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Theory of XLL Auger Energies Including Static Relaxation
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A previously overlooked relaxation energy R is introduced into the intermediate-coupling formulas of
Asaad and Burhop to calculate the KLL Auger energies of the elements from Z =10 to 100. By employing
the concept of equivalent cores, together with the work of Hedin and Johansson on polarization energies of
electron holes, a method was developed to estimate R accurately from ground-state two-electron integrals
calculated by Mann. These integrals were also used in the intermediate-coupling calculation. Agreement with

experiment is excellent. A table of KLL Auger energies based on this work is given. These energies appear
to be preferable to the older semiempirical values because they are comparable in accuracy and they have a
sound theoretical basis. Their adoption for analysis of Auger spectra is suggested. The semiernpirical values

were based on two sets of parameters for light and heavy elements. They gave good fits only by using
unrealistic values of the two-electron integrals in the intermediate-coupling equations, because the relaxation

energy was omitted. In addition to predicting KLL Auger energies accurately, this work shows that the
spin-orbit coupling constant f for 2p electrons in two-hole states is essentially the same as in one-hole
states. The success of the intermediate-coupling calculations also shows that two-electron integrals in these
two-hole states are accurately equal to those calculated for neutral atoms. The relaxation-energy concept can
be applied to other problems.

I. INTRODUCTION

In an Auger process an atom loses energy by a
transition from an initial state possessing an in-
ner-shell vacancy to a final state in which the in-
ner vacancy is filled but two new vacancies are
present further out. An electron is ejected in this
transition. The Auger electron's kinetic energy
is termed the "Auger energy" of the transitior|.

In this paper a theory is described that permits
the prediction of E (KLL), the KI.L, Auger energies
of the elements, in terms of one-electron binding
energies and two-electron Coulomb ahd exchange
integrals. The application of this theory to KLiLi
energies alone was reported earlier. ' In this paper
the theory is described more thoroughly and ap-
plied to predict all nine KLL components. The key
innovation in this work is the recognition of a pre-
viously overlooked "static" relaxation-energy term
that has a considerable effect on E(KLL). Inclu-'
sion of this term allows the accurate prediction of
ELL Auger energies, without resorting to multi-
parameter fits of experimental Auger energies.
Theoretical values of E(KLL) are derived and found
to be in excellent agreement wi.th experiment.

The earlier theory of Auger energies is briefly
reviewed in Sec. II. The static relaxation energy
is described in Sec. III. Calculation of the KLI
Auger energies of the elements is described in
Sec. IV, and the results are discussed in compari-
son with experiment in Sec. V.

II. EARLIER THEORY

Asaad and Burhop~ made a major advance in the
understanding of the KLI Auger spectrum by con-

sidering the effect of intermediate coupling in the
two-hole final state. For the nine observable KLL
lines they found expressions of the form

E(KL,L„S)=E(K) —2E(Li) —E (20, 20),

E(KL~L3, 'D) = E(K) —E(Ip) —E(L~)

—k (21, 21)+ $5 F (21, 21) (1

+ —,'t.- ([~»S'(21, 21)+ -'t 1'+ -'t'}"'
(and seven other equations).

The other seven equations are omitted here for
brevity because our final equations [Eqs. (17)] are
slightly modified forms of these equations. The
notation in Eqs. (1)is standard. The final-state-
term symbol is included in the expression for the
Auger energy. One-electron binding energies are
given as E(K), etc. Two-electron integrals have
their usual notation. Coul. omb and exchange inte-
grals will be denoted as .J and K, respectively,
while the component Slater integrals are denoted
as E and Q . The spin-orbit coupling constant
is denoted as f, It can be obtained empirically
from the empirical binding energies by using the
relation f= 2[E(Lzl —E(Ls)]/3. Asaad and Burhop
estimated the two-electron integrals by f itting the
data pf Mladjenovic and SlKtis for +=83, and
assuming these integrals to vary as

E, c-w(z- z, )(1 —~z'),
where the (1 —o.Z~) term accounts for relativity.
Later workers found difficulties with the form of
Eq. (2). Hornfeldt, Fahlman, and Nordling4 found
it necessary to adjust A to fit new data, and Horn-
feldt~ found that a relativity term of the form
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Implicit in the derivation of Eqs. (I), as of any
similar expression for the Auger energy, is the
assumption that the final state can be reached from
the initial. state through a series of simple steps,
each with known energy. The steps for the KLL
transition are, for element Z,

Z- Z(K)'+ e

Z-Z(L)'+ e

Z(i)'- Z(LL')" + e- .

(3a)

(3b)

(3c)

The energies of the first two processes, E(3a) and
E(3b), are indeed known: They are just the binding
energies E(K) and E(L). Step (3c) is different,
however. Coupling of orbitals L and L in the
final state can be handled by standard intermediate-
coupling methods. This can be done using Eqs.
(1), as prescribed by Asaad and Burhop. Let us
denote the sum of all the final-state coupling terms
in each Auger transition by %{X), where X labels
the transition. Equations (1}can then be written

(1+ pz') gave a better fit. More recently Asaad'
derived a theoretical form (1+az~) for this factor.
A complete table of KLL Auger energies for
6 Z - 104 was compiled4'5' by fitting high-accu-
racy experimentalAuger energies around Z= 40 to
the Asaad-Burhop theory, using the term (1 —o.z~)
for 6~ Z~40 and (1+ Pz~) for Z&40.

