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We use the Laplace transform obtained by Wichmann and Kroll for the vacuum-polarization charge

density of order (Zo.') induced by a point nucleus to determine the first few terms in the expansion of
the charge density for small distances from the nucleus. The result is used to estimate the effect of the

polarization charge near the nucleus on the muonic xrays studied experimentally by Dixit etal. The
effect is found to be somewhat smaller than an earlier estimate, and the discrepancy between theory
and experiment is slightly reduced, but the discrepancy remains large for the high-Z muonic atoms, as

much as three or four standard devitations in lead and barium.

I. INTRODUCTION

Quantum electrodynamics makes precise state-
ments about the behavior of the muon when it en-
ters into association with an atomic nucleus to
form a muonic atom. To the extent that its weak
interactions can be ignored, the muon is treated
as no more than a weightier brother to the elec-
tron, differing in its behavior only insofar as can
be explained by its larger mass. Except for one
case, there is no disagreement between experi-
ment and the predictions based on this treatment of
the muon, not only for muonic atoms, but in all
situations involving muons in which weak interac-
tions can be neglected.

The one exception is the experiment of Dixitetal. ~

They reported that very precise measurements of
the energies of x rays emitted by many different
muonic atoms fell consistently below the theoret-
ical predictions, often by many standard devia-
tions. They had concentrated on transitions of the
muonic atoms that should be relatively insensitive
to nuclear-structure effects, and yet occur far
enough within the interior of the atom so that the
influence of the surrounding electrons can be easily
taken into account. For this judicious selection of
x-ray lines the muonic atoms may be treated as
essentially hydrogenlike and their transition en-
ergies determined by the well-developed methods
for handlirig such atoms. The only sources of
ambiguity —nuclear structure and the electronic
environment —are reduced to perturbations that are
believed to be known to within the accuracy of the
experiment.

If the experiment is correct, then the discrep-
ancy is either due to a mistake in the application of
the theory for the transition energies of the muonic
atoms or to an anomalous interaction of the muon.
It would be premature to introduce a muonic
anomaly before trying to see if the accepted theory
cannot account for the discrepancy, and it was in
pursuing such an explanation that the work de-
scribed here evolved.

Since the muonic atoms are approximately hy-
drogenlike, their energy levels are nearly those
given by the solutions to the Dirac equation for a
point nucleus. Perturbations to these energies
arise from radiative corrections, the finite size
and the structure of the nucleus, and interaction
with the atomic electrons.

Among the radiative corrections are those that
arise from the polarization of the vacuum by the
nuclear charge. The diagrams representing this
effect that contribute signficant corrections are
shown in Fig. 1. The nucleus is so heavy that it
may be treated as a fixed source in computing
these corrections. The dangling photon line rep-
resents the Coulomb interaction of the muon (not
shown) with the polarization charge induced in the
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FIG. 1. Vacuum-polarization diagrams significant in
affecting transition energies in muonic atoms. The &&

represents the nuclear charge, and the fermion is an
electron.
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vacuum by the nucleus.
The diagram in Fig. 1(d) represents the distor-

tion of the polarization charge distribution due to
the continuing influence of the nuclear charge on it.
This diagram, and the corresponding diagrams
with more and more photon lines attached between
the nucleus and the electron loop, will be consid-
ered here. Its effect has not been significant in
experiments with electronic atoms, because it is
of order (Zn/m) in size relative to the first-order
vacuum-polarization effect [Fig. 1(a)]; in hydrogen
this is minuscule, and in heavier elements it is
small compared with the uncertainties in handling '

the many-electron atom. But the muon, because
it is so much heavier, can orbit close to the nu-
cleus, where the influence of the atomic electrons
is small compared with that of the unscreened
nuclear charge nearby, and in heavy muonic atoms
the effect of the diagram is neither small relative
to present-day experiments nor buried in the
many-body problem.

