation, 0 is the mo-
mentum of the ejected electron, E,. and E, are the
energies of the initial and intermediate atomic
states, I is the radiation intensity in W/cm, Io
= V. 019x10~6 W/cma, and o, is the fine-structure
constant. The summation runs over the whole
(discrete and cont'muous) spectrum of the unper-
turbed atomic Hamiltonian, and energy conserva-
tion gives —,'4 =E, +2(g.

In order to separate radial and angular vari-
ables, we introduce spherical coordinates with
the polar z axis along the unit polarization vector
c (Fig. 1). The dipole interaction then takes the
simple form i ~ r = (4m/3) rY, 0(r) We as.sume
that the electron is initially in an arbitrary bound
state 1i) = R„,(r) Y,„(r),and use as intermediate
states in Eq. (2. 1) the complete set 1s)
= R„~(r)Y~~(r"). The fina. l state, which must repre-
sent asymptotically a unit amplitude plane wave
with momentum k plus incoming spherical waves, s

may be written as

1/2

lf)=(2) ZP(2I. +()e "z„,(r)p, ($ i).-
I

(2.2)

R»(r)- (2/7)k) r is(knr~L/2+5~ k+In2kr) .
(2. 3)

In the case of a negative ion (photodetachment) the
logarithmic phase is missing, because the elec-
tron moves in a potential which falls off rapidly as

The integration over angles in the second-order
matrix element is easily carried out after using
the addition theorem for spherical harmonics,

P~ (k r) = Z Y~„(k)Yr,„(r),
N

and yl.elds

(2.4)

8~' "'
Q(-i) e'5I (2k+1){(2Ly])(2l+1)j

s ~ XL

000000) —m0m)

Tu, ~Im~ (2. 5)

where

( ) g &R)),s, l'rlR„„)&R„,IrlR„,)
E„,—E„,+ + go

(2. 6)

The sum in the right-hand side of Eq. (2. 5) con-
sists in fact of four terms, corresponding to the
four distinct channels allowed by the selection
rules. For further reference we shall number
these channels as, say, 1(l- l+1- i+2), 2(l- l+1- l), 3(l- l —1- l), 4(l- I —1- l —2).

Substituting the explicit expressions of the 3-j
symbols~ one finds

FIG. 1. Coordinate system used for linearly polarized
incident radiation (8 is the angle between the direction of
the ejected electron and the light polarization).

For a neutral atom the radial wave functions 8, ~,
normalized on the energy scale, have the asymp-
totic form

I(, do = 2)) n&
~
l(f„,+ l1f, + i1f, ~ ~,2

elm
(2. V)
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(l —m+1) (l —I+2) (/+m+1) (/+m+2)
l+2 (2l+1) (2l+3) (2l+5) l+1, l+2 l+2, me"1+21' l'3

(I-I)(I-~- i) (/+m) (/+I- I)&"'
l 2 -(2/ 3) (2/ 1)2 (2/+ 1) iI l-1, 1-2 l-2, m

(2. 6)

(2.9)

(I-m+i) (/+m+i) (I-m) (/+m)
(2/i 1) (2/i 3) 1+1 l (2/ 1) (2/+ 1)

(2. 10)

Equations (2. V)-(2. 10) are much simpler than the
corresponding Eqs. (10)-(13) in Ref. 4 owing to
the choice of q as polar axis, which allowed us to '

take full advantage of the selection rule 6m=0 in
addition to 4l = + 1.

The total cross section for two-quantum photo-

ionization of a state (11, l), assuming equally popu-
lated magnetic sublevels, is readily obtained by:in-
tegrating Eq. (2. '7) over the angles 8, y, which de-
fine the direction jp of the ejected electron, and
averaging over m. Taking into account the orthonor-
mality relations for the spherical harmonics one gets

I3 2m l3 2(l+1) (/+2)
i 2 2l(/ —1)

15 (2/+1) (2/+3) '"'2 (2l —1) (2l+1) '

(/+1) (4/'+6l+ 5) ) (
l(4/ +I)

( T (
4l(l+ I)

(2(sl)s(2(s8) I I iil +(3) 1)(2(sl)s I i-1 il +(slsl)s ( i s, i-i, l)) ( )