This table is very useful in identifying and inter-
preting KLL Auger lines, and the interpolated
energies are in quite good agreement with new ex-
perimental values. However it has now become
clear, as more experimental energies of high ac-
curacy have become available, that the theory was'

incomplete. The necessity to use different forms
for the relativistic correction factor in the heavy
and light elements constitutes a serious def iciency
in the theory. Now that reliable Hartree-Fock
values of the two-electron integrals are available
from the calculations of Mann, it is also clear
that the values of the two-electron integrals esti-
mated using the larger values of A given by Asaad
and Burhop are reasonable, while those estimated
using Hornfeldt's expression are not. For ex-
ample, the former gives an estimate of F (2s, 2s)z,
= 143. 5 eV, while the latter would give 82. 8 eV for
this integral. Mann's value is 147. 3 eV. Such a
large discrepancy is unacceptable: The integral
F (2s, 2s) is affected very little by environment,
etc. Thus the 82. 8-eV value cannot be a meaning-
ful estimate of this integral. But Hornfeldt's value
is required if the KL,L, energy is to be fitted by
Eqs, (1). We are therefore forced to conclude that
a rather large term (-70 eV in this case) has been
overlooked in the theory. This term is the sub-
ject of Sec. III.

III. STATIC RELAXATION ENERGY

E(KL,L~; S) =E(K) —2E(L,) —&(KL,Lq, S),

E(KL~L~; 'D) =E(K) —E(L~) —E(L~) —F(KLzLs; iD),

(and seven other equations), (4

where the detailed expression for each F can be
obtained by comparison of Eqs. (1) and (4). Use
of the Asaad-Burhop equations is thus equivalent
to assuming that the binding energy in step (3c) is
just the sum E(L )+ P; i. e. , the one-electron
binding energy of the L,.orbital in the neutral atom
plus the final-state interaction term F. To test
the validity of this assumption let us consider the
structure of F.

If F were really the difference between E(L )
and E(3c), it should account for the differences in
binding energies of the L orbitals in the two initial
states; i. e. , the neutral atom Z and the ion Z(L )'.
In fact F accounts only for those differences in the
L, binding energy that arise from changes in the
L orbital. Thus Fo(LL ) is the leading term in 8:.
We may understand the contribution of F (LL ) to
the sum

E(L )+ F =E(L )+F0(LL )+

as representing most of the amount by which the
binding energy of the L orbital is raised from Z
to Z(L)' because there is a hole in the L orbital
in Z(L)'. This is expected, because Fo(LL )
represents most of the electrostatic interaction be-
tween electrons in the L orbital and the L orbital.
The remaining terms in 5 also describe the effects
on the L.binding energy that arise from coupling
of the L and L holes in the final state, including
both spin-orbit and electrostatic terms. The
formulas given by Asaad and Burhop [of which
Eqs. (1) are examples] give a complete description
of the coupling of the L and L hole states. Of
course the use of ground-state values' for the LL
two-electron integrals, as well as the ground-state
spin-orbit coupling constant, requires the assump-
tion that these quantities do not change appreciably
in going from the ground state to the two-hole state.
While very small changes in the values of these
quantities are expected, appreciable changes are
not. Particularly for deep-lying hol. e states the
constraints of the atomic potential are too strong
to allow significant variations in these parameters.
Empirically, of course, the success of multipl. et-
structure theory of valence electrons (in which the
constraints are much weaker) argues strongly for
the constancy of the electrostatic and spin-orbit
parameters. The strongest evidence for their
constancy will in fact be provided implicitly by the
success of our theory (Sec. V). Thus we must look
elsewhere to explain the discrepancy between the
values of two-electron integrals that are required
to fit Eqs. (1) to experiment and values that could
be considered reasonable.
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Most of the shift in the L.-orbital binding energy
can presumably be expressed in terms of changes
in two-electron integrals involving L as one of the
orbitals, since the orbital energy e(L ) can be
written entirely in terms of one- and two-el. ectron
integ rais:

~(L') = I (L')+P [2Z(L'f ) —SC(L'f)] . (5)

Here h(L) is the energy of interaction of an elec-
tron in the L orbital with the nucleus, J is a Cou-
lomb integral. , and K is an exchange integral. To
study changes that a hole in the L orbital would
make in the sum over two-electron integrals, we
can break this sum into three sums, over "inner"-
shell terms-just the K shell in this case-over
"intrashell" terms, and over "outer"-shell terms,
with principal quantum number e & 2.