This diagram may be imagined to represent the
nucleus pulling the virtual electrons in closer to
itself, increasing the negative charge within the
orbit of the muon, so that in making a transition
to a lower orbit the muon must work against the
repulsion of the additional charge, and the energy
of the transition is reduced. The actual polariza-
tion charge distribution implied by the diagram is
extremely difficult to calculate with the usual mo-
mentum-space methods that serve in evaluating
all the other diagrams, and to our knowledge such
a calculation has not yet been carried through.
However, %'ichmann and Kroll succeeded in find-
ing the Laplace transform of the charge density
by means of a very clever observation. They
noted that the sum of all the diagrams with a single
electron loop attached to the nuclear charge with
any number of photon lines, including the ones in
Figs. 1(a) and 1(d), could be represented by the
single diagram with the electron loop replaced by
a loop representing the Green's function for prop-
agation of the electron in the presence of the
Coulomb field of the nucleus. By working with this
Green's function instead of an individual diagram,
they were able to obtain the Laplace transform of
the polarization charge density, and by expanding
their result in powers of Zz they could regain the
charge density due to the corresponding order in
perturbation theory. The term linear in Zz agreed
with the well-known perturbation calculation based
on the diagram in Fig. 1(a), and the third-order
term in Zz yielded the asymptotic behavior for
large distances known from the Euler-Heisenberg

II. REVIEW OF SOME RESULTS FOR DIAGRAM IN FIGURE
&(d)

In Eq. (WK51) (the prefix "WK" will be used to
identify equations from Ref. 3), Wichmann and
Kroll define the Laplace transform

q(p) = J"e ~'p(r)r'dr,
where p(r) is the vacuum-polarization charge den-
sity due to all the diagrams with a single electron
loop interacting with a point nucleus of charge Ze
(e =

I e I), including those of Figs. 1(a) and l(d).
They expand their result for q(p) in powers of
Zo. [Eq. (WK52)],

(2. 1}

(z )2n+1 (2n+1)(t )
n=0

(2. 2)

and obtain the polarization charge due to the dia-
gram in Fig. 1(d) as the term proportional to
(Zn)s. They find [Eqs. (WK50) and (WK54)]

(Zn)'q"&(p) = —(Zn)'(e/4~') 1" W'" (p;y)dy
(2. 3)

where S=c=m=1, m is the mass of the electron
and —e its charge, and W ~~(p;y) is given in terms
of the functions

u=-,' p(l+y') 't',
y(2, x) = —

j~ t ' ln(1 —t) dt

(2.4)

(2. 5a)

fx/ &I
& n

(2. 5b)

Lagrangian for weak electromagnetic fields.
Since it is its Laplace transform and not the

charge density itself that is obtained, the spatial
distribution of the charge density can only be known
to the extent that the transform can be inverted.
But it is not obvious how to do this analytically,
so that the only information known about the be-
havior of the charge density is that which can be
derived from the asymptotic behavior of the
Laplace transform. %ichmann and Kroll pursued
their calculation far enough to determine the charge
density at the nucleus and very far away from the
nucleus, and some characteristics about the aver-
age behavior of the charge density. It will be use-
ful for future reference to review some of their
results in Sec. II. In Sec. III additional informa-
tion about the behavior of the polarization charge
near the nucleus is obtained from its Laplace
transform and applied to the muonic atoms. Its
effect is seen to be smaller than a previous esti-
mate, and the discrepancy between theory and ex-
periment is slightly reduced, but the disagreement
remains large for heavy muonic atoms.

4 2
—2W '(p;y) = I, ,&» 3

ln (I+u}+2((2,u ) ln(1-u) + —u~ ——[ln(1 —u~)+u2]
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8 —ln (1 —x ) —2 ln(1 —u. )ln +2u lnuI

dx 2 p 1+u
x 1 —u

+ 2 3/2 7 g(2, u) ln —2u ——ln —2u +u ln (1 +u) + —u(c)(2, u )
1+u g p 1+u 1

1+y' u 1 —u 6 1 —u

1 dx 1+x 1 2 1+u 1+u
+ — —ln(1 —x ) in — —ln + u in —4u )nu)2 x 1 —x 2 1 —u 1 —u+,&, I2(1 —u)ln (1+u) —((xu)t)(2, u ) —u (1 —u )

+ —u —2 ln(1 —u ) —uin +2u (1 —u ) lnuI
r'

3 1+u 2 a

3 1 —u

(1 —u)q(2, u) —(1+3u)(t)(2, —u) —2u(1 —u )
1 2

(1+y ) u(1 —u )

2

u (1+u) — ln +uln(1 —u ) —2u(1 —u~) lnuI (2. 2)
6 „1—u

Wichmann and Kroll expand this expression for
q(~~(p) in powers of —,'P, obtaining [Eq. (WK59)]

5 function at the origin,

p'"(r) =6Q6'(r) (r-O), (2. 11a)
(3) e m 5g 13 p

4&' 4 72 '24 2

+0 p
16 8m 33&7 p

2

p &3) (Zo)) 40 1
(2. 9)

for x» 1, as Wichmann and Kroll point out in Eq.
(WK60).

