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The hyperfine interaction in the (1s 2 2s2s 3P,) excited state of the beryllium atom is of interest since it
is the lowest excited state in which hyperfine effects can occur, the ground state being a singlet. In the
present work the magnetic hyperfine interaction for Be® is studied theoretically using the linked cluster
many-body perturbation theory including up to second order in the electron-electron interaction, certain classes of
ladder diagrams, and selected third-order diagrams. Our theoretical value of 4 in AT + 7T is composed of
— 107.41 MHz from the zero-order valence 2s and 2p electrons and — 16.80 MHz from higher-order diagrams
the total value - 124.21 MHz being in good agreement with the experimental result of — 124.5368 +0.0017
MHz. The contributions from various diagrams are interpreted in terms of physical effects such as exchange
core-polarization and correlation effects, the influence of 2s2p interactions being significant in influencing

the hyperfine constant.

I. INTRODUCTION

The linked-cluster many-body perturbation the-
ory (LCMBPT) developed by Brueckner and Gold-
stone (BG)' has been applied successfully to the
study of hyperfine properties of a number of atomic
systems.?™" The LCMBPT procedure seems es-
pecially suitable to the hyperfine structure (hfs)
problem both because the wave function is an eigen-
function of §2 to all orders and also because it en-
ables a convenient separation of physical effects,
such as core polarization and various types of cor-
relation.

The study of hyperfine interactions in excited
states of group-II (alkaline earth) atoms is of in-
terest since the ground state is a singlet and hence,
there is no hyperfine effect, and one has to go to
the excited state to observe the latter, The group-
II elements fall into this category, and we have
started a program for study of their hyperfine in-
teractions in 3P states. In the present paper, we
would like to report on our LCMBPT investigations
of the magnetic hyperfine interaction for the excited
(1s%2s2p) state of beryllium atom,

From a many-body point of view, the excited
state of beryllium has some unique features. The
unpaired 2s and 2p states are expected to correlate
strongly, and it is interesting to investigate the ef-
fect of this correlation on their contributions to
the hfs. This situation is different from boron and
nitrogen which also have 2s electrons but in paired
states, leading to a near cancellation between 1s
and 2s core-polarization effects. The beryllium
system also has some similarities with the lithium
atom ground and excited states in having only one
paired core state (1s), whereas, the latter systems
have either a 2s electron or a 2p alone, both are
simultaneously present in beryllium.

The magnetic dipole hyperfine constants in this

7

system are available from recent atomic-beam
measurements, ® and will be compared with our
theoretical results. In a subsequent investiga-
tion, we will utilize the same basis set and some

of the matrix elements utilized here to derive the
nuclear quadrupole moment of Be® from atomic-
beam nuclear-quadrupole -coupling data, a quantity
of great current interest for interpretation of solid-
state nuclear-quadrupole data.

In Sec. II, we present a brief description of the
procedure we have used. Section III presents the
contributions from different hyperfine diagrams.
Finally, Sec. IV presents a discussion and com-
parison of our results with experiment and earlier
theoretical calculations, mainly one electron in
nature,

II. DESCRIPTION OF PROCEDURE

Since these have been discussed in detail in the
literature, *® we shall present only a brief résumé
of the LCMBPT theory at the beginning of this sec-
tion. This is followed by a discussion of the yv¥-!
potential and basis sets that we have used. Section
IID deals with the description of the pertinent dia-
grams for contact, dipolar, and orbital hyperfine
operators. Numerical details and results are pre-
sented in Sec. IIL

A. Resume’of BG Theory

The nonrelativistic exact Hamiltonian for an
atomic system of N electrons can be written

N
=22 Ty+ 22 Vi, 1)

i=1 i<i
where T; stands for the sum of the kinetic energy
and nuclear Coulomb potential of the ith electron,
and V;; is the electrostatic interaction potential be-
tween electrons ¢ and j. For studying the atomic
properties, one is interested in the exact solution
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of the Schrodinger equation
3L, =EY, . @)

In the perturbation procedure used here, iCis re-
placed by a central-field-approximation Hamilto-
nian

scoil (T4 V), (3)

and 3¢’ =3¢ — 3¢, is treated as a small perturbation,
The single-particle potential V; is selected in such
a way that the one-electron equation

(T+V)pi=¢€; ¢, @)

is conveniently solvable for a complete set of bound
and continuum states with eigenvalues ¢;. These
@,’s are restricted-Hartree—Fock(RHF) +type or-
bitals. A normalized zero-order determinantal
wave function &, can be formed out of N of these
single -particle states satisfying the unperturbed
Schrodinger equation

Ko @o=Eo 2 . (5)

The normalized eigenfunction ¥, of the total Ham-
iltonian ¥ could be generated from the unperturbed
eigenfunction &, by slowly “turning on” the per-
turbation “adiabatically’” and using the unitary time-
development operator™® U(z, ¢') defined by

v(H)=U, ),
(6)
\I’0= U(O, - °°)¢0.