Hedin and Johansson have considered the prob-
lem of passive-orbital relaxation during photoemis-
sion. 9 They calculated the quantity ( 0 [ V~ I k), de-
fined as the expectation value of a potential due to
polarization of the orbitals when an electron in the
0 orbital is removed. Setting k= L, we have

&L'I v, ls, ')=~K h~(L'f)-E(L'i)], (6)

where 4 ref ers to the diff erence in the sum with
and without the L orbita. l occupied, and (L l V~ tL )
is exactly the quantity that we are seeking.

In calculations on sodium and potassium atoms
and ions, Hedin and Johansson found that contribu-
tions from the inner-shell sum are negligible. The
intrashell term is small. and apparently fairly con-
stant for these elements [5. 55 eV for (Na'2s),
6. 15 eV (Na'2P), S.97 eV (K'2s), and 5. 52 eV
(K'2P)]. The outer-shell sum can be large, how-
ever. The reason for this is perfectly straight-
forward. In the neutral atom each L electron
shields the electrons in the outer orbitals almost
completely from one unit of nuclear charge. When
an L vacancy is created the outer orbitals relax
inward as if Z had been increased by one unit. This
increases the value of all integrals Z(L i) and

K(L j ) in the outer-shell sum, because the elec-
trons in outer shells can then interact more strong-
ly with the L „electrons.

The hypothetical two-step path from the neutral
atom Z to the doubly ionized species Z(L L )2'

leads to a (somewhat artificial) conceptual separa-
tion of the total outer-sheil relaxation energy ex-
perienced by the L electrons into two parts. We
shall call these the dynamic and static relaxation
energies. The dynamic terms appear during ioniza-
tion. The outer orbitals relax adiabatically during
the ejection of an L electron, thereby lowering its
binding energy. Hedin and Johansson showed that
the true binding energy is quite accurately given
as the orbital energy plus a dynamic relaxation

and

V V~ V+ V~~1 1 I y / (9'.)

The difference between these two expressions is
the static relaxation term, which will be denoted
R, Thus

R= g(V** —V ) .
For computational convenience we note that it is
a very accurate approximation, at least in the
"equivalent-cores" scheme described in what fol-
lows, to use

R=—V+ —V

which follows because V** —V* is quite accurate-
ly equal to V * —V . The equivalent approximation
has been confirmed extensively by direct calcula-
tion in the equivalent-cores case.

term —,'(S i V~ [L). Thus for the first ionization
step,

E(L) =-e(L) -k&L
I V. IL&.

There is also a dynamic term for the second ioniza-
tion.

The static relaxation term arises explicitly be-
cause of the practice of using the binding energy
E(S. ) of the L orbital in a neutral atom in Eq. (Sc).
Denoting by V, ~, and V** the total two-electron
interaction energies of the L or L orbitals with
other orbitals, the two neutral-atom I binding
energies in Eqs. (1) can be expandede as

(L)-E(L)=I(L)+h(L )+&LI vIL&+ &L
I
v

+«'
I
v

I
L'&+ l «'

I V~ I

L'& «)
where

(v
«'I V. IL'&=&L'I«*- v) IL'&.

The correct express'. 'on, using the L binding ener-
gy in a unipositive atom Z(L)', is
—E(Sb) —E(3c)

= -E(S.) E(S,', in Z(L-)')

=I(L)+~(L')*+&L
I
vIL&+-'«I v IL&

y(L IV+ IL )+ —(L
I

v+ls, ), (9)

where

& s,
'

I vg I

L'
&

=
&

L'
I ( v++ —v +) is, ') .

Making approximations at the level made by Hedin
and Johansson, omitting the one-electron terms,
and shortening the notation to ( L j (V* —V) (L)
= V* —V, and ( L'

l (V+ —V) I L ) = V*' —V', etc. ,
the remainders of the right-hand sides of Eqs. (8)
and (9) become, after substitution,

(8')
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Z -Z(XL)"+ 2e (12)

could be treated as one ionization process. By
using arguments similar to those of Hedin and
Johansson, the energy of this process can be shown
to be

-E = 2 12( L) +2 P' +2 (2 P**—2 P}, (13)

where the last term is a dynamic relaxation energy.
There is formally no static term in this case be-
cause the two electrons leave together, but the
dynamic term is twice what it was in the two-step
process, so that the total relaxation energy is un-
changed. To show this we can rewrite the terms
in Eq (13) t.hat are to be compared to those in
Eq. (9):

(i3 )

If Eq. (9 ) is applied to a two-step process involv-
ing two equivalent electrons the primes on V'* and
V** may be dropped. Then, since 2&* is quite
accurately equal to p+ p'**, Eqs. (9 ) and (13 )
are equivalent, and the Auger energy that would
be calculated using the one-step (double) ioniza-
tion would indeed have the same relaxation energy
as in the two-step case.

The matter of dropping the primes above is of
some concern. We are constrained in effect to
using a two-step approach for actual calculations
because we need to use experimental binding ener-
gies. The total relaxation energy should not de-
pend on the olde~ of the two steps, however. If
it did there would be some justification in using
an average value for a given transition (i. e. ,
—,[R(LL ) + R(L L)]), but it would be preferable for
R(LL ) and R(L L) to be at least nearly equal. In
fact they are in the calculations in Sec. IV.

