Theory of KLL Auger Energies Including Static Relaxation*

D. A. Shirley

Department of Chemistry and Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

(Received 26 January 1973)

A previously overlooked relaxation energy R is introduced into the intermediate-coupling formulas of Asaad and Burhop to calculate the *KLL* Auger energies of the elements from Z = 10 to 100. By employing the concept of equivalent cores, together with the work of Hedin and Johansson on polarization energies of electron holes, a method was developed to estimate R accurately from ground-state two-electron integrals calculated by Mann. These integrals were also used in the intermediate-coupling calculation. Agreement with experiment is excellent. A table of *KLL* Auger energies based on this work is given. These energies appear to be preferable to the older semiempirical values because they are comparable in accuracy and they have a sound theoretical basis. Their adoption for analysis of Auger spectra is suggested. The semiempirical values were based on two sets of parameters for light and heavy elements. They gave good fits only by using unrealistic values of the two-electron integrals in the intermediate-coupling equations, because the relaxation energy was omitted. In addition to predicting *KLL* Auger energies accurately, this work shows that the spin-orbit coupling constant ζ for 2p electrons in two-hole states is essentially the same as in one-hole states. The success of the intermediate-coupling calculations also shows that two-electron integrals in these two-hole states are accurately equal to those calculated for neutral atoms. The relaxation-energy concept can be applied to other problems.

I. INTRODUCTION

In an Auger process an atom loses energy by a transition from an initial state possessing an inner-shell vacancy to a final state in which the inner vacancy is filled but two new vacancies are present further out. An electron is ejected in this transition. The Auger electron's kinetic energy is termed the "Auger energy" of the transition.

In this paper a theory is described that permits the prediction of E(KLL), the KLL Auger energies of the elements, in terms of one-electron binding energies and two-electron Coulomb and exchange integrals. The application of this theory to KL_1L_1 energies alone was reported earlier.¹ In this paper the theory is described more thoroughly and applied to predict all nine KLL components. The key innovation in this work is the recognition of a previously overlooked "static" relaxation-energy term that has a considerable effect on E(KLL). Inclusion of this term allows the accurate prediction of KLL Auger energies, without resorting to multiparameter fits of experimental Auger energies. Theoretical values of E(KLL) are derived and found to be in excellent agreement with experiment.

The earlier theory of Auger energies is briefly reviewed in Sec. II. The static relaxation energy is described in Sec. III. Calculation of the KLLAuger energies of the elements is described in Sec. IV, and the results are discussed in comparison with experiment in Sec. V.

II. EARLIER THEORY

Asaad and $Burhop^2$ made a major advance in the understanding of the *KLL* Auger spectrum by considering the effect of intermediate coupling in the two-hole final state. For the nine observable *KLL* lines they found expressions of the form

$$\begin{split} E(KL_1L_1; {}^{1}S) &= E(K) - 2E(L_1) - F^{0}(20, 20), \\ E(KL_2L_3; {}^{1}D) &= E(K) - E(L_2) - E(L_3) \\ &- F^{0}(21, 21) + \frac{2}{25} F^{2}(21, 21) & (1) \\ &+ \frac{3}{4}\xi - \left\{ \left[\frac{3}{25} F^{2}(21, 21) + \frac{1}{4}\xi \right]^{2} + \frac{1}{2}\xi^{2} \right\}^{1/2}, \end{split}$$

(and seven other equations).

The other seven equations are omitted here for brevity because our final equations [Eqs. (17)] are slightly modified forms of these equations. The notation in Eqs. (1) is standard. The final-stateterm symbol is included in the expression for the Auger energy. One-electron binding energies are given as E(K), etc. Two-electron integrals have their usual notation. Coulomb and exchange integrals will be denoted as J and K, respectively, while the component Slater integrals are denoted as F^k and G^k . The spin-orbit coupling constant is denoted as ζ . It can be obtained empirically from the empirical binding energies by using the relation $\zeta = 2[E(L_2) - E(L_3)]/3$. Asaad and Burhop estimated the two-electron integrals by fitting the data of Mladjenovic and Slätis³ for Z = 83, and assuming these integrals to vary as

$$F, G \sim A(Z - Z_s)(1 - \alpha Z^2), \qquad (2)$$

where the $(1 - \alpha Z^2)$ term accounts for relativity. Later workers found difficulties with the form of Eq. (2). Hörnfeldt, Fahlman, and Nordling⁴ found it necessary to adjust A to fit new data, and Hörnfeldt⁵ found that a relativity term of the form

7

1520

 $(1 + \beta Z^3)$ gave a better fit. More recently Asaad⁶ derived a theoretical form $(1 + \alpha Z^2)$ for this factor. A complete table of *KLL* Auger energies for $6 \le Z \le 104$ was compiled^{4,5,7} by fitting high-accuracy experimental Auger energies around Z = 40 to the Asaad-Burhop theory, using the term $(1 - \alpha Z^2)$ for $6 \le Z \le 40$ and $(1 + \beta Z^3)$ for Z > 40.

This table is very useful in identifying and interpreting KLL Auger lines, and the interpolated energies are in quite good agreement with new experimental values. However it has now become clear, as more experimental energies of high accuracy have become available, that the theory was incomplete. The necessity to use different forms for the relativistic correction factor in the heavy and light elements constitutes a serious deficiency in the theory. Now that reliable Hartree-Fock values of the two-electron integrals are available from the calculations of Mann,⁸ it is also clear that the values of the two-electron integrals estimated using the larger values of A given by Asaad and Burhop are reasonable, while those estimated using Hörnfeldt's expression are not. For example, the former gives an estimate of $F^{0}(2s, 2s)_{Zr}$ = 143.5 eV, while the latter would give 82.8 eV for this integral. Mann's value is 147.3 eV. Such a large discrepancy is unacceptable: The integral $F^{0}(2s, 2s)$ is affected very little by environment, etc. Thus the 82.8-eV value cannot be a meaningful estimate of this integral. But Hörnfeldt's value is required if the KL_1L_1 energy is to be fitted by Eqs. (1). We are therefore forced to conclude that a rather large term (~70 eV in this case) has been overlooked in the theory. This term is the subject of Sec. III.