Wichmann and Kroll also find the limiting value
of q~ ~(P) when P becomes infinite, given in Eq.
(WK61) as

2

lim 2 ((t) = — ————— ( 2))2
(3) e 7t' 7 2

47T 6 S 3
(2. 1o)

where g(z) is the Riemann t; function. This means
that the charge density p( ~(r) behaves like a Dirac

This information is useful for obtaining some
radial moments of p~ ~(r), the charge density whose
Laplace transform is (Zn) q( '(P), since we have

n

r"[r p' (r ) ]dr = (Zn) ——q' ~ (p)
~dp p-0

(2. 6)
For n = 0, we find from Eq. (2. 7) that the total
polarization charge vanishes, as it must, because
it would otherwise change the nuclear charge seen
by a distant observer. For n=4 in Eq. (2.8), the
inp term in Eq. (2. 7) causes this moment of p' ~(r)
to diverge, and in fact this term can be used to
show that

with [from Eq. (WK70)]

(Zo)' v' 7 2
2 q = - x —————

2 (2))
m 6 9 3

= —e (Zo, )s(0. 020940) (2. 11b)

The large-p behavior of q' ~(p) is determined by
how p~ ~(r) behaves when r is small, and so the in-
tegral in Eq. (2. 2) was carried out analytically for
large P and q' '(P) was obtained up to terms that
vanish faster than 1/P~. The evaluation of the in-
tegral is discussed in the Appendix. It was found
that

(Zn) q (p)= + ~ —~ln —+
6Q a 2c P 2d'
4m p p

Note that 6Q is opposite in sign to the nuclear
charge. Since the net polarization charge must
vanish, the total charge outside the origin must
cancel 6Q. The asymptotic charge density given
in Eq. (2. 9) is, in fact, opposite in sign to 6Q.

Since muons in the states in which we are in-
terested spend most of their time well within half
an electron Compton wavelength from the nucleus,
their level shifts due to the polarization charge
p' '(r) are approximated by the shifts from the
Coulomb potential due to the charge 6Q at the
origin. However, with the information at hand,
rather singular behavior of p' ~(r), and its con-
sequent large corrections to the Coulomb potential
from 6Q, could not be ruled out entirely, so that
it was desirable to learn more about p' ~(r) near
the origin.

III. POLARIZATION CHARGE NEAR NUCLEUS
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where

+O p4, 3 1

and

a=+a I —((2) —3((S)+—((4))
(Zn)' 45

7r' 2 16

=+e(Zo.)'(0. 0263'I'I)

c =+ e(za)'(I/3)T),

(3.2a)

(3.2b)

d'= e(-Zo()'(I/w)[I, —l(3)]
This indicates that, for x«1,

(3.2c)

G=e~

d =+e(Zo()'(1/v) [$ —t; (3)], (3.2d)

and y is Euler's constant, y=0. 5VV215V. Note that
there is no term linear in I/p in the expansion in
Eq. (3.1), and that a in Eq. (3.3) has the same
sign as the charge density for large r [Eq. (2. 9)].

It is convenient to define a normalized charge
density

p(r) -=5 p'"(r) (3.4)

and to define the quantities

&r") —= J [r p(r)]r" dr

whose values, determined from Eqs. (2. I) and

(2.8), are

(3. 5)

&1)=1,
&r) = 0.85794,

&r ) =1.29242

&r ) =3.13290

(3.6a)

(3.6b}

(3.6c}

(3.6d)

where, in evaluating Eq. (3.5) for n = 0, the con-
tribution from the 5 function at x=0 has been
omitted. Equation (3.6a) thus expresses the con-
dition that the net charge density outside the origin
must be exactly —5Q. It will be convenient, when-

ever a charge density is mentioned in the remain-
der of this paper, to assume that the 5 function is
omitted.