To calculate ( L ( V~ ( L ) rigorously we would
need L hole-state wave functions for all the ele-
ments. However, a rather accurate approxima-
tion can be made by substituting the Coulomb and

If we consider the case of two equivalent L elec-
trons, and drop the primes from V'~ and P** in
Eq. (9 ), the latter expression may be written

v+ —.'(v*- v)+ v+ (v*- v)+-'. (v**-v*) .
(9")

The first and third terms are initial-state potential
energies that are included in the orbital energies &.

The second and fifth terms are dynamic relaxation
energies, and the fourth is the static relaxation
energy. To the very good accuracy with which
2p'*= P+ P'** holds, the total static and dynamic
relaxation energies are equal.

The two-step process for reaching the two-hole
state is not really necessary. If the two L orbitals
are identical, an alternative process can be con-
sidered, in which the two electrons come out at
the same time. In this process

exchange integrals of the next higher element for
the corresponding L hole-state integrals. This
"equivalent-cores" approximation has been found
to give very good values for (0 I V~ Ik) in estimat-
ing atomic binding energies. ' We shall use this
approximation in what follows. We can write as
the general expression for the KLL Auger energy
associated with the final state X,

E(KLL
& X) =E(K) —E(L)

—E(L ) —F(KLL; X)+R(X). (14)

Denoting the intrashell contribution to R by x,
neglecting the negligible contribution of inner-shell
relaxation, and using the equivalent-cores approxi-
mation, we have for the L shell

I I

R(2l) =x+P, f(ll ) 6 [Eo(2l, n l )]
n') 2

Here I 0 and 1"~ are Slater integrals that appear in
the expansions of the Coulomb and exchange
integrals, respectively. N(n, l ) is the population
of the n 1 subshell. The coefficients f(ll ) and

g(ll ) are readily evaluated using standard multi-
plet theory. " They have been given earlier, ' but
are set out in Table I for convenience. These co-
efficients apply rigorously to closed outer shells,
but only relatively small errors are incurred if
they are used for open-shell atoms. This amounts
to ignoring multiplet coupling between the L elec-
trons and open valence shells.

The Coulomb terms in Eq. (14) all have the
form 4I' . The exchange terms can also be writ-
ten as 4 6 . The equivalent-cores approximation
can be written

4 E (2l, n I ) = E (2l, n I; Z + 1) —Ea (2l, n I; Z ),
(i6)

AG2(2l, n,l ) = Gn(2l, n I, ; Z+1) —G"(2l, n I; Z) .

Combining Eqs. (13)-(15), we have a strong theo-
retical basis to predict KLL Auger energies.

IV. CALCULATIONS

The calculated Auger energies are given in
Table II. Details of the calculation are described
in this section.

The binding energies used here were taken from
the compilation of Siegbahn et al. , except for the
rare gases, for which Ref. 12 was used. Thus,
except for the rare gases, the binding energies
are referred to the Fermi energy. As Siegbahn
et e/. noted, the precision of these energies is
about 1 eV, but uncertainty about the chemical
composition of the surface introduces an uncer-
tainty of several eV into many of the binding ener-
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TABLE I. The f and g coefficients in Eq. (15).

g («') go(«') gi («') g2(«'') g, («') g4(«') g, (u') g, («')

10

10
3
5

'1

10

2
5

2
?

L0
33

10 10
??

gies.
The P(KLL; X) terms were calculated using the

Slater integrals of Mann. Since these are non-
relativistic, empirical relativistic correction fac-
tors were used. These factors had the form
(1+ aZ~) as prescribed by Asaad, e and the value of
a was determined for Fo(2s, 2s), Fo(2s, 2P), and
Fo(2P, 2P) by fitting the theory to the experimental
Auger energies given in the tabulation of Sevier. '
The values 4.2&10 ', 3. 5x10 ', and 2&&10 ', re-
spectively, were thus determined for the above
three integrals. The data were inadequate to deter-
mine n values for the F~(2P, 2p) and G'(2s, 2p)
integrals: Accordingly no relativity corrections
were made for these two integral. s. It is important
to make corrections for the first three integrals,
but their accuracy is not critical except for the
heavy elements. For Z =40, 70, and 100 the cor-
rection factors for F~(2s, 2s) (for which the cor-
rection itself is largest) are, respectively, 1.OV,

l. 21, and l. 42. The empirical adjustment of the
relativity factors is the weakest feature of this
calculation. If Slater integrals from relativistic
Hartree-Pock calculations were available, this
would not be necessary, and the calculation would
have no adjustable parameters whatever. As it is,

uncertainties in the relativity corrections and the
corrections themselves are smal. l enough up to
Z= 50 or 60 that the a factors do not figure as very
important parameters in the calculation.