III. STATIC RELAXATION ENERGY

Implicit in the derivation of Eqs. (1), as of any similar expression for the Auger energy, is the assumption that the final state can be reached from the initial state through a series of simple steps, each with known energy. The steps for the KLL' transition are, for element Z,

$$Z - Z(\overline{K})^* + e^- , \qquad (3a)$$

$$Z - Z(\overline{L})^{+} + e^{-} , \qquad (3b)$$

$$Z(\overline{L})^{+} \rightarrow Z(\overline{L} \overline{L}')^{2+} + e^{-} . \qquad (3c)$$

The energies of the first two processes, E(3a) and E(3b), are indeed known: They are just the binding energies E(K) and E(L). Step (3c) is different, however. Coupling of orbitals \overline{L} and $\overline{L'}$ in the final state can be handled by standard intermediate-coupling methods. This can be done using Eqs. (1), as prescribed by Asaad and Burhop. Let us denote the sum of all the final-state coupling terms in each Auger transition by $\mathfrak{F}(X)$, where X labels the transition. Equations (1) can then be written

$$\begin{split} & E(KL_1L_1; {}^{1}S) = E(K) - 2E(L_1) - \mathfrak{F}(KL_1L_1; {}^{1}S), \\ & E(KL_2L_3; {}^{1}D) = E(K) - E(L_2) - E(L_3) - \mathfrak{F}(KL_2L_3; {}^{1}D), \\ & \text{(and seven other equations)}, \end{split}$$

where the detailed expression for each \mathcal{F} can be obtained by comparison of Eqs. (1) and (4). Use of the Asaad-Burhop equations is thus equivalent to assuming that the binding energy in step (3c) is just the sum $E(L') + \mathcal{F}$; i.e., the one-electron binding energy of the L' orbital in the *neutral* atom plus the final-state interaction term \mathcal{F} . To test the validity of this assumption let us consider the structure of \mathcal{F} .

If \mathfrak{F} were really the difference between E(L')and E(3c), it should account for the differences in binding energies of the L' orbitals in the two initial states; i.e., the neutral atom Z and the ion $Z(\overline{L})^*$. In fact \mathfrak{F} accounts only for those differences in the L'_{s} binding energy that arise from changes in the L orbital. Thus $F^0(LL')$ is the leading term in \mathfrak{F} . We may understand the contribution of $F^0(LL')$ to the sum

$$E(L') + \mathfrak{F} = E(L') + F^{0}(LL') + \cdots$$

as representing most of the amount by which the binding energy of the L' orbital is raised from Z to $Z(\overline{L})^*$ because there is a hole in the L orbital in $Z(\overline{L})^{\dagger}$. This is expected, because $F^{0}(LL')$ represents most of the electrostatic interaction between electrons in the L'_{c} orbital and the L orbital. The remaining terms in F also describe the effects on the L'_{c} binding energy that arise from coupling of the L and L' holes in the final state, including both spin-orbit and electrostatic terms. The formulas given by Asaad and Burhop [of which Eqs. (1) are examples] give a complete description of the coupling of the L and L' hole states. Of course the use of ground-state values⁸ for the LL'two-electron integrals, as well as the ground-state spin-orbit coupling constant, requires the assumption that these quantities do not change appreciably in going from the ground state to the two-hole state. While very small changes in the values of these quantities are expected, appreciable changes are not. Particularly for deep-lying hole states the constraints of the atomic potential are too strong to allow significant variations in these parameters. Empirically, of course, the success of multipletstructure theory of valence electrons (in which the constraints are much weaker) argues strongly for the constancy of the electrostatic and spin-orbit parameters. The strongest evidence for their constancy will in fact be provided implicitly by the success of our theory (Sec. V). Thus we must look elsewhere to explain the discrepancy between the values of two-electron integrals that are required to fit Eqs. (1) to experiment and values that could be considered reasonable.

Most of the shift in the L'-orbital binding energy can presumably be expressed in terms of changes in two-electron integrals involving L' as one of the orbitals, since the orbital energy $\epsilon(L')$ can be written entirely in terms of one- and two-electron integrals:

$$\boldsymbol{\epsilon}(\boldsymbol{L}') = h(\boldsymbol{L}') + \sum_{i} \left[2J(\boldsymbol{L}'i) - K(\boldsymbol{L}'i) \right] \,. \tag{5}$$

Here h(L') is the energy of interaction of an electron in the L' orbital with the nucleus, J is a Coulomb integral, and K is an exchange integral. To study changes that a hole in the L orbital would make in the sum over two-electron integrals, we can break this sum into three sums, over "inner"-shell terms-just the K shell in this case-over "intrashell" terms, and over "outer"-shell terms, with principal quantum number n > 2.

Hedin and Johansson have considered the problem of passive-orbital relaxation during photoemission.⁹ They calculated the quantity $\langle k | V_p | k \rangle$, defined as the expectation value of a potential due to polarization of the orbitals when an electron in the k orbital is removed. Setting k = L', we have

$$\langle L'_{i} | V_{p} | L' \rangle = \Delta \sum_{i} [2J(L'i) - K(L'i)],$$
 (6)

where Δ refers to the difference in the sum with and without the L' orbital occupied, and $\langle L' | V_p | L' \rangle$ is exactly the quantity that we are seeking.

In calculations on sodium and potassium atoms and ions, Hedin and Johansson found that contributions from the inner-shell sum are negligible. The intrashell term is small and apparently fairly constant for these elements $[5, 55 \text{ eV for } (\text{Na}^2s)]$ 6.15 eV (Na⁺2p), 3.97 eV (K⁺2s), and 5.52 eV $(K^{*}2p)$]. The outer-shell sum can be large, however. The reason for this is perfectly straightforward. In the neutral atom each L electron shields the electrons in the outer orbitals almost completely from one unit of nuclear charge. When an L vacancy is created the outer orbitals relax inward as if Z had been increased by one unit. This increases the value of all integrals J(L'i) and K(L'i) in the outer-shell sum, because the electrons in outer shells can then interact more strongly with the L'_{μ} electrons.