For the transitions of interest here, the aver-
age radius of the muon's orbit is typically between
0.2 and 0.4 Compton wavelengths. The approxi-
mation given in Eq. (3.3) is not accurate at this
distance: the last three terms in Eq. (3.3) begin
to be comparable in size for r= 0. 1. It is there-
fore necessary to employ some sort of interpola-
tion for p~ '(r) in order to obtain an estimate of its
effect on the muonic states, using the known be-

p's (r) =5@5~ (r)+a/r+ eln4G ~r —d + O(r ln r)
(S.3)

with

with

a = 15.8292

e= 63.6739

d = 46. 3013

D= 3.44301

(3.8a)

(3.8b)

(3.8c)

(3.8d)

which are obtained from Eqs. (3.2); and for r ~ Rz,

r pi, iz(r) = 5/r

with

b = 2. 70241

(3.9)

(3.10)

which is obtained from Eq. (2. 9).
Between R& and R2 the behavior chosen for the

interpolations for r p(r) was a constant one for
r p, and one quadratic in x for x p». The inter-
polation was required to be a continuous function
of x, so that only one parameter was free to vary
in p„ three in p». The interpolations and param-
eter values are given in Table I. The errors in
satisfying the conditions in Eqs. (3.6), defined as

~ = (&r"&,...„-&r"&)/&r"& (S.11)

are also given. The parameter values given in
'gable I were chosen by requiring that $„0 tu„(&„)
be a minimum, where sv& ——w2 ——zv3 = 0 for p, and
sv3=0 for p», the other weights being chosen to
produce as small 6~ as possible and still keep +
near 0. 5/o.

These interpolations are graphed in Fig. 2, as
well as an interpolation that satisfies the condi-

havior of p'"(r) for small and large r and the con-
ditions contained in Eq. (2.8) as a guide. To base
the calculation on an elaborate interpolation in-
corporating all the bits of information about p~~~(r)

does not seem to be justified, because the accuracy
of the result is difficult to estimate, and the un-
certainty in estimates based on cruder interpola-
tions is still less than the uncertainty in computing
the effect of the atomic electrons on the muonic
levels. Furthermore, the higher-moment condi-
tions of Eq. (2.8) do not strongly limit the be-
havior of p~ ~(r) near the origin, because the mo-
ments with the higher powers of x in the integrand
are mostly determined by the region where x is
comparable with or greater than the Compton
wavelength.

Two simple interpolations p, and p» were there-
fore tried. Both assumed the small-x and large-x
behavior of p~s'(r) given in Eqs. (3.3) and (2.9),
abruptly terminated at the two radii R& and R~.
Expressed in terms of the normalized charge den-
sity, it was assumed that, for r ~R»

r p, , „(r)=ar+cr ln4G r —dr

=ax+ex lnDx



1484 THOMAS L. BELL

I.O—

.8

.2

r(X, )

.6
I

.8 I.O

FIG. 2. Interpolations g pz and x pzz [curves (a) and (b) j
used to estimate the level shifts due to p~~(z). The
dashed curve (c) is a more elaborate interpolation that
satisfies the conditions (3.6) in the text exactly.

The number of parameters in the equation equals
the number of conditions that the equation was re-
quired to satisfy.

The potential produced by the charge density p
can be written (in Gaussian cgs units) as

y(~) =4~-' J (~" r~')p(r') -dr' (s. 12)
0

when p is nicely enough behaved at the origin, as it
is here if the 5 function is treated separately. Let
us do this now.

The level shift due to the point charge given in
Eq. (2. 11) may be computed by finding the change
in the Dirac energy for a point nucleus after the
substitution

tions in Eqs. (3.6) exactly and has the correct
asymptotic behavior for large r of Eq. (3.9), but
for small r has the asymptotic behavior of x p(x)
only as far as the term linear in r in Eq. (3.7).
It is not used in any of the calculations and it did
not influence the choice in parameters for the in-
terpolations used, but it is perhaps useful for com-
parison with the simpler interpolations, since it
satisfies all the moment conditions (3.6) exactly
and the simpler interpolations do not. The equa-
tion for this interpolation is

15.83m 8.819m
(1+1.3426r) (1+0.8044r)'

+2. 934m e

TABLE I. Interpolations used in estimating the level
shifts due to the diagram in Fig. 1{d). The + are the
errors in satisfying conditions (3.6).

Interpolation I

pz 6') = rye, R~ x R2

Rg = 0.061842
R2 = l.35020
rn = 0.60223

hp=0
Q =+6.6%

&2=-4.4%
A3 = —20.2%

where p, is the mass of the muon, and n and j the
quantum numbers of the atomic state. The rela-
tive level shifts that result are listed in the first
column of Table II under 5Q for the transitions of
interest here. For Z=82, the substitution (3.13)
was made in the exact formula for the Dirac en-
ergy and the resulting change in the energy found.
It differed from the result of using Eq. (3. 14b) by
0. 1 eV and is quoted instead in Table II.