The relaxation energies 8 were calculated using
Egs. (14) and (15), and employing Mann's Slater
integrals. The relaxation terms B(2s) and R(2P)
differed by so little (-1 or 2 eV) that it was not
deemed worthwhile to calculate them separately,
and a common value was used (thus the order of
the steps in the hypothetical two-stage ionization
is really immaterial). The intrashell term z was
taken as 8 eV for neon (Z= 10) and allowed to de-
crease linearly to zero at argon (Z= 18) because
in this way the total relaxation term 8 was made
to match the polarization energy (2P t V~ I 2P) as
given by Hedin and Johansson for Na' and K', which
are isoelectronic to Ne and Ar. For Z&18 intra-
shell contributions were neglected. Finally the
calculated values of 8 had to be smoothed some-
what especially through transition series, because
the direct use of Eq. (14) is only viable for closed
outer shells. The adopted values of 2i,'are given in
Table II.

The full equations that were used to calculate the
Auger energies are

E(KLqLi) = E(K)+8 —2E(L,) —Fo(2s, 2s),

E(KL,L2 P, ) =E(K)+R —E(L,) —E(Q) —F (2s, 2p)+ 4$ —{I Wg (2s, 2p) —4gj + ~2@) ~
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E(KL,L, 'P) = E(Z)+ R -E(I.,) -E(I ) -F'(2s, 2P)+!g+ {f -.'G '(2s, 2P) - -,'g]'+ —,'g'j'~',
E(KL&L~ SPO) = E(K)+R —E(L,) —E(L,) F—a(2s, 2p) + 3G'(2s, 2p),

E(KL&L, 'P, ) = E(K) + R —E(L,) - E(L,) —F (2s, 2P) + M&'(2s, 2P) + & t;,
E(KLqLS'Dp) =E(K)+R-2E(Lp) —F (2P, 2P)+ ~SF~(2P, 2P)+ +4l'-{[~35F~(2P, 2P)+ 't]—+~& ]

E(KLsLS Pq)=E(K)+R-2E(Ip)-F (2P, 2P) +$ F (2P 2P)+al'+{[~ F (2P, 2P)+ 'f] —+ 'f j-'

E(KLSLS~PO) =E(K)+R -2E(L~) —Fo(2p, 2p) -ioF (2p, 2p)+ gt; +{[1OF (2p, 2p) —pf]~+2/ ~j ~~,

E(KLgLp'So) =E(K)+R-2E(Lg) —Fo(2p& 2p) -~goF~(2p, 2p) + af —{[~IF (2p, 2p)-2&l +2& j'~~

V. DISCUSSION

The values in Table II represent the only compre-
hensive set of theoretical KLL Auger energies,
They shouM provide the best estimates of KLL
energies in all cases for which neither accurate
experimental values nor two-hole-state Hartree-
Fock (or Dirac-Fock) calculations are available.
They show excellent agreement with experiment,
as discussed. in this section. The KL, L, energies,
which were reported earlier, ' are treated sepa-
rately first because they are independent of inter-
mediate coupling in the final state.

Table III lists the KL,L, energies from this work,
the semiempirical values, ' and experimental values,
for elements in which experimental values are
available. is The experimental values have a wide
range of accuracy and reliability. In some ele-
ments, several experimental values were avail-
able. For these cases either an average was taken
or a single value chosen, depending on the relative
accuracy of the results. The agreement between
experiment and theory is excellent. . For neon, the
single rare gas in Table III, the accuracy of the
binding energies is such that the 3-eV difference
probably signifies that the 6-eV intrashell relaxa-
tion energy is an overestimate. The estimate of
751 eV is, however, much cl.oser to experiment
than the semiempirical value of 761 eV. The other
thirty-eight cases in Table III were studied ex-
perimentally as sol.ids, and questions of the sur-
face oxidation state probably introduce an uncer-
tainty of ™5 eV into the comparison of theory and
experiment. Kith this uncertainty added, 31 of
the 38 estimates fal.l within the ranges of experi-
mental uncertainty. In 23 of the 39 cases Egs. (17)
predict the experimental values more accurately
even than do the semiempirical energies (two cases
are even, and the semiempirical energies are
closer in 14 cases). We conclude that Eg. (17) is
quit accurately valid for predicting KLgLy ener™
gies, which involve the relaxation term and the
single 81ater integral Fo(2s, 2s) in addition to
empirical binding energies.

To test the accuracy of using the other tabulated
Slater integrals in the intermediate coupling calcu-

lation, as well as the relaxation-energy calcula-.
tion for lines involving 2P electrons, let us com-
pare the other eight predicted KLL energies with
exper iment. Although experimental KL,L Auger
energies are available for forty-four of the 91 el.e-
ments for which theoretical values are listed in
Table II, the wide variation in accuracy and com-
pleteness of these data renders exhaustive com-
parison of all the data unnecessary. Therefore,
for brevity, the. data on only nine elements were
sel.ected for comparison with theory. These ele-
ments, Z=10, 19, 29, 40, 53, 62, V1, 83, and
94, were chosen (a) to give representative cover-
age of the Periodic Table, (b) to use the more ac-
curate and complete data available subject to (a),

I.O-,»
09- '
0.8-

0.7-
pp

Q6- ~
0.5-

0.4- '
03-

o(KLiL&)~
10 20 50 40 50 60 70 80 90

Atomic number

FIG. 1. Reduced KI L Auger-energy differences for the
elements. Here E(g is the experimental energy of com-
ponent X. The nine components are labeled on the plot.
In the ordinate ratio the denominator is always the total,
theoretical spacigg, from Table II. The curves are
theoretical, obtained by using theoretical energies from
'gable II in the numerator. Filled circles were obtained
by using expeximental values from Ref. 13 in the numera-
tor. Thus there is no scaling to fit experiment to theory.
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TABLE II. Predicted KLL Auger energies (eV).