For EW 0 channels 2 and 3, which lead to the same
final state, are both open. The last term in Eq.
(2. 11) arises from the interference between these
two channels and has been previously omitted. '

From Eq. (2. V) it is clear that the angular dis-
tribution of electrons emitted from a state (n, l, m)
does not depend on the angle y, a consequence of
the symmetry with respect to rotations about the
polar axis. We shall prove now that, although the
8 dependence for the different magnetic sublevels
is quite intricate indeed, containing powers of cos8
as high as 2E+4, the observed angular distribution
will assume, for an unpolarized target, the simple
form mentioned in Sec. I, whatever the orbital
quantum number l. To this end we use the well-
known summation formulas

(2. i2)

6'(2/ +1) 1 Zm
I Y; I

= l(/+ 1) sin 8, (2. iS)

»(2/+ i) ' ~ m'I I'l. l'= I(/+ I)»n28

X, =Re(T* T2, , e'"2' 2') (2. 15)

where the subscripts p, p', correspond, respec-
tively, to the channels (l- X- L), (l- X'- L') one
eventually gets

10 do =a+bcos 8+cocos g,p 4

dn „,
where

(2. i6)

&& [I+ —,
'

(/ —1) (/+ 2) sln28], (2. 14)

together with the identities (A2), (AS), 2,nd (A5),
derived in the Appendix. Introducing for brevity
the new quantities

wn
2/ i 2 (l+1) (/+2) (3l +5/+4) l(l —1) (3l + l+2)

16 (2l+ 3) ll + 22+ 12 +
(2/ 1)2 33+ 44+ 34

6(/ —1) l (l + 1) (l + 2)(„,)(8„,)
( is+ is+Xss Xss)), ( )

5= (3)s() s( s [((+2)(1+8)(l—4)Xii+1(1 +51+8)Xss —6(1+2)(l +1+2)Xs)

+ 2 [(/+1) (l —Sl+4)X33+(/ —1) (l —2) (l+ 5)X44 —6(l —1) (/ +/+2)X34]
(2/ —1)

+ ((1'+1+6)X„—8(l —1) (1+4)X„—3(1+2) (1 —3)Xis —15(l —1) (1+2)Xis)), (2. 18)2l(l+ 1)
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c = 1 &(2l+ 1)
2 2 [3(l+3) (l+ 4)X»+ 3l(l —I)Xzz —10l(l+ 3)X&2]

(l+1) (l+2)
16 2l+ 3

+ 2 [3(l+ 1) (l+2)Xgs+ 3(l —2) (l —3)X44 —10(l+ 1) (l —2)X34]
l(l -1)
(2l - I)'

+
2l(l+1)

(2l - I) (2l+ S)
(3 (1 —1) (1+2)Xag —5(E —1) (l —2)Xg, —5(1+2) (1+3)X„+35(E —1) (1+2)X„]) (2 12)

Alternatively, one can express the averaged
differential cross section of Eq. (2. 16) in terms
of Legendre polynomials:

=A+ BP2 cosO +CP4 cos(9
nl

where, in particular, A = (I/47) ) (Io/I)o'„,.
III. CIRCULARLY POLARIZED RADIATION

(2. 20)

Fox, Kogan, and Robinson recently reported
preliminary experimental evidence for the ioniza-
tion of atomic cesium by simultaneous absorption
of three ruby-laser quanta, and indicated that the
efficiency of the process depended on the state of
polarization of the incident radiation, even though
the atoms were unpolarized. They also offered a
physical explanation of this interesting effect,
which does not occur in ordinary photoionization,

by noticing that polarized radiation generates po-
larized intermediate atomic states. This induced
polarization will manifest itself in the subsequent
virtual transitions and finally in the total rate of
the process.