The hypothetical two-step path from the neutral atom Z to the doubly ionized species $Z(\overline{L}\overline{L}')^{2+}$ leads to a (somewhat artificial) conceptual separation of the total outer-shell relaxation energy experienced by the L electrons into two parts. We shall call these the dynamic and static relaxation energies. The dynamic terms appear during ionization. The outer orbitals relax adiabatically during the ejection of an L electron, thereby lowering its binding energy. Hedin and Johansson showed that the true binding energy is quite accurately given as the orbital energy plus a dynamic relaxation term $\frac{1}{2}\langle L | V_p | L \rangle$. Thus for the first ionization step,

$$E(L) = -\epsilon(L) - \frac{1}{2} \langle L \mid V_{b} \mid L \rangle .$$
⁽⁷⁾

There is also a dynamic term for the second ionization.

The static relaxation term arises explicitly because of the practice of using the binding energy E(L') of the L' orbital in a neutral atom in Eq. (3c). Denoting by V, V*, and V** the total two-electron interaction energies of the L or L' orbitals with other orbitals, the two neutral-atom L binding energies in Eqs. (1) can be expanded⁹ as

$$-E(L) - E(L') = h(L) + h(L') + \langle L | V | L \rangle + \frac{1}{2} \langle L | V_{p} | L \rangle$$
$$+ \langle L' | V | L' \rangle + \frac{1}{2} \langle L' | V_{p} | L' \rangle, \quad (8)$$

where

$$\langle L \mid V_{p} \mid L \rangle = \langle L \mid (V^{*} - V) \mid L \rangle ,$$

$$\langle L' \mid V_{p} \mid L' \rangle = \langle L' \mid (V^{*} - V) \mid L' \rangle .$$

The correct expression, using the L' binding energy in a unipositive atom $Z(\overline{L})^*$, is

-E(3b)-E(3c)

$$= -E(L) - E(L', \text{ in } Z(\overline{L})^*)$$

$$= h(L) + h(L')^* + \langle L \mid V \mid L \rangle + \frac{1}{2} \langle L \mid V_p \mid L \rangle$$

$$+ \langle L' \mid V^* \mid L' \rangle + \frac{1}{2} \langle L' \mid V_p^* \mid L' \rangle, \quad (9)$$

where

$$\langle L' | V_p^* | L' \rangle = \langle L' | (V^{**} - V^*) | L' \rangle$$

Making approximations at the level made by Hedin and Johansson, omitting the one-electron terms, and shortening the notation to $\langle L | (V^* - V) | L \rangle$ = $V^* - V$, and $\langle L' | (V^* - V) | L' \rangle$ = $V^{*'} - V'$, etc., the remainders of the right-hand sides of Eqs. (8) and (9) become, after substitution,

$$\frac{1}{2}V + \frac{1}{2}V^* + \frac{1}{2}V' + \frac{1}{2}V^{*'}$$
(8')

and

$$\frac{1}{2}V + \frac{1}{2}V^* + \frac{1}{2}V^{*'} + \frac{1}{2}V^{**'} . \qquad (9')$$

The difference between these two expressions is the static relaxation term, which will be denoted R. Thus

$$R = \frac{1}{2} (V^{**'} - V') . \tag{10}$$

For computational convenience we note that it is a very accurate approximation, at least in the "equivalent-cores" scheme described in what follows, to use

$$R \cong V^{*\prime} - V^{\prime} , \qquad (11)$$

which follows because $V^{**'} - V^{*'}$ is quite accurately equal to $V^{*'} - V'$. The equivalent approximation has been confirmed extensively by direct calculation in the equivalent-cores case. If we consider the case of two equivalent L electrons, and drop the primes from $V^{*'}$ and $V^{**'}$ in Eq. (9'), the latter expression may be written

$$V + \frac{1}{2}(V^* - V) + V + (V^* - V) + \frac{1}{2}(V^{**} - V^*) .$$

The first and third terms are initial-state potential energies that are included in the orbital energies ϵ . The second and fifth terms are dynamic relaxation energies, and the fourth is the static relaxation energy. To the very good accuracy with which $2V^* = V + V^{**}$ holds, the total static and dynamic relaxation energies are equal.

The two-step process for reaching the two-hole state is not really necessary. If the two L orbitals are identical, an alternative process can be considered, in which the two electrons come out at the same time. In this process

$$Z \to Z(\overline{L} \,\overline{L})^{2*} + 2e^{-} \tag{12}$$

could be treated as one ionization process. By using arguments similar to those of Hedin and Johansson, the energy of this process can be shown to be

$$-E = 2h(L) + 2V + \frac{1}{2}(2V^{**} - 2V) , \qquad (13)$$

where the last term is a dynamic relaxation energy. There is formally no static term in this case because the two electrons leave together, but the dynamic term is twice what it was in the two-step process, so that the total relaxation energy is unchanged. To show this we can rewrite the terms in Eq. (13) that are to be compared to those in Eq. (9'):

$$V + V^{**}$$
 (13')

If Eq. (9') is applied to a two-step process involving two equivalent electrons the primes on V^* and V^{**} may be dropped. Then, since $2V^*$ is quite accurately equal to $V_+ V^{**}$, Eqs. (9') and (13') are equivalent, and the Auger energy that would be calculated using the one-step (double) ionization would indeed have the same relaxation energy as in the two-step case.

The matter of dropping the primes above is of some concern. We are constrained in effect to using a two-step approach for actual calculations because we need to use experimental binding energies. The total relaxation energy should not depend on the *order* of the two steps, however. If it did there would be some justification in using an average value for a given transition $\{i. e., \frac{1}{2}[R(LL') + R(L'L)]\}$, but it would be preferable for R(LL') and R(L'L) to be at least nearly equal. In fact they are in the calculations in Sec. IV.