Sp

KLiLi
Pi

KLiL2

3p
KI iL3

3P

KLiL)
P

KLiL3
D2

KL)L3
P

KL3L3

3p

KL3L3

iso
KL2I 2

Ne
Na

Mg
Al
Si
P
S
Cl
Ar
K

Ca
Sc
Ti
V
Cr
Mn
Fe
Co
Ni
Cu

Zn
Ga
Ge
As
Se
Br
Kr
Hb
Sr
Y

Zr
Nb

Mo
Tc
Ru
Rh
Pd
Ag
Cd
In

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39

40
41
42
43

45
46

48
49

6
8

10
12
14
16
18
20
22
25

28
31
33
36
39
42
45
48
51
54

57
58
60
61
62
63
65
67
68
70

72
73
75
76
78
80
81
83
85
85

751
922

1 101
1 296
1 511
1 739
1 980
2 247
2 524
2 814

3 121
3 451
3 793
4 163
4 552
4 953
5 373
5 806
6 265
6 734

7 216
7 713
8 218
8 749
9 283
9 839

10 411
10 994
11593
12 211

12 849
13 501
14 176
14 862
15 570
16 294
17 034
17 793
18 563
19347

774
948

1 131
1 332
1 550
1 781
2 032
2 302
2 584
2 880

3 194
3 529
3 880
4256
4 647
5 054
5 480
5 922
6 385
6 863

7 351
7 744
8367
8 903
9 447

10012
10 592
11184
11792
12 419

13065
13725
14 409
15 105
15 820
16 554
17303
18 070
18 849
19642

785
961

1 145
1 348
I 568
1 800
2 053
2 325
2 608
2 906

3 221
3 557
3 910
4286
4 679
5 088
5 515
5 959
6 423
6 903

7 393
7 873
8 414
8 953
9 500

10 069
10653
11249
11863
12 497

13150
13 819
14 512
15 217
15 944
16 689
17452
18233
19 02S
19839

785
961

1 145
1 347
1 568
1 800
2 052
2 324
2 607
2 905

3 220
3 555
3 907
4 283
4 676
5 083
5 509
5 953
6 416
6 894

7 382
7 884
8 398
8 934
9 478

10 043
10 623
11214
11822
12 449

13 095
13756
14439
15 135
15 851
16 584
17333
18 100
18 880
19673

785
961

1 145
1 348
1 569
1 801
2 053
2 326
2 609
2 908

3 223
3 560
3 913
4290
4685
5 094
5 522
5 968
6 433
6 914

7 405
7 778
8 430
8 970
9 518

10 089
10675
11273
11889
12 524

13179
13 850
14544
15 251
15 980
16 726

7 491
18 273
19069
19881

806
986

1 174
1 383
1 607
1 841
2 103
2 379
2 666
2 970

3 292
3 633
3 995
4 376
4 772
5 187
5 620
6 073
6 541
7 030

7 525
7 802
8 562
9 105
9 662

10 241
10 834
11437
12 060
12 703

13 364
14 042
14744
15 459
16 194
16 948
17720
18 510
19313
20 134

809
989

1 178
1 388
1612
1 848
2 110
2 386
2 674
2 979

3 302
3 645
4008
4390
4789
5 205
5 640
6 095
6 566
7 058

7 556
7 904
8 602
9 149
9 710

10295
10 894
11505
12 136
12 787

13457
14 145
14 858
15 583
16 331
17 099
17887
18692
19512
20 351

809
989

1 178
1 387
1 611
1 847
2 109
2 384
2 672
2 976

3 299
3 640
4 003
4 384
4781
5 196
5 631
6 085
6 554
7 045

7 542
8 009
8 586
9 132
9 693

10276
10 874
11484
12 114
12 764

13433
14 120
14 832
15 557
16304
17 071
17 858
18 662
19481
20 320

802
981

1168
1 376
1 599
1 833
2 094
2 368
2 654
2 957

3 279
3619
3 980
4 360
4754
5 167
5 598
6 049
6 516
7 002

7 495
7 782
8 524
9 063
9 616

10188
10775
11372
11987
12 622

13274
13942
14633
15337
16 059
16 801
17556
18331
19119
19920

Sn
Sb
Te
I
Xe
Cs
Ba
La
Ce
Pr
Nd

Pm
Sm
Eu
Gd

Tb
Dy

50
51
52
53
54
55
56
57
58
59
60
61

86
87
88
88
89
90
92
93
95
96
98
99

62 101
63 103
64 104

65 105
66 107

20 149
20 968
21 806
22 659
23 516
24 415
25 320
26 239
27 190
28 161
29 153
30 160
31 188
32 238
33 305

34393
35 503

20 454
21 282
22 130
22 992
23 862
24 766
25 680
26 613
27 573
28 553
29 556
30 574
31613
32 762
33750 .