To get further insight into this polarization ef-
fect, it seemed helpful to investigate the situation
in the somewhat simpler case of two-photon ioniza-
tion. Specifically, we shall start anew the calcu-
lation of Sec. II by assuming that the incident ra-
diation is (rigIIt-hand) circularly polarized, in-
stead of being linearly polarized. In this case it
will be more (convenient to choose the polar z axis
along the photon wave vector (Fig. 2). The dipole
interaction operator then reduces to e ~ r = —(4n/
3)'~'xY;, (r), and the integration over angles in
the second-order matrix element of Eq. (2. 1)
yields

8~' '~'
Z = — Z (-z) e~ ~ (2)). +1)[(2I.+I) (2l+1)] ~

XL

where T~ are the reduced transition amplitudes defined in Eq. (2. 6). Instead of Eq. (2. 7) one finds now

with

PT2

M g,2+M )+M )d~)

(l + m + 1) (l + m + 2) (l + m + 3) (l + m + 4)
(21+ 1) (2l+ S)'(2l+ 6)

(l —m) (l —m —1) (l —m —2) (l —m —3)
(21 3) (21 I)'(21 1)

(3.2)

(3.3)

(s.4)

(l —m) (l —m —1) (i+m+1) (i+m+2) 1M r'=
(2l + 1) TE g 3+21 1

TE g 3) e Y'3 g(k) ( 6)

Integrating over k and averaging over m, one further gets for the total cross section the result

Io, 2w o! 3(l+ 1) (l+ 2)
I 2 3l(l —1)

I "' » (21+1)(2l+3) "" (2l- 1) (21+1)

l(l+1)(2l —1) g l(l+1)(2l+3) 2 l(l+1).3(2(„)(„„). , I "2(2) E)(2(„)*I
-i.'I"(„„).". . -. ),

which is clearly different from the corresponding expression in Eq. (2. 11).
Using again Eqs. (2. 12)-(2.14), and the new summation formulas (A7), (Ag), and (All), given in the Ap-

pendix, it is readily shown that the angular distribution of the photoelectrons emitted from an unpolarized
state (n, l) has a general form similar to Eq. (2. 16). We prefer, however, to express the result in this
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case in the equivalent form

The coefficients are found to be

Io do' i I 3=g +b sin 8+g sin 8 .
nl

(3. 7)

a'= td(2(+E) (1 —1)l(1+1)(1+2)((31
3~)

(X«+X„+3X„)+3, (X„+X«+2X„)

2
+(31 )(2 5) (Xl, +X~4+X~, +X~4)), (3.2)

5'= If™r(d+2))El(1+1)(( s- [3(1+2)(Z+3)Xgg —(Z'+Z —3)xgq —2(l —3)(l 2)X0]

+ ~ [3(/ —1) (/ —2)X44 —(/ +/ —3)X~3 —2(/ —1) (/+4)Xaq]—
1 8 44 33 (2/ —1)(2/ + 3)

&& [(/ —3) (/+ 2)X~, + 5(/ —1) (/+ 2)X,4+ (/ + / —3)X33+ (/ —1) (/+ 4)Xg4]
~

2 (3.9)

c' =
5 ro(2)+ E) (( s [3(E+ E)&X~~+ 3(E —E)~X@—EO(E)~X~~]+

( )g
[3(1—E)CX~~+ 3(l —3)~X~~

—10(l —2)~X~~]+
( )

[3(l —E)~X~~+ 35(Z —E)~X,~ —5(Z)~XE~ —5(l —2)~X~~]), (5. 10)
2

where we have used for simplicity the notation
(A. )4 = X(X+ 1)(X+2)(X+ 3). The ten quantities X,&, are,
of course, those already defined in Sec. II.

In terms of Legendre polynomials one has

Io 2m n—v = (d(4X] ~+ 5X2z) 2 (3.12)

while in Eq. (3.6) only a single term subsists:

=A'+B'P2 cos6 +C P4 cos8

(3. iS)

Io, 4&'&—0~ = AX»,I 15
(3. iS)

where A = (1/4)]')(Io /I)v„,.
Important simplifications occur in the particular

case of s states. Equation (2. 11), for instance,
reduces to

since for right-hand (left-hand) circularly polarized
radiation channel 2 is forbidden by the selection
rule /)m=+1 (km= —1). Hence, the ratio of the
total two-photon ionization rates for circular ver-
sus linear polarization is

v'/v = 6(4+ 5X„/X„)-'. (3. 14)

FIG. 2. Coordinate system used for circularly polar-
izedincident radiation (8 is the angle between the direc-
tion of the ejected electron and that in which the light
propagates) .

According to their definition, both X» and X» are
non-negative, and therefore the maximum value
of the above ratio is —,. This happens to be quite
close to the experimental value of 1.28+ 0. 2 re-
ported in the case of cesium. '

More generally, it may be shown" that the theo-
retically allowed maximum value of the ratio v'/v
for N-photon ionization is (2/)/- 1)!!/N!. For
1V=3 this gives —'„which is also just above the ex-
perimental result' of 2. 15+0.4 for cesium irra-
diated with ruby- laser light.