To calculate $\langle L' | V_p | L' \rangle$ rigorously we would need L hole-state wave functions for all the elements. However, a rather accurate approximation can be made by substituting the Coulomb and exchange integrals of the next higher element for the corresponding L hole-state integrals. This "equivalent-cores" approximation has been found to give very good values for $\langle k | V_{p} | k \rangle$ in estimating atomic binding energies.¹⁰ We shall use this approximation in what follows. We can write as the general expression for the KLL' Auger energy associated with the final state X,

$$E(KLL'; X) = E(K) - E(L) - F(KLL'; X) + R(X).$$
(14)

Denoting the intrashell contribution to R by r, neglecting the negligible contribution of inner-shell relaxation, and using the equivalent-cores approximation, we have for the L shell

$$R(2l) = r + \sum_{\substack{l' \\ n' > 2}} \frac{N(n'l')}{(4l'+2)} \left[f(ll') \Delta \left[F^{0}(2l, n'l') \right] - \Delta \sum_{k} \left[g_{k}(ll') G^{k}(2l, n'l') \right] \right].$$
(15)

Here F^0 and G^k are Slater integrals that appear in the expansions of the Coulomb and exchange integrals, respectively. N(n'l') is the population of the n'l' subshell. The coefficients f(ll') and g(ll') are readily evaluated using standard multiplet theory.¹¹ They have been given earlier,¹⁰ but are set out in Table I for convenience. These coefficients apply rigorously to closed outer shells, but only relatively small errors are incurred if they are used for open-shell atoms. This amounts to ignoring multiplet coupling between the L electrons and open valence shells.

The Coulomb terms in Eq. (14) all have the form ΔF^0 . The exchange terms can also be written as ΔG^k . The equivalent-cores approximation can be written

$$\Delta F^{0}(2l, n'l') = F^{0}(2l, n'l'; Z+1) - F^{0}(2l, n'l'; Z),$$
(16)

$$\Delta G^{k}(2l, n'l') = G^{k}(2l, n'l'; Z+1) - G^{k}(2l, n'l'; Z).$$

Combining Eqs. (13)-(15), we have a strong theoretical basis to predict *KLL* Auger energies.

IV. CALCULATIONS

The calculated Auger energies are given in Table II. Details of the calculation are described in this section.

The binding energies used here were taken from the compilation of Siegbahn *et al.*, ⁷ except for the rare gases, for which Ref. 12 was used. Thus, except for the rare gases, the binding energies are referred to the Fermi energy. As Siegbahn *et al.* noted, the precision of these energies is about 1 eV, but uncertainty about the chemical composition of the surface introduces an uncertainty of several eV into many of the binding ener-

1	<i>l'</i>	f (ll ')	$g_0(ll')$	g ₁ (ll')	g ₂ (ll')	$g_3(ll')$	g4(ll')	$g_5(ll')$	g ₆ (ll')
0	0	2	1						
0	1	6		1					
0	2	10			1				
0	3	14				1			
1	0	2		$\frac{1}{3}$					
1	1	6	1		$\frac{2}{5}$				
1	2	10		$\frac{2}{3}$		37			
1	3	14			$\frac{3}{5}$		$\frac{4}{9}$		
2	0	2			$\frac{1}{5}$				
2	1	6		$\frac{2}{5}$		$\frac{9}{35}$			
2	2	10	1		$\frac{2}{7}$		$\frac{2}{7}$		
2	3	14		<u>3</u> 5		$\frac{4}{15}$		$\frac{10}{33}$	
3	0	2				$\frac{1}{7}$			
3	1	6			$\frac{9}{35}$		$\frac{4}{21}$		
3	2	10		$\frac{3}{7}$		$\frac{4}{21}$		$\frac{10}{77}$	
3	3	14	1		$\frac{4}{15}$		2 11		<u>1 00</u> 429

TABLE I. The f and g coefficients in Eq. (15).

gies.⁷

The $\mathcal{F}(KLL'; X)$ terms were calculated using the Slater integrals of Mann.⁸ Since these are nonrelativistic, empirical relativistic correction factors were used. These factors had the form $(1 + aZ^2)$ as prescribed by Asaad,⁶ and the value of a was determined for $F^{0}(2s, 2s)$, $F^{0}(2s, 2p)$, and $F^{0}(2p, 2p)$ by fitting the theory to the experimental Auger energies given in the tabulation of Sevier.¹³ The values 4.2×10^{-5} , 3.5×10^{-5} , and 2×10^{-5} , respectively, were thus determined for the above three integrals. The data were inadequate to determine a values for the $F^2(2p, 2p)$ and $G^1(2s, 2p)$ integrals: Accordingly no relativity corrections were made for these two integrals. It is important to make corrections for the first three integrals, but their accuracy is not critical except for the heavy elements. For Z = 40, 70, and 100 the correction factors for $F^{0}(2s, 2s)$ (for which the correction itself is largest) are, respectively, 1.07, 1.21, and 1.42. The empirical adjustment of the relativity factors is the weakest feature of this calculation. If Slater integrals from relativistic Hartree-Fock calculations were available, this would not be necessary, and the calculation would have no adjustable parameters whatever. As it is,

uncertainties in the relativity corrections and the corrections themselves are small enough up to Z = 50 or 60 that the *a* factors do not figure as very important parameters in the calculation.

The relaxation energies R were calculated using Eqs. (14) and (15), and employing Mann's Slater integrals. The relaxation terms R(2s) and R(2p)differed by so little (~1 or 2 eV) that it was not deemed worthwhile to calculate them separately, and a common value was used (thus the order of the steps in the hypothetical two-stage ionization is really immaterial). The intrashell term r was taken as 6 eV for neon (Z=10) and allowed to decrease linearly to zero at argon (Z=18) because in this way the total relaxation term R was made to match the polarization energy $\langle 2p | V_p | 2p \rangle$ as given by Hedin and Johansson for Na⁺ and K⁺, which are isoelectronic to Ne and Ar. For Z > 18 intrashell contributions were neglected. Finally the calculated values of R had to be smoothed somewhat especially through transition series, because the direct use of Eq. (14) is only viable for closed outer shells. The adopted values of R are given in Table II.