Wichmann and Kroll also obtained the Laplace
transform of the polarization charge density due to
the higher-order diagrams, like the one in Fig.
1(d), but with more interactions between the elec-
tron loop and the nuclear charge. The charge den-
sities in all the higher orders were shown to again
exhibit a point charge at x = 0, smaller in each
succeeding order, but always with the same sign
as in the (Zn) order. The point charge 6Q'due
to the (Zo. )~ and higher orders is given in Eq.
(WK70), and its approximate numerical value given
in Eqs. (WK71) and (WK72):

6Q'=6Q —e(zo) (0.007121)[l+(Zo) (0. 5183)]
(s. 15)

If 5Q' is used in Eqs. (3. 14) instead of 5Q, the
second column in Table II, under 6Q', results
Again, the exact difference in energies is quoted
rather than the result of Eq. (3. 14b) for Z=82.

We must now consider the level shifts due to the
rest of the polarization charge density with the 5
function omitted. These may be obtained from
first-order perturbation theory using the potential
given in Eq. (3.12). In our calculation, the solu-
tions of the Dirac equation for a point nucleus
were used as wave functions for the muon, though

Ze-Ze+5Q . (3.13)
Interpolation II

& Pzz6) =e —s(x-R~)+g(y-R&) {y-R2),2-

BE„q 5Q
nt j gg

(S. 14a)

Zn 5Q 2(Zn) 1 3
z

—1+1 p, p

(S. 14b)

In many cases this is given accurately enough by Rg = 0.098815
R2 = 3.1115
m = 0.89383
g = 0.29362
t = 0.09252

b,p
= —0.57%

Eg =+1.5%
62=-3 4%

63 =- —13.8%
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it was scarcely necessary, since even for lead the
nonrelativistic wave functions gave a result dif-
fering by only 0. 1 eV. The expectation value of
the potential was found by numerical integration.
The relative changes in the levels produced by the
interpolations pz and pzz are listed in the third and
fourth columns of Table II under pz and pzz, re-
spectively.

The level shift due to p is probably no further
from one of the estimates based on pz and pzz than
the latter are from each other, since it is the
charge density for x 0. 3 largely determining the
potential for the states of interest here, and within
this distance it is not likely that p

' departs very
much from the area defined by the two interpola-
tions. Consequently, we will take the shift in the
transition energy due to p ' to be the mean value
of the estimates from p, and p» with an uncertainty
equal to 1.5 times the separations between the
estimates. The values that result are listed in the
fifth column of Table II.

We must still consider the contributions to the
level shifts from the higher-order diagrams. We
have already used the results of Wichmann and
Kroll to determine the shifts produced by the point

charge at the origin due to the higher-order dia-
grams, which are included under 5Q' in Table II.
The shifts due to the polarization charge outside
the origin are, of course, rather small, and we
shall examine them mostly in the spirit of learning
how large an error may be involved in not deter-
mining these shifts exactly.

Two facts are known about the polarization
charge density outside the origin due to the higher-
order diagrams. The first is that the net charge
outside the origin must be the negative of the point
charge at the origin. The second fact may be ob-
tained from the first term in the expansion for
s~all p of q "(p) given by Wichmann and Kroll in
Eq. (WK68),

q~'i(p) = —
2 (0.015191)

dP 4m

If we define a normalized charge density as in Eq.
(8.4),

p(&) =
&5~ p (&)

where 6q' ' is the point charge due to the fifth-
order diagram, and determine (x) for this nor-

TABLE II. Energy shifts from the diagram in Fig. 1(d) and higher orders. The shifts due to the point charge in-
duced at the origin to order (Zz) and to all orders are given under BQ and PQ', respectively. The shifts produced by the
interpolations pz and pzz are listed under pz and pzz, respectively. The estimated shifts due to the polarization charge
outside the origin to order (Zn) and to all orders are given in columns 5 and 6, respectively, and the net shifts due to
the diagram in Fig. 1(d) and all higher-order diagrams are given in the last column. All energies are given in eV.