The differential cross sections also become sim-
pler for l= 0. In particular, as seen from Eqs.
(3. 8) and (3.9), in this case one has a'= b =0, so
that the angular distribution must be proportional
to sin4e. "

For arbitrary /, Eqs. (2. 11) and (3.6) can be
combined to give
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TABLE I. Total cross sections per unit intensity for
the two-photon ionization of hydrogen in the 1s state by
linearly (cr) and circularly (cr ') polarized radiation, in
cm /W. Numbers in parentheses indicate powers of 10. (a)

y (A)

982
1003
1007
1025.83
1054
1122
1136
1215.68
1420
1823.52

1.sos(-34)

3.O34(-34)

1.1VO (-32)

cr'/I

S.626(-3V)

2.381(-38)

1.666 (- 32)

cr '/cr

1.500
3.2vs(-1)
4.O36(-3)
1.216
1.500
3.153(-1)
6.3Vl(-5)
1.295
1.500
1.425

10'

10 l

1000
I

1200
I

1400
I

1600
I

1800 gg)

l+1 l0' 0' =y T~ g ~+2 Tt g g (3 16)2l+1 ' ' 2l+1
(

t

(b)-

where y= (I/Io)(v'u/3) v. This clearly shows that
the maximum value of the ratio o'/o is equal to —,',
exactly as found above for s states.

IV. TWO-PHOTON IONIZATION RATES IN &&OROGEN

The one-electron model provides an adequate
approximation for a large number of atomic sys-
tems, including alkali atoms, ' negative ions, "and
so on. However, in all these cases, for the cal-
culation of the transition amplitudes T„~it is nec-
essary to resort to numerical methods, either for
summing term by term over the intermediate
states or for integrating an inhomogeneous radial
equation.

In the particular case of a pure Coulomb poten-
tial, i. e. , for hydrogenic atoms, the relevant sec-
ond-order matrix elements can be evaluated analyt-
ically in closed form. ' This is achieved by re-
writing Eg. (2. 6) as

T~~((o) = &R„~~rG~(W)x~ R„,), W= E„+++iO
(4. 1)

10"

10'
4000

1O'
4000

I

5000

l

5000

I

6000

I

6000

I

7000

l

7000

(c) .

TABLE II. Total cross sections per unit intensity
for the two-photon ionization of hydrogen in the 2s state
by linearly (cr) and circularly (o') polarized radiation, in
cm /W. Numbers in parentheses indicate powers of 10.

FIG. 3. Ratio o'/cr for two-photon ionization from the
hydrogenic states (a) ls, (b) 2s, and (c) 2p. Arrows in-
dicate the positions of resonances.

4479
4603
4628
4861.33
5243
5596
5667
6562.79
7294.08

cr/I

5.5V8 (-32)

1.263 (-31)

2.42v (-29)

cr I/g

s.391(-3v)

3.661(-38)

3.464(-29)

cr '/cr

1.500
2.677(-1)
1.233(-5)
1.261
1.500
2.794(-1)
2.3v3(-v)
1.312
1.427

where

( ) g ~Rv~) &R.~~G~R'= (4.2)

is the radial Coulomb Green's function for angular
momentum A., which is known explicitly. The dis-
crete energy levels are in this case E„=—1/2n 2

(I degeneracy), and the phase shifts in Eq. (2. 3)
are given by 6~= q~—= argl (L+1—iq), q= 1/k.

Substituting in Eg. (4. 1) the wave functions for
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4480
4620
4638
4861.33
5260
5650
5696
6562. 79
7294. 08

2.274{-32)
~ ~ ~

6.435 (-32)
~ 0 ~

2.922 {-29)

3.231(-34)

7.792(-34)

4.289 (- 29)

1.500
2.226(-1)
1.232(—2)
1.328
1.500
2.012(-1)
1.065 (-2)
1.398
1.468

the initial gl state and for the final state, together
with an integral representation of G~, one finds

T),1,((d) = —2C2, , iC„,f dt (coth2t)

x f dr r' e M (-2jjzr )fq~ip g/ 2 Z

x f"drr"'e-'"'""""t!f,(2r/n)

where

I~„[2(rr')'~ sinht/$], (4. 3)