The full equations that were used to calculate the Auger energies are

$$E(KL_1L_1) = E(K) + R - 2E(L_1) - F^0(2s, 2s),$$

$$E(KL_1L_2^{-1}P_1) = E(K) + R - E(L_1) - E(L_2) - F^0(2s, 2p) + \frac{3}{4}\zeta - \left\{ \left[\frac{1}{3}G^2(2s, 2p) - \frac{1}{4}\zeta \right]^2 + \frac{1}{2}\zeta^2 \right\}^{1/2}$$

$$E(KL_{1}L_{3}^{3}P_{1}) = E(K) + R - E(L_{1}) - E(L_{2}) - F^{0}(2s, 2p) + \frac{3}{4}\xi + \left\{\left[\frac{1}{3}G^{1}(2s, 2p) - \frac{1}{4}\xi\right]^{2} + \frac{1}{2}\xi^{2}\right\}^{1/2},$$

$$E(KL_{1}L_{2}^{3}P_{0}) = E(K) + R - E(L_{1}) - E(L_{2}) - F^{0}(2s, 2p) + \frac{1}{3}G^{1}(2s, 2p),$$

$$E(KL_{1}L_{3}^{3}P_{2}) = E(K) + R - E(L_{1}) - E(L_{2}) - F^{0}(2s, 2p) + \frac{1}{3}G^{1}(2s, 2p) + \frac{3}{2}\xi,$$

$$E(KL_{2}L_{3}^{1}D_{2}) = E(K) + R - 2E(L_{2}) - F^{0}(2p, 2p) + \frac{2}{25}F^{2}(2p, 2p) + \frac{9}{4}\xi - \left\{\left[\frac{3}{25}F^{2}(2p, 2p) + \frac{1}{4}\xi\right]^{2} + \frac{1}{2}\xi^{2}\right\}^{1/2},$$

$$E(KL_{3}L_{3}^{3}P_{2}) = E(K) + R - 2E(L_{2}) - F^{0}(2p, 2p) + \frac{2}{25}F^{2}(2p, 2p) + \frac{9}{4}\xi + \left\{\left[\frac{3}{25}F^{2}(2p, 2p) + \frac{1}{4}\xi\right]^{2} + \frac{1}{2}\xi^{2}\right\}^{1/2},$$

$$E(KL_{3}L_{3}^{3}P_{0}) = E(K) + R - 2E(L_{2}) - F^{0}(2p, 2p) - \frac{1}{10}F^{2}(2p, 2p) + \frac{3}{2}\xi + \left\{\left[\frac{3}{10}F^{2}(2p, 2p) - \frac{1}{2}\xi\right]^{2} + 2\xi^{2}\right\}^{1/2},$$

$$E(KL_{2}L_{2}^{1}S_{0}) = E(K) + R - 2E(L_{2}) - F^{0}(2p, 2p) - \frac{1}{10}F^{2}(2p, 2p) + \frac{3}{2}\xi - \left\{\left[\frac{3}{2}F^{2}(2p, 2p) - \frac{1}{2}\xi\right]^{2} + 2\xi^{2}\right\}^{1/2},$$

$$E(KL_{2}L_{2}^{1}S_{0}) = E(K) + R - 2E(L_{2}) - F^{0}(2p, 2p) - \frac{1}{10}F^{2}(2p, 2p) + \frac{3}{2}\xi - \left\{\left[\frac{3}{2}F^{2}(2p, 2p) - \frac{1}{2}\xi\right]^{2} + 2\xi^{2}\right\}^{1/2},$$

$$E(KL_{2}L_{2}^{1}S_{0}) = E(K) + R - 2E(L_{2}) - F^{0}(2p, 2p) - \frac{1}{10}F^{2}(2p, 2p) + \frac{3}{2}\xi - \left\{\left[\frac{3}{2}F^{2}(2p, 2p) - \frac{1}{2}\xi\right]^{2} + 2\xi^{2}\right\}^{1/2},$$

$$E(KL_{2}L_{2}^{1}S_{0}) = E(K) + R - 2E(L_{2}) - F^{0}(2p, 2p) - \frac{1}{10}F^{2}(2p, 2p) + \frac{3}{2}\xi - \left\{\left[\frac{3}{2}F^{2}(2p, 2p) - \frac{1}{2}\xi\right]^{2} + 2\xi^{2}\right\}^{1/2},$$

$$E(KL_{2}L_{2}^{1}S_{0}) = E(K) + R - 2E(L_{2}) - F^{0}(2p, 2p) - \frac{1}{10}F^{2}(2p, 2p) + \frac{3}{2}\xi - \left\{\left[\frac{3}{2}F^{2}(2p, 2p) - \frac{1}{2}\xi\right]^{2} + 2\xi^{2}\right\}^{1/2},$$

$$E(KL_{2}L_{2}^{1}S_{0}) = E(K) + R - 2E(L_{2}) - F^{0}(2p, 2p) - \frac{1}{10}F^{2}(2p, 2p) + \frac{3}{2}\xi - \left\{\left[\frac{3}{2}F^{2}(2p, 2p) - \frac{1}{2}\xi\right]^{2} + 2\xi^{2}\right\}^{1/2},$$

$$E(KL_{2}L_{2}^{1}S_{0}) = E(K) + R - 2E(L_{2}) - F^{0}(2p, 2p) - \frac{1}{10}F^{2}(2p, 2p) + \frac{3}{2}\xi - \left\{\left[\frac{3}{2}F^{2}(2p, 2p) - \frac{1}{2}\xi\right]^{2} + 2\xi^{2}\right\}^{1/2},$$

V. DISCUSSION

The values in Table II represent the only comprehensive set of theoretical *KLL* Auger energies. They should provide the best estimates of *KLL* energies in all cases for which neither accurate experimental values nor two-hole-state Hartree– Fock (or Dirac-Fock) calculations are available. They show excellent agreement with experiment, as discussed in this section. The KL_1L_1 energies, which were reported earlier, ¹ are treated separately first because they are independent of intermediate coupling in the final state.

Table III lists the KL_1L_1 energies from this work, the semiempirical values,⁷ and experimental values, for elements in which experimental values are available.¹³ The experimental values have a wide range of accuracy and reliability. In some elements, several experimental values were available. For these cases either an average was taken or a single value chosen, depending on the relative accuracy of the results. The agreement between experiment and theory is excellent. For neon, the single rare gas in Table III, the accuracy of the binding energies is such that the 3-eV difference probably signifies that the 6-eV intrashell relaxation energy is an overestimate. The estimate of 751 eV is, however, much closer to experiment than the semiempirical value of 761 eV. The other thirty-eight cases in Table III were studied experimentally as solids, and questions of the surface oxidation state probably introduce an uncertainty of $\sim 5 \text{ eV}$ into the comparison of theory and experiment. With this uncertainty added, 31 of the 38 estimates fall within the ranges of experimental uncertainty. In 23 of the 39 cases Eqs. (17) predict the experimental values more accurately even than do the semiempirical energies (two cases are even, and the semiempirical energies are closer in 14 cases). We conclude that Eq. (17) is quite accurately valid for predicting KL_1L_1 energies, which involve the relaxation term and the single Slater integral $F^{0}(2s, 2s)$ in addition to empirical binding energies.