20

22

Element Transition

3d3/ 2-2pg /2
3ds/s 2pa/2

3d3/ p 2pf / 2

3ds/ 2-2p3 /2

QQ

(eV)

—1.04
—1.02

—1.53
—1.50

gQI
(eV)

—1.05
—1.03

—1.54
—1.51

Pz
(eV)

0.10
0.10

0.13
0.13

Pzz

(eV)

0.12
0.12

0.16
0.16

(Ze) shift
(sans 6Q)

0.11+0.03
0.11+0.03

0.14+ 0.05
0.14 + 0.05

(Ze) + (higher-
orders) shift

(sans 5Q')

0.11+0.03
0.11+0.03

0.14+ 0.05
0.14+ 0.05

Net shift
(eV)

—0.94 + 0.03
—0.92 + 0.03

—1.40 + 0.05
—1.36 + 0.05

48

50

56

Fe

Ag

Sn

3de/2 2pi/2
3ds/ 2-2p3/

4fs/2 3d3/2
4f7/2-3ds/2

4fs/2 3d3/2
4f7/2-3&s/2

4fs/2 3d3/2
4f7/2 3ds/2

4fs/2 3&3/2

4'/2 3ds/2

4fs/2 3d3/2

4fv /2-3ds/2

5gv/2-4fs/2
5g 9/2-4f7/2

5gy/2-4fs/2
5g 9/2-4fv /2

—3.01
—2.92

—4.7
-4.7

11 ~ 2
—11.0
—12.2
—11.9
—14.4
—14.1
—22. 9

22 ~ 2

—10.4
—10.2
—48. 9

47 ~ 4

—3.05
—2.96

-4.9
—4.8

—12.8
—12.5
—15.1
—14.8
—24.4
—23.6
—11.0
—10.8
—55.9
—54. 3

0.20
0.20

0.5
0.5

0.9
0.9

0.9
0.9

1.1
1.0
1.4
1.4
1.2
1.2
3.7
3.6

0.25
0.25

0.6
0.6

1.2
1.2
1~ 3
1.3
1.8
1.8
1.6
1.6
4.6
4.6

0.22 + 0.08
0.22 + 0.08

0.6+ 0.2
0.6+ 0.2

1.0+ 0.3
1.0+ 0.3

1.1+ 0.4
1.1+ 0.4

1.2+ 0.4
1.2+ 0.4

1.6+ 0.5
1.6+ 0.5

1.4+ 0.6
1.4+ 0.6

4.2+ 1.4
4.1+ 1.4

0.23+ 0.09
0.23+ 0.09

0.6 + 0.2
0.6 + 0.2

1.0+ 0.4
1.0 + 0.4

1.1+0.4
1.1 + 0.4
1.2 + 0.4
1.2 + 0.4

1.7 + 0.6
1.7 + 0.6
1.5 + 0.6
1.5 + 0.6
4.8 + 1.8
4.7+ 1.8

—2.82 + 0.09
—2.74+ 0.09

-4.3+ 0.2
-4.2 + 0.2

—10.7+ 0.4
—10.4+ 0.4

—11.7 + 0.4
—11.4+ 0.4
—13.9+ 0.4
—13.5+ 0.4
—22. 6 + 0.6
—21.9 + 0.6

—9.5+ 0.6
—9.3+ 0.6

—51.2+ 1.8
—49.6+ 1.8
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malized charge density just as we did for p' '(r),
using equations analogous to Eqs. (2.8) and (3.5),
we find (r) = 0.68 vs 0. 86 for p'" [Eq. (3.6b)].
Since these values are not radically different, we
may suppose that the charge distribution p~'~(r)
near the origin behaves somewhat like p' '(v), but
is reduced in magnitude by the factor 5Q~'~/5Q,
since in p~" (r) the net charge outside the origin
must cancel 5Q~5'. This assumption permits a
simple estimate of the magnitude of the shift due to
the higher-order diagrams, since we need only
scale down the shifts due to p~ '(r) by the appro-
priate factor: (5Q'- 5Q)/5Q.