(n+ l)!
n(2l + 1)! (n —l —1)! (4.4)

TABLE III. Total cross sections per unit intensity
for the two-photon ionization of hydrogen in the 2p state
by linearly (a) and circularly (0') polarized radiation,
in cm /W. Numbers in parentheses indicate powers of 10.

and

C,', ,=i' (2.~)-"'e" '~1(L,+I- i&)(/(2I. + I)!
(4. 5)

are normalization constants, and M„„(z)denotes
the regular Vfhittaker confluent hypergeometric
function.

The parameters $ and q are related to the photon
energy (d (in a. u. ) by

(= n(l-2 n'u)) "'-, q=n(4n'(d-1) "', (4. 6)

and are both real in the interval between the thresh-
olds for two-photon and one-photon ionization.

From the calculation it becomes apparent that
any of the required amplitudes T~~ may be ex-
pressed as a combination of at most three Appell
hypergeometric functions of two variables of type
F„oneof which is degenerated. It seems, how-
ever, difficult to state this result in a single gen-
eral formula covering the four possible channels.

Hereafter we present the explicit expressions ob-
tained for the different transition amplitudes appro-
priate for the two-photon ionization of the lowest-
lying states, with principal quantum numbers n= 1
and pg = 2.

For s states only two amplitudes are involved,
namely, T, z and T«, corresponding, respective-
ly, to channels 1 and 2. Their expressions are as
follows:

1s state:

2 s/2

Tq, 2= — 2 $' q", e ""e'"
~

I"(3—iq)~ (1 —$) '(2 —$) (1+ $) '($ +g )

~ F, 2 —;3+i',3 —ig;3 —;z,z — Fj 4 —;3+i@,3 —ig;5 —;z,z (4. 7)

( 1/2
T, =( — $ q' ~ e ""e'"~

[
I'(1 —iq)] (2 —g) (1+)) ($ +vP) (1—2$)E (2 —$;3+i', 3 —iq;3 —g; z, z )

where

—(I+2/) E~(4 —g;3+i', 3 —iq; 5 —g;z, z')+12(2 —$)(1+)) (1 —z) '"(1—z')
4 —g I+)

$ = (1—x) '~, q= (2x —1) '~3, (t)=2arctan($/q), x=2&v (a. u. ),

(4. 8)

2s state:

1 —5 (5+5() 1 —5 (3 (5)- (4. 9)

T =p 2 g rp "~e'" ! I'(3-iq)~ (2 —$) (2+$) ($ +q ) E,(2 —$;3+i@53—iq;3 —$;z, z )

2 2

( 2, (4 —1; 3+ (g, , 3 —( 5 5 —1; g, g') —165'(2 ~ 6) '(1 —g) ' "(1—g') ' " (4. 10)

T = m
' 2 g vP e "e'"

~

I'(1 —iq)~ (2 —$) (2+$) ($ +q ) (2 —5$)E,(2 —$;3+i@53—iq;3 —$; z, z')
W

—(3+55)
4 (I ) E,(4 —1;3+15;3—15; 5 —3;g, g') —16(6 —12)(2+5) g(1 —g)' '"(1 —g') ""

(4. 11)
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and

)=2(1—x) '/', q=2(2x-1) '/', (/)=2arctan($/q), x=8(d (a. u. ),

2-( (6+1(), 6-( (6-1() (4. 12)

For p states three amplitudes are involved, namely, Tz „Tz„andT». They correspond, respective-
ly, to channels 1, 2, a~d 3. One finds the following:

2p state:

Z = (3v)-"2"g"~"'e~ "e " 'l r(4- ~n) l
(2- &) '(3- &) '(2+ g) '(&'+n') '

Eq(3 —g;4+i' 42—iq;4 —$; z, z ) — E,(5 —$;4+i7t, 4 —iq; 6 —$;z, z ) (4. 13)

Tz, =(3v) '/z2"(' rp e "e "/
l

I'(2-i7))l(3 —() '(2+$) '(g'+q') '(18 —11()E,(3 —$;4+i', 4 —iq;4 —g;z, z')