To test the accuracy of using the other tabulated Slater integrals in the intermediate coupling calculation, as well as the relaxation-energy calculation for lines involving 2p electrons, let us compare the other eight predicted *KLL* energies with experiment. Although experimental *KLL* Auger energies are available for forty-four of the 91 elements for which theoretical values are listed in Table II, the wide variation in accuracy and completeness of these data renders exhaustive comparison of all the data unnecessary. Therefore, for brevity, the data on only nine elements were selected for comparison with theory. These elements, Z=10, 19, 29, 40, 53, 62, 71, 83, and 94, were chosen (a) to give representative coverage of the Periodic Table, (b) to use the more accurate and complete data available subject to (a),

FIG. 1. Reduced KLL Auger-energy differences for the elements. Here E(X) is the experimental energy of component X. The nine components are labeled on the plot. In the ordinate ratio the denominator is always the total theoretical spacing, from Table II. The curves are theoretical, obtained by using theoretical energies from Table II in the numerator. Filled circles were obtained by using experimental values from Ref. 13 in the numerator. Thus there is no scaling to fit experiment to theory.

TABLE II. Predicted KLL Auger energies (eV).

			¹ S ₀	¹ P ₁	³ P1	³ P ₀	³ P ₂	$^{1}D_{0}$	³ P ₀	³ P ₀	¹ S ₀
E1.	Ζ	R	KL_1L_1	KL_1L_2	KL_1L_3	KL_1L_2	KL_1L_3	KL_2L_3	KL_3L_3	KL_3L_3	KL_2L_2
Ne	10	6	751	774	785	785	785	806	809	809	802
Na	11	8	922	948	961	961	961	986	989	989	981
Mg	12	10	1101	1131	1145	1145	1145	1174	1178	1178	1168
Al	13	12	1296	1332	1348	1347	1348	1383	1388	1387	1376
\mathbf{Si}	14	14	1511	1550	1568	1568	1569	1607	1612	1611	1599
Р	15	16	1739	1 781	1800	1 800	1 801	1841	1848	1847	1833
\mathbf{S}	16	18	1 980	2032	2053	2052	2053	2103	2110	2109	2094
Cl	17	20	2247	2 302	2325	2324	2326	2379	2386	2384	2368
\mathbf{Ar}	18	22	2524	2584	2608	2607	2609	2666	2674	2672	2654
Κ	19	25	2814	2880	2906	$2\ 905$	2908	2970	2979	$2\ 976$	2957
Ca	20	28	3121	3194	3221	3 2 2 0	3 223	3 292	3 302	3299	3279
Sc	21	31	3451	3 529	3557	3555	3560	3633	3645	3640	3619
Ti	22	33	3 793	3880	3910	3 907	3913	3995	4008	4003	3 980
V	23	36	4163	4256	4286	4283	4290	4376	4390	4384	4360
\mathbf{Cr}	24	39	4552	4647	4679	4676	4685	4772	4789	4781	4754
Mn	25	42	4953	5054	5088	5083	5094	5187	5205	5196	5167
Fe	26	45	5373	5480	5 515	5509	5522	5620	5640	5631	5598
Co	27	48	5 806	5922	5 959	5 953	5968	6073	6 095	6 085	6049
Ni	28	51	6 265	6 385	$6\ 423$	6416	6433	6541	6566	6554	6516
Cu	29	54	6734	6 863	6 903	6894	6914	7 030	7058	7045	7 0 0 2
Zn	30	57	7216	7351	7 393	7 382	7 405	7 525	7 556	7542	7495
Ga	31	58	7713	7744	7873	7884	7 778	7802	7904	8 009	7782
Ge	32	60	8218	8 367	8 414	8 398	8 430	8 562	8 6 0 2	8 586	8 5 2 4
As	33	61	8749	8 903	8953	8 934	8 970	9105	9149	9132	9 0 6 3
Se	34	62	9 283	9 4 4 7	9 500	9478	9518	9662	9710	9 6 9 3	9616
\mathbf{Br}	35	63	9839	10012	10 069	10043	10089	10 241	10 295	10276	10188
\mathbf{Kr}	36	65	10 411	10592	10653	10623	10675	10834	10894	10874	10775
Rb	37	67	10994	11184	11249	11214	11273	11437	11505	11484	11372
sr	38	68 70	11593	11792	11863	11822	11889 12524	12060 12703	$\begin{array}{r}12136\\12787\end{array}$	12114 12764	11987
1	39	70	12 211	12 419	12 497	12 449	12 524	12703	12 (0)	12704	12022
Zr	40	72	12849	13065	13150	13095	13179	13364	13457	13433	13274
	41	73	13 301	13720	13 819	13730	13 800		14140	14120	13942
MO The	42	75	14170	14409	14 012	14439	14044	14 744	14 808	14834	14033
10	40	70	14 002	15105	15 217	15 155	15 201	16 104	16 991	16 204	16050
Ru Dh	44	10	16 904	10 620	16 690	10 001	10 900	16 194	17 000	10 304	16 901
RII Da	40	00	10 294	10 004	10 009	10 004	7 401	10 540	17099	17 050	17556
Pu	40	09	17034	19070	10 999	10100	10 07 9	19510	19602	10669	10 991
Ag	47	00 05	10 560	18070	10 200	10100	10 273	10 310	10 5 1 9 2	10 401	10001
Uu In	48 49	85	19347	10.049 19.642	19 028	10000 19673	19069	20134	20 351	20 320	19119
	50	00	200140	20012	10 000	20 495	20.771.0	20 072	01 000	01 177	20020
Sn	50	86	20149	20 454	20 668	20 485	20712	20 973	21 209	21 177	20740
50	51	87	20 968	21 282	21 517	21 313	21 002	21 831	22 090	22 057	21 070
Te	02 50	88	21 800	22 130	22 380	22 101	22 432	22710	22 991	22 957	22433
I Vo	03 54	00	22 009	44 994 99 969	20 27 1	23 024	20019	23604	23 909	23874	23303
ле Са	54	09	23 310	23 002	24 100	23 094	24210		24 840	24 810	24100
US Bo	56	90	24 413	24700	25 095	24130	25 140	25 447	25 805	20709	20 000
La	57	92	26 239	26 61 3	20 038	26 646	27 054	20 200	20700	27 758	26 963
Ce	58	95	27190	27 573	27 993	27 606	28 047	28 377	28 829	28 790	27 930
Pr	59	96	28 161	28 553	29 007	28 587	29.063	29402	29 889	29 850	28 920
Nd	60	98	29153	29 556	30 047	29 590	30104	30 453	30 978	30 937	29933
Pm	61	99	30 160	30 574	31 104	30 609	31 162	31 521	32 085	32 044	30 962
Sm	62	101	31 188	31 613	32 183	31 648	32 243	32 61 1	33 217	33175	32 010
En	63	103	32 238	32 762	33 288	32 707	33 348	33 725	34 378	34 335	33 078
Gd	64	104	33 305	33 750	34412	33 786	34474	34 861	35 561	35 517	34167
Th	65	105	34 202	34 850	35 560	34 666	35 693	36 090	36760	36 795	95 977
Dv	66	107	35 503	35 970	36733	36 006	36 797	30020 37204	38 007	37 962	36 407
0									• • •		