34 850
35 970

20 668
21 517
22 386
23 271
24 166
25 095
26 038
27 001
27 993
29 007
30 047
31 104
32 183
33 288
34 412

35 560
36 733

20 485
21 313
22 161
23 024
23 894
24 798
25 713
26 646
27 606
28 587
29 590
30 609
31648
32 707
33 786

34 886
36 006

20 712
21 562
22 432
23 319
24 216
25 146
26 090
27 054
28 047
29 063
30 104
31 162
32 243
33 348
34 474

35 623
36 797

20 973
21 831
22 710
23 604
24 514
25 447
26 400
27 377
28 377
29 402
30 453
31521
32 611
33 725
34 861

36 020
37 204

21 209
22 090
22 991
23 909
24 846
25 805
26 788
27 795
28 829
29 889
30 978
32 085
33 217
34378
35 561

36 769
38 007

21 177
22 057
22 957
23 874
24 810
25 769
26 751
2". 758
28 790
29 850
30 937
32 044
33 175
34335
35 517

36 725
37 962

20 740
21 576
22 433
23 303
24186
25 093
26 018
26 963
27 930
28 920
29 933
30 962
32 010
33 078
34167

35 277
36 407
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TABLE II. {Continued)

Ho
Er
TIIl
Yb
Lu
Hf
TR
W

Re
Os
Ir
Pt
Au

Hg
Tl
Pb
Bi
Po

At
Ru
Fr
RR
Ac
Th
Pa
U

Np
Pu

Am
Cm
Bk
Cf
Es
Fl11

67 109
68 110
69 112
70 113
71 115
72 117
73 118
74 120

75 121
76 122
77 123
78 124
79 126
80 127
81 129
82 130
83 132
84 133

85 135
86 136
87 137
88 138
89 139
90 140
91 141
92 142
93 143
94 144

95 145
96 146
97 147
98 148
99 149

100 150

1
Sp

KLqLi

36 633
37 781
38 953
40 146
41 359
42 588
43 832
45 097

46 387
47 694
49 026
50 382
51761
53 160
54 567
56 007
57 468
58 939

60 450
62 006
63 552
65 134
66 754
68 379
70 056
71 748
73 486
75 257

77 116
78 928
80660
83 352
85 294
87 286

1
Pg

KI gL2

37 110
38 270
39 453
40 657
41 882
43 123
44 379
45 657

46 961
48 280
49 625
50 993
52 385
53 795
55 221
56 673
58 153
59 640

61 165
62 725
64292
65 895
67 519
69 167
70 856
72 567
74317
76 103

77 956
79 620
81 562
84 224
86 187
88 190

3P

KL(L3

37 929
39 148
40 393
41 662
42 956
44 269
45 601
46 961

48 349
49760
51 198
52 666
54163
55 6S3
57 224
58 800
60 405
62 030

63 695
65 401
67 125
68 892
70 688
72 516
74393
76 302
78 703
80 266

82 349
84 422
86 447
89 496
91748
94 050

3Pp
KL(L2

3V 147
38 307
39 490
40 696
41 921
43 162
44 418
45 697

47 001
48 321
49 666
51 035
52427
53 838
55 264
56 717
58 197
59 685

61 210
62 770
64 338
65 941
67 566
69 214
70 904
72 615
74 366
76 153

78 006
79 670
81 613
84 276
86 239
88 242

3P2
KL(L3

37 995
39 214
40 460
41 731
43 026
44 340
45 673
47 034

48 423
49 835
51 275
52 744
54 242
55 763
57 305
58 882
60 488
62 115

63 781
65 488
67 213
68 981
70 778
72 607
V4 485
76 395
78 797
80 362

82 446
84 519
86 546
89 596
91 849
94152

KI2I 3

38 411
39 641
40 898
42 180
43 486
44 811
46 155
47 529

48 930
50 355
51 807
53 287
54799
56 329
57 890
59 479
61 103
62 745

64 424
66 136
67 882
69 670
71 471
73 322
75 212
77 141
79 554
81 134

83 211
85 137
87 373
90 393
92 666
94980

P
KL3I 3

39 271
40 561
41 881
43 227
44 604
46 003
47 423
48 879

50 366
51 883
53 430
55 010
56 628
58.269
59 946
61659
63 409
65 190

67 011
68 869
70 772
72 726
74699
76 731
78 809
80 938
84 002
85 360

87669
90 003
92 323
95 731
98 294

100 908

3P

KL3L3

39 226
40 514
41 833
43 180
44 555
45 953
47 373
48 828

50 314
51 830
53 376
54 956
56 573
58 213
59 889
61601
63 351
65 131

66 951
68 809
70 711
72 664
74 636
76 667
78 745
80 873
83 936
85 293

87 601
89 935
92 254
95 661
98 224

100 837

37 557
38 728
39 921
41 138
42 374
43 627
44 893
46185

47 501
48 834
50190
51 571
52 976
54 397
55 842
57 306
58 804
60 307

61 846
63 410
64 999
66 622
68 250
69 920
71622
73 353
75115
76 916

78 763
80279
82 431
85 064
87 047
89 061

and (c) to favor the more chemically stable ele-
ments, subject to (a) and (b).