—(16+11(') ( ) E(6-4;4+iz 4 —(6 6 —(;z, z')+160(3—()(2+ () '(1 —z) "(1—z') ' ', (4. 14)

To &
———(37/) 2 $ rp e ""8'" 'l 1'(2 —ill)l (1 —$) '(2- g) '(2+ ]) '(t'+ q') ' Z~(1 —$; 2+i@22 —iq; 2 —g; z, z')

2- 2

( Ez(3- (;2+(33 —i6; 4 ,—4; z, z')+32(1 —()(2+4) z(1 —z) '"(1—z') ' '", (4, 16)

wliere (, r/, y, andx are the same as for the 2s state.
The double series expansions of the Appell func-

tions converge very rapidly when co varies between
the thresholds for two-photon and one-photon ion-
ization, i.e. , —,'&x&1. In Tables I-III we have
listed a few values of the total cross sections per
unit intensity for linearly and circularly polarized
incident radiation, computed, respectively, from
Eqs. (2. 11) and (3. 6) in conjunction with Eqs.
(4. V)-(4. 15). The represented wavelengths include
the two-photon threshold, resonances, relative
minima of o or v', as well as minima and maxima
of the ratio o'/o. The latter is seen to attain ef-
fectively the theoretically allowed value of —,

' (to

within the usual roundoff). On the other hand, for
the 2P state the ratio o'/&x never goes so low as it
does for the s states. This is probably due to the
fact that for l 40 even with circularly polarized
light there is more than one channel open. A more
intuitive representation of the ratio o /o as a func-
tion of the incident wavelength is given in Fig. 3.
It is interesting to notice that in the interval ex-
tending from the two-photon threshold up to the first
resonance ionization by circularly polarized light
is more efficient than by linearly polarized light.
This is true also in the vicinity of the other reso-
nances, although the ratio o'/o does not reach its
highest values at the latter.

AppENDIx

All the summation formulas needed for the present calculation can be obtained in an elementary way by
using recurrence relations among spherical harmonics in conjunction with Eqs. (2. 12)-(2. 14).

For instance, after multiplying

(1+2)B m2 1/2 (1+1)2 2 1/z

(2f+3) (2f+ 5) "'"' (2f+1) (2f+3) (Al)

with its complex conjugate and with A. —m, one easily gets

(f + 1)2 mz) )1/2 ( (1+2)2 ~S 1/2

(2f ~ 1) (2f + 3) /I IR(2f ~ 3) (2f ~ 5)

{8X —4[3k +l(l+3)]sin 8+5(2(l+3)sin48} . (A2)
1 (l+ 1) (l+2)

The substitution l- l —2 then gives
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P 2 )&/2 / (/ 1)2 ypP~'™
l&(2/ +,) (2/ I),l l, (2/ ,) (2, 3),

(SX'- 4 [SX'+ (I + 1) (l —2)]sin 8+ 5(l + 1) (l - 2) sin'8] .
16m 2I,- 1

Similarly, from the relation

(/+ 1)2 2 I/2 (/+ 2)2 2 I/2

l, m (2/+ 1) (2/+ 3) (2/+ 3) (2/+ 5) t+2, m

2l(l+ 1)—2m —1 ( l —m (l - 1) —m
(2/ —1) (2l+3) ' i((2/+ I) (2/ —1) (2/ —1) (2l- 3)

one obtains

(l 1)2 2 )1/2 /2 2 (/+1)2 2 )1/2 (/+2)2 m2 )1/2
2 (2l-3) (2/- I)/' (2l- 1) (2l+1) (2l+1) (2l+3) ) (2/+3) (2l+ 5))

1 (/ —1) l(l+1) (l+2) . 3 . 4 1 (l- 1) l(l+1) (l+2)
16m (2/- 1) (2l+1)(2l+3) 2m (2/-1) (2l+ 1) (2/+3)

Gn the other hand, the relation

(i+m+3)(/+m+4)l' (l- m) (l- m- I))'/3
3+1,m+1 (2/+ 3) (2/+ 5) ) ~l+2, m+2 (2/ 1) (2/+ 3} ~l

yl, m+&

leads to

(As)

(A4)

(A5)

(l- m) (l- m —1) (i+m+3) (/+m+4) t
2 Z (™1)(i+m+2) (2l+1) (2l+3)'(2l+ 5) /I

F$.2,„.2 g, ,g

[6(/ —1)—8(/ —3) sin38 —5(l+ 3)sin48], (AV)
l(/+1) (/+2)