El.	Z	R	${}^{1}S_{0}$ $KL_{1}L_{1}$	${}^{1}P_{1}$ KL ₁ L ₂	${}^{3}P_{1}$ KL ₁ L ₃	${}^{3}P_{0}$ KL ₁ L ₂	${}^{3}P_{2}$ KL ₁ L ₃	$^{1}D_{2}$ $KL_{2}L_{3}$	${}^{3}P_{2}$ KL ₃ L ₃	${}^{3}P_{0}$ KL ₃ L ₃	$1S_0$ KL_2L_2
Чо	67	109	36.633	37110	37 020	971/7	37 005	28/11	30.971	20.226	97557
110 E 20	69	110	20 033 27 791	29 270	201/0	29 207	20.914	20641	40 561	40 51 4	90790
E F Tran	60	110	30 059	20 45 9	JJ 140	20 20 1	39214	40 9091	40 501	40 014	20 140
1 III Vh	09	112	30 903	39 433 40 GET	40 393	39 490	40 400	40 090	41 001	41 000	09 941 41 1 90
YD T	70	115	40 140	40 657	41 002	40 696	41 731	42 180	43 227	43 180	41 138
Lu	71	115	41 359	41 882	42 956	41 921	43 026	43 486	44604	44 555	42 374
HI	72	117	42 588	43 123	44 269	43 162	44 340	44 811	46 003	45 953	43 627
Ta	73	118	43 832	44 379	45 601	44 418	45 673	46 155	47 423	47373	44 893
W	74	120	45 097	45657	46 961	45697	47034	47529	48879	48 828	46185
Re	75	121	46387	46 961	48349	47001	48423	48930	50366	50314	47501
Os	76	122	47694	48280	49760	48321	49835	50355	51883	51830	48834
Ir	77	123	49026	49625	51198	49666	51275	51 807	53430	53376	50190
Pt	78	124	50382	50 993	52 666	51035	52744	53287	55010	54956	51571
Au	79	126	51761	52385	54163	52427	54242	54799	56 628	56 573	52976
Hg	80	127	53160	53795	55 683	53 838	55 763	56329	58,269	58213	54397
TÌ	81	129	54567	55221	57224	55264	57 305	57 890	59946	59889	55842
\mathbf{Pb}	82	130	56007	56673	58 800	56717	58882	59479	61659	61601	57306
Bi	83	132	57468	58153	$60 \ 405$	58197	60488	61103	63409	63351	58804
Ро	84	133	58939	59640	62 030	59685	62115	62745	65190	65131	60 307
At	85	135	60450	61 165	63 695	61 210	63781	64424	67 011	66 951	61 846
Ru	86	136	62006	62725	$65 \ 401$	62770	65488	66 136	68 869	68 809	63410
\mathbf{Fr}	87	137	63552	64292	67125	64338	67 213	67882	70772	70711	64 999
Ra	88	138	65134	65 895	68 892	65 941	68 981	69 670	72 726	72664	66622
Ac	89	139	66754	67519	70688	67566	70778	71 471	74699	74636	68250
Th	90	140	68379	69167	72516	69214	72607	73 322	76 731	76 667	69 920
Ра	91	141	70 056	70 856	74393	70904	74 485	75212	78 809	78745	71 622
U	92	142	71748	72567	76 302	72615	76 395	77141	80 938	80873	73 353
Np	93	143	73486	74317	78703	74 366	78797	79554	84 002	83 936	75115
Pu	94	144	75 257	76103	80 266	76 153	80 362	81 134	85 360	85 293	76916
Am	95	145	77116	77 956	82 349	78 006	82 446	83 211	87 669	87 601	78763
Cm	96	146	78 928	79620	84 422	79670	84519	85 137	90 003	89 935	80279
Bk	97	147	80 660	81 562	86 447	81 613	86 546	87 373	92 323	92 254	82 431
Cf	98	148	83 352	84 224	89496	84276	89 596	90 393	95731	95 661	85 064
Es	99	149	85 294	86 187	91 748	86 239	91 849	92 666	98 2 94	98 224	87 047
	100	150	07 9 96	00 100	04.050	00 0 4 0	04150	04000	100,000	100 007	00.001

TABLE II. (Continued)

and (c) to favor the more chemically stable elements, subject to (a) and (b).