If we add this estimate to the shift due to p~ ~(x),
we obtain the next-to-last column of Table G. We
see that even for /=82 the change in energy is
only 0. 6 eV. The error in this estimate of the ef-
fect of the higher-order diagrams is probably as
large as the estimate itself, and in Table II this
error has been compounded with the uncertainty
already present in the estimate for the shift due to

(8&(

The estimates of the net effect of the graph in
Fig. 1(d) and its higher-order counterparts are
given in the last column of Table II. These are
seen to differ from the estimates published by
Sundaresan and Watson, ' most significantly for
lead, where the difference is about 5 eV. In their
approach an interpolation for q~~~(p) was used that
for large p deviated from the asymptotic limit as
I/p rather than with the 1/p' behavior that has been
found here [Eq. (3.1)]. In coordinate space this
would mean that x p~ ~(r) does not vanish at r = 0,
and so with their assumption a greater amount of
shielding of the point charge 5Q can occur within
the muon's orbit, with a correspondingly larger
reduction of the energy shift due to the point charge
5Q. In general, their interpolation overestimates
the effect of the shielding of the point charge by
about a factor of 2 for the transitions considered
here, and would overestimate more for transitions
taking place closer to the nucleus.

IV. DISCUSSION

The most important facts established here are
contained in expression (3. 3): the sign and magni-
tude of the polarization charge density near the
nucleus due to the diagram in Fig. 1(d). The
charge density outside the origin is opposite in
sign to the sign of the 5 function at the origin [Eq.
(2. 11)], so that it diminishes rather than augments
the potential generated by the 5 function; and not
by very much, in the cases considered here. The
expansion (3.3) becomes more accurate over the
region traveled by muons orbiting closer to the
nucleus, but the calculation of Wichmann and Kroll
from which it is obtained assumes a point nucleus,
and when the finite size of the nucleus generates

significant corrections to the Dirac value for the
energy of the muonic atom, then its modification
of the expansion (3.3) must be considered as well.
One might hope to approximate the effect of the
finite size of the nucleus by assuming that each
(infinitesimal) volume element of the nucleus in-
duces a polarization charge proportional to the
Wichmann-Kroll result (centered on the volume
element) and the nuclear charge contained in the
volume element, but it would be difficult to esti-
mate the accuracy of such a procedure.

The discrepancies between the theoretical transi-
tion energies, based on the quantum-electrody-
namical description of the muonic atoms, and the
experimental energies determined by Dixit et al. ,
are still uncomfortably large in four cases. In
Table III the energies and discrepancies are listed
for the heavier muonic atoms, using the values
given by Dixit et a/. for the theoretical energies
and uncertainties, except for the corrections due
to the a' diagrams in Figs. 1(b) and 1(c), which
are taken from Sundaresan and Watson, and the
corrections from the higher-order diagrams that
have been considered here and are given in the
last column of Table II. The experimental ener-
gies are quoted from Dixit et al.

Most of the radiative corrections to the muonic
energy levels have now been checked, and it does
not seem likely that any substantial emendations
will be forthcoming from that direction. Vogel
has reexamined the electron-screening correction
and is in agreement with previous calculations. ~'

If one assumes that nearly all of the electrons are
present during the lead 5g 4f transi-tion, the dis-
crepancy would at best be reduced by about 10 eV
for lead, and cascade calculations do not justify
this assumption. The corrections due to the finite
size and the structure of the nucleus have not been
so thoroughly investigated, and perhaps are de-
serving of more attention. The finite-size correc-
tions are rather large in Ba ( —140 eV for 4f~&z-
3d3 / 2 and —53 eV for 4f~ &

3-3d~ ~ z) and sensitive to
the choice for the nuclear shape. For the transi-
tions in lead the finite-size effect is much smaller.
The other effects due to the nonideal nature of the
nucleus are each estimated to be less than 10 eV
in magnitude (except for the correction due to the
finite mass of the nucleus, which is mostly ac-
counted for by using the reduced mass of the muon).

It may be important for recent theoretical at-
tempts at a unified theory of weak and electromag-
netic interactions ' to establish with confidence
the theoretical and experimental transition ener-
gies, since the size of the discrepancy provides
a useful constraint on some of the theories.
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TABLE III. Theoretical and experimental transition energies. The e shifts due to the diagrams in Figs. 1(b) and 1(c)
are taken from H,ef. 4, the experimental energies from H,ef. 2.