16m 2l+ 3

and the relation

(l + m + 1) (l + m + 2) ~/ 2 (l - m - 2) (l - m - 3) ~/ ~

l-l, m+1 (2/ 1) (2/+ 1) . I, m+3 (2/ 1) (2/ 3)
' l-g, m+2 q

which is simply obtained from (A6) by changing l in / —2, yieids

2 g(/ (l
(/- m —2) (l —m —3) (i+m+1) (i+m+2) '/~

(2l —3) (2l- 1)'(2l+1) t~2y 95+2 l y ttl+2

[8(l+2) —6(l+ 4) sin 8 —5(l —2) sin'8] . (Ag)
1 l(l —1) (l+1)

Finally, from

(i+m+1) (i+m+2) (i+m+3) (i+m+4)
~(2/+ 1) (2/+ 3)'(2/+ 5)

(l —m) (l —m —1) (l + m + 1) (l + m + 2) '/ 2 (l —m) (l —m —1) (l —m —2) (l —m —3)
(2/- 1)'(2/+ S)' l, m+2 (2/- S) (2/ -1)'(2/+ 1) 2s el+2

(A10)

it follows that

(l —m) ~ ~ ~ (l- m —3) (/+m+1) ~ ~ ~ (i+m+4) '/

(2l- 3) (2l+5) l+2etn+2 & 2e &a+2

16m
(l —1) l(l+1) (l+2) [8—40sin38+35sin 8] =—(l —1) l(l+1) (/+2)P4(cos8) . (A11)

2m
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Compton Scattering of High-Energy Electrons from Helium*~
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The electron-impact energy-loss spectrum of He at a scattering angle of 7' has been mea-
sured with an energy resolution of 2.7 eV full width at half-maximum using 25-keV incident
electrons. A binary-encounter approximation was used to obtain the electron Compton pro-
file from the cross-section differential with respect to both the energy loss of the incident
electron and solid angle of the scattered electron d o./dF. dQ. The electron Compton profile
was corrected for interference scattering from pairs of target electrons and exchange. It was
then compared to theoretical and x-ray experimental values for the Compton profile. The ef-
fects of background, multiple scattering, and energy resolution are discussed. The electron-
impact and x-ray methods for measuring Compton profiles are compared.

I. INTRODUCTION

In 1923 Compton' reported that the spectral line
of the inelastically scattered x rays was significant-
ly broadened, and Du Mond in 1929 derived a
Doppler-broadening theory which pointed out that
Compton scattering should be ideal for the mea-
surements of momentum distributions of the elec-
trons in mol. ecules. But it has only been recently' '
that such experiments mere performed mith a high
enough accuracy to make meaningful comparisons
between theory and experiment. An excellent re-
view of the literature up to 1971 has been given by
Cooper. ' All. recent studies have been performed
using x rays, although a,s Hughes and Mann'0 showed
in 1938 the energy spectrum obtained from electron
scattering shows the same characteristic Compton
profile. They did not, however, obtain good agree-
ment with the theory"'2 which Duneanson" as-
cribed to multiple scattering. This discouraged
all further work using electron sources, which was
unfortunate, and the authors will. attempt to show,

using He as an example, that high-energy-electron
spectroscopy is in most aspects superior to photon
scattering.

II. EXPERIMENT

The high-energy-electron spectrometer used in
these studies has been partially described in an
earlier paper. '4 The present apparatus is essen-
tially identical. to that given in Ref. 14 with the
solid-state detector replaced by an electrostatic
differential velocity analyzer of the Mollenstedt
type" which had an optimum resolution of at least
l. 5x10 ' [0.4 eV full width at half-maximum
(FWHM)/25 keV]. An incident electron beam in-
tensity of 200 pA obtained f rom a telefocus elec-
tron gun' with a diameter of 400- p, FWHM was
al.lowed to impinge at a right argle on a. gas jet with
a nozzle diameter of 125 p, , and a flow rate of 1.6
&&10 He atom& per second. The optimum vacuum
of the scattering chamber, which had a pumping
speed of about 15000 liter/sec, was 3&& 10 7 torr
and increased to 4&&10 torr during an experiment,