The comparison is made in Fig. 1, which is a "reduced" intermediate-coupling plot of the quantity.

$$\frac{E(X) - E(KL_1L_1)}{\left[E(KL_3L_3{}^{3}P_2) - E(KL_1L_1{}^{1}S_0)\right]_{\text{theory}}}$$

versus Z. The curves in Fig. 1 were drawn by connecting points obtained by using the theoretical energies in Table II in both the numerator and denominator above. The points in Fig. 1 were obtained by inserting experimental energies from Ref. 13 into the numerator, while retaining the theoretical denominator. Thus the ordinate scale in Fig. 1 is not adjusted between theory and experiment. This constitutes an extremely stringent test of the theory embodied in Eqs. (17). From the excellent agreement we conclude:

(i) It is quite accurately valid to use the same

values of *R* for 2*s* and 2*p* electrons generally. The small positive deviations of the experimental points involving 2*p* electrons in the lightest elements provide some basis for believing that R(2p) is slightly larger than R(2s) for these cases. The ordinate in Fig. 1 is designed to display differences in R(2s) and R(2p) as a systematic deviation of all points, save those for the $KL_1L_1^{-1}S_0$ lines, from their curves.

1527

(ii) The spin-orbit coupling constant ζ for a twohole state in the *L* shell is accurately equal to that of a one-hole state. This follows because ζ was calculated in each case from the L_2 and L_3 binding energies.

(iii) The Slater integrals calculated by Mann,⁸ together with Eqs. (17), give a very accurate description of multiplet structure in the two-hole states.

The plot shown in Fig. 1 was suggested by those that Siegbahn *et al.*⁷ and Sevier¹³ have given. The

7

z	$E_{\rm th}{}^{\rm a}$	E _{expt} ^b	E _{SE} ^c	Z	$E_{\mathrm{th}}^{\mathrm{a}}$	E_{expt}^{b}	E _{SE} °
10	751	748.0(4)	761	56	25 320	25 251 (6)	25 330
11	922	922.8(4)	928	62	31188	31 175 (20)	31199
12	1 101	1101.3(4)	1 1 0 5	63	32238	32 224 (20)	32247
19	2814	2 809	2815	65	34393	34430(50)	34402
23	4163	4159(6)	4168	66	35502	35 496 (6)	35512
25	4953	4 962(2)	4956	69	38 953	38 958 (25)	38 958
26	5373	5376	5374	70	40146	40 1 49 (4)	40151
29	6734	6735(6)	6732	71	41359	41 351 (10)	41361
30	7216	7 220 (4)	7214	74	$45\ 097$	45 080 (40)	45097
32	8 218	8 212(6)	8 216	75	$46\ 387$	46 400 (25)	46385
33	8749	8742(10)	8749	78	50382	50 370 (100)	50375
35	9839	9 860 (10)	9840	79	51761	51780(20)	51752
38	11 593	11 584.4(16)	11595	80	53160	53 141 (25)	53149
40	12849	12851.8(15)	12851	81	54567	54 510 (100)	54554
42	14176	14176.1(13)	14179	83	57468	57 467 (30)	57451
47	17793	17740(60)	17797	84	58 939	58 920 (50)	58 918
49	$19\ 347$	19352(1)	19354	92	71748	71 738 (20)	71704
52	21 806	21 787(10)	21814	93	73486	73 555 (150)	73437
53	22659	22652(10)	22668	94	75257	75 180 (15)	75204
55	24 415	24 395 (14)	24 426				

TABLE III. Comparison of KL_1L_1 energies (in eV).

^aThis work.

^bFrom Ref. 13. Errors in last place given parenthetically. Some values are selected or averages. ^Semiempirical values from Ref. 7.

nature of the ordinate scales is very different, however: No adjustment has been made in Fig. 1, which therefore really constitutes an "unnormalized" comparison of theory and experiment.

Extension of this approach to other problems should be feasible. For other Auger spectra in which the final state involves two holes in inner shells, this theory is applicable as it stands. Final states with outer-shell vacancies will require different estimates of R. Of course the relaxationenergy concept can be usefully applied to any problem involving multiple-hole final states, not only to Auger spectra.

At this point the *KLL* Auger energies of the elements can, in all cases except rare gases, be estimated by Eq. (17) to sufficient accuracy that the remaining small differences between theory and experiment could be largely attributed to uncertainties involving chemical shifts in the surfaces of the thin samples used to determine the binding energies and/or Auger energies. As measurements on well-characterized surfaces become available, it should be possible to detect chemical and solid-state shifts in Auger energies, as well as to test the relaxation theory more quantitatively.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge D. N. Shirley for his help in calculating the Auger energies.

*Work performed under the auspices of the U.S. Atomic Energy Commission.

- ²W. N. Asaad and E. H. S. Burhop, Proc. Phys. Soc. Lond. **72**, 369 (1958).
- ³M. Mladjenovic and H. Slätis, Ark. Fys. 9, 41 (1954).
- ⁴O. Hörnfeldt, F. Fahlman, and C. Nordling, Ark. Fys. 23, 115 (1962).
 - ⁵O. Hörnfeldt, Ark. Fys. 23, 235 (1962).
 - ⁶W. N. Asaad, Z. Phys. 203, 362 (1967).
 - ⁷K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K.

Hamrin, J. Hedman, G. Johansson, T. Bergmark, S.-E. Karlsson, I. Lindgren, and B. Lindberg, ESCA-Atomic, Molecular and Solid State Structure by Means of Electron Spectroscopy (Nova Acta Regiae Societatis Scientarum, Uppsala, Sweden, 1967), Ser. IV,

- ¹⁰D. A. Shirley, Chem. Phys. Lett. 16, 220 (1972).
- ¹¹J. C. Slater, Quantum Theory of Atomic Structure
- (McGraw-Hill, New York, 1960), Vol. II, p. 294.
- ¹²K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P. F. Hedén, K. Hamrin, U. Gelius, T. Bergmark, L. O. Werme, R. Manne, and Y. Baer, *ESCA Applied to Free Molecules*
- (North-Holland, Amsterdam, 1969).
- ¹³Kenneth D. Sevier, *Low Energy Electron Spectroscopy* (Wiley, New York, 1972).

¹D. A. Shirley, Chem. Phys. Lett. 17, 312 (1972).

Vol 20. ⁸J. B. Mann, Los Alamos Scientific Laboratory Report No. LASL-3690 (1967) (unpublished).

⁹L. Hedin and G. Johansson, J. Phys. B 2, 1336 (1969).