48

50

56

Element

Cd

Sn

Ba

Pb

Transition

4'/2 3d3/2
4f7/ 2 3d5/2

4f5/2 3d3/2
4'/2-3d5/2

4f5/2-3d3/2
4fv /2-3ds/2

4f5/2-3d3/2
4'/2-3'/2
58y/2-4f5/2
5gs/~-4f7/2

5gy/2-4f5/2
5ms/2-4fv/2

shift
0 eV)

0.0142
0.0137

0.0151
0.0144

0.0169
0.0163

0.0235
0.0223

0.0065
0.0065

0.0202
0.0194

(Sa.)3+ (higher-
orders) shift

(kev)

—0.0107
—0.0104

—0.0117
—0.0114

—0.0139
—0.0135

—0.0226
—0.0219

—0.0095
—0.0093

—0.0512
—0.0496

@theor

(keV)

308.458 + 0.005
304.780 + 0.005

321.996 + 0. 005
317.990 + 0.005

349.981+ 0.006
345.257 + 0.005

441.366 + 0.007
433.910+ 0.007

201.279 + 0.004
199.912 + 0.004

437.756 + 0.010
431.342 + 0.009

(keV)

308.428 + 0.019
304.759 + 0.017

321.973 + 0.018
317.977 + 0.017

349.953 + 0.020
345.226 + 0.018

441.299 + 0.021
433.829 + 0.019

201.260 + 0.016
199.902 + 0.015

437.687 + 0.020
431.285 + 0.017

Discrepancy
(eV)

30+ 20
21 y18

23+ 19
13+18
28+ 21
31+ 19

67+ 22
81+20

19+ 16
10+ 16

69+ 22
57+ 19
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f W'~'(p;y)dy= f 2W '(p;y)dy (Al)

Using the definition in Eg. (2. 4), the integration
variable is changed to u, so that, with P =

& P,

J W'"(p'y) dy

= J 2W ~~(P'y)P(l —u/P )u du

It is perhaps easiest to indicate the succeeding
steps in the approach with a specific example„and
so the integral of the first term of W~~~ in (2. 6)
will be examined. Then we require the behavior
for large P of the integral

f (1 —u /P ) ~ lns(1+u)u du (AS)

where we have replaced the lower limit by e &0
with the intention of letting it approach zero later;
the logarithmic divergence in a is canceled by the
next two terms in W~3' and is not of any signifi-
cance. The integral (AS) is then written as

APPENDIX: DETAILS OF CALCULATION

In order to carry out the integral in Eq. (2. S) for
large P, it was first noticed that the integrand
given in Eq. (2.6) is even in the integration vari-
able y, so that

du S u~ 1 ——~ ln'(1+u)
Q

+~ ~ 1 —~ —1+ —~ ln (1+u)
u I 2 p

(A4)
The first integral may be rewritten as

Cfg 3 8
1 ——~ ln (1+u)

1 —— ln (1+u) . (A5)
cfQ 3 Q

Q 2
P

The first integral of (A5) is already in the form
we seek, and we need only evaluate some definite
integrals to obtain the coefficients due to this term
in the expansion of q'3~(p) in powers of 1/P. The
leading behavior of the second integral in (A5) is
already of order (ln P)/P, and so only the asymp. —

totic behavior of the integrand is required for our
purposes. One finds that this is the case in all
the analogous terms of W~ ' involving logarithmic
functions, and it is easier to find the asymptotic
behavior of all these terms in the first pair of
curly brackets in W' as a whole, because many
cancellations take place —in particular, the one
under consideration here is canceled.

The second integral in (A4) must still be ex-
amined. Though one may handle it directly, the
treatment of the integral is easier if it is broken
into two parts, as

(A6)

where we choose s=P 3", &'&0 and small. In
the first domain the integral can be shown to fall
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faster than 1/P as P ~ by expanding the factor
(I -u'/Pa)'~~ in a Taylor series. In the second
domain only the asymptotic behavior of ln (1+u) is
needed to obtain the contribution that does not fall
faster than I/Ps. The same situation occurred in
the second integral of (A5), and again analogous
terms in the first pair of curlybrackets of W 3'

cancel the asymptotic behavior of this term and no
integrals need be evaluated.

Much the same approach may be used for the
other terms of S"' '. The terms in W' ' that do not
involve logarithmic functions can usually be done

exactly and considered separately. Treatment of
the terms involving logarithms is often simplified
by integrations by parts and by treating groups of
terms together.

The definite integrals required to verify the cal-
culation of Wichmann and Kroll of the asymptotic
limit of q'"(P), such as the first one met in the
first term of (A4), include most of those needed
for the next terms in the expansion of q's'(P).
Contour-integration methods may be used to relate
integrals evaluated by other methods and permit a
large amount of cross checking in the calculation.
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