The comparison is made in Fig. 1, which is a
"reduced" intermediate-coupling plot of the quan-
tity.

E(X) —E(KL,Lg)
[E(KLqLS Pp) —E(KLgL, '80) j,„

versus Z. The curves in Fig. 1 were drawn by
connecting points obtained by using the theoretical
energies in Table II in both the numerator and de-
nominator above. The points in Fig. 1 were ob-
tained by inserting experimental. energies from
Ref. 13 into the numerator, while retaining the
theoretical denominator. Thus the ordinate scale
in Fig. 1 is not adjusted between theory and ex-
Periment. This constitutes an extremely strin-
gent test of the theory embodied in Eqs. (17).
From the excellent agreement we conclude:

(i) It is quite accurately valid to use the same

values of R for 2s and 2P electrons generally. The
small positive deviations of the experimental points
involving 2P electrons in the lightest elements pro-
vide some basis for believing that R(2P) is slightly
larger than R(2s) for these cases. The ordinate in
Fig. 1 is designed to display differences in R(2s)
and R(2p) as a systematic deviation of all points,
save those for the KL,L, 'go l.ines, from their
curves.

(ii) The spin-orbit coupling constant f for a two-
hole state in the L shell is accurately equal to that
of a one-hole state. This follows because g was
calcul. ated in each case fromm the Lz and J~ binding
energies.

(iii) The Slater integrals calculated by Mann, s

together with Eqs. (17), give a very accurate de-
scription of multiplet structure in the two-hole
states.

The plot shown in Fig. 1 was suggested by those
that Siegbahn et al. and Sevier'3 have given. The
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TABLE III. Comparison of XI ~I ~ energies (in eV).

10
11
12
19
23
25
26
29
30
32

35
38
40
42
47
49
52
53
55

@th

751
922

1 101
2 814
4163
4953
5 373
6 734
7 216
8 218
8 V49
9 839

11593
12 849
14 176
17793
19 347
21 806
22 659
24 415

b
+expt

v48. o(4)
922. S(4)

11O1.3(4)
2 809
4159(6)
4 e62(2)
5 376
6 V35(6)
v 22o(4)
8 212(6)
8 742 (10)
9 86o(lo)

11584.4(16)
12 851.8(15)
14 176.1(13)
17740 (60)
19352(1)
21 vsv(lo)
22 652 (10)
24395(14)

&sz'

761
928

1 105
2 815
4168
4 956
5 374
6 732
7 214
8 216
8 749
9 840

11595
12 851
14179
17797
19354
21 814
22 668
24 426

56
62
63
65
66
69
70
71
74
75
78
79
80
81
83
84
92
93
94

25 320
31 188
32 238
34393
35 502
38 953
40 146
41 359
45 097
46 387
50 382
51 761
53 160
54 567
57 468
58 939
71 748
73 486
75 257

b

25251(6)
311V5(2O)
32224(2o)
34430(50)
35496(6)
3S 95S(25)
40 149(4)
41 351(lo)
45 oso(4o)
464OO(25)
50 370 (100)
51 780 (20)
53141(25)
5451O(1OO)
57 467 (30)
5s e2o(5o)
vl v38(2o)
73 555 (150)
75 180(15)

@SE

25 330
31199
32 247
34402
35 512
38 958
40 151
41 361
45 0'97

46 385
50 375
51752
53 149
54 554
57 451
58 918
71 704
73 437
75 204

'This work.
"From Ref. 13. Errors in last place given parenthetically. Some values are selected or averages.
'Semiempirical values from Ref. 7.

nature of the ordinate scales is very different,
however: No adjustment has been made in Fig. 1,
which therefore real. ly constitutes an "unnormal. —

ized" comparison of theory and experiment.
Extension of this approach to other problems

should be feasibl. e. For other Auger spectra in
which the final state involves two holes in inner
shells, this theory is applicable as it stands. Final
states with outer-shell vacancies will require dif-
ferent estimates of R. Qf course the relaxation-
energy concept can be usefully applied to any prob-
lem involving multiple-hole final states, not only
to Auger spectra.

At this point the KLL Auger energies of the ele-
ments can, in all cases except rare gases, be

estimated by Eq. (17) to sufficient accuracy that
the remaining small differences between theory
and experiment could be l.argely attributed to un-
certainties involving chemical. shifts in the sur-
faces of the thin samples used to determine the
binding energies and/or Auger energies. As mea-
surements on well-characterized surfaces be-
come availabl. e, it shouM be possible to detect
chemical and solid-state shifts in Auger energies,
as wel. l as to test the relaxation theory more quan-
titatively.
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