The expectation value of an operator O over the
actual wave function ¥, can then be shown after
some manipulation to be

(0) =(¥o| O] W)
=(®,| Ul, 0)0U(0, —)| &g, , )

where L indicates that only linked diagrams are to
be considered. The relationship of this type of
procedure involving linked expectation-value dia-
grams and the alternate one of using linked wave-
function diagrams has been discussed in Ref. 7.
On using the perturbation expansion

|
2 2N 1
(-5?- b= - (4717 155 )+ 27020, 285 7)] - 26,
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U(t, t0)= é Up(t’ t(]) ’

where

R ¢ ty tpat
U,(t, to):(—z)ﬁfmdtlfto dty... fto dt,

x 3¢y (¢,)5C; () . . . 3C;(8,) ,  (8)

and substituting in Eq. (7), the latter can be re-
expressed in the alternate form

(0)= Z E < ‘I’ol [}CI(EO -3(30)-1 ]n

XO[(Eq =3g) 5" 1" &0),, , (9)
more amenable for diagrammatic expression.
B. Basis Set

As is well known from the literature on the
LCMBPT procedure, for the evaluation of the dia-
grams associated with the perturbation expansion
in Eq. (9), one needs a complete set of basis states
which are eigenfunctions of the zeroorder of Ham-
iltonian 3¢, .

For the single-particle potential associated with
the 3¢;, we have chosen the V¥ “1_type potential
with a view towards quick convergence of the per-
turbation series. 2" The V¥! potential generates
a complete, orthonormal set of infinite number of
bound and continuum states. The bound-state
(e<0) wave functions can be separated into radial,
angular, and spin components, characterized by
the orbital quantum numbers #, [, and m and spin
quantum numbers o and m,, and can be written

o=[Pl; v)/7] Y7 (6, §)Xe(ms) . (10)

The form of the continuum state (€, = 34?) partial-
wave wave functions is the same except that the
principal quantum number # is replaced by the con-
tinuously varying parameter 2. The s states are
generated in the field of 1s22p and 7> 0 states in the
field of 1s22s. In both the cases, a full exchange
with the core 2s and 2p is taken. The radial equa-
tion for 1=0 state is

s) Pns; 7)

’ % [%o(1s%, ns; 1)P(Ls%; 7)+ 3 11(2p°, ms 3 M)P(2p°; 7)]=0, (11)

and for />0 state,

d? 2N 1 0 1 0 0 o0
(’71;‘2—+ pounle o [4Y,(1% 15%; 7) +2Y,(2s° 25°; 7)]-2(,,,) Pnl; 7)

2
F @i+ )y

[¥,(1° nl; NP(1s®; )+ ¥, (25% nl; NPERs®; H=0, (12)
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where

©

k
Y.l n'l'; v)=7 J —1—,7:551— Pul; ¥ \PG'l'; v'Ydr' .
0 >
The P(nl; 7) for bound states are normalized to 1.
The continuum-state wave functions are normalized
in such a way that the asymptotic solution at large

distance 7, has the form
P(kl; 7) = (2/70)? sin[kr + 6, + (1/k) In(2k7) = 5 I7].

In keeping with this in carrying out summation over
continuum states, the relation'!

7 -2 j dr
k m o
has to be used.

In order to solve Egs. (11) and (12), one has to
make a choice of the 1s° 2s% and 2p° wave func-
tions in obtaining the ¥,’s. In case RHF wave func-
tions for these states are available, one could make
use of those in ¥,’s. But, since no accurate RHF
wave functions were available for the 3P state of
beryllium, the following procedure was adopted in
solving the basis set equations (11) and (12). We
started with the 1sand 2s wave functions for the
1s%2s? state from Clementi’s table.!? With this
choice, the 2s and 2p wave functions were obtained
from solutions of Eqs. (11) and (12) and then, the

Ac=< lg" —‘iﬁ—‘é—ﬂ—) <\11(J, M,)

IM jagh
ZIJ'BI“LN) <

_ Zusun)<
A°—<IMJa%h \I’(J, MJ)

Aq

The evaluation of A;, A;, and A, thus involves cal-
culation of the expectation values in the three equa-
tions of (17) in terms of perturbation diagrams.
For diagrammatic notation, we represent the con-
tact, dipolar, and orbital operators, (for 3P, state
with M, = 2)2s,8(r), s,(32%-72)/7%, and 1,/7% as
wiggly lines followed by letters ¢, d and o, respec-
tively. To obtain the contributions to 4,, A;, and
A, in Hertz from the individual diagrams which are
evaluated in units of a;}, one has to apply the multi-
plying factor

K, =37 pguy/IM agh (18)
for the contact case and the factor
Ky=2puguy/IM a5k (19)

for the dipolar and orbital cases.

N
fv:;i sl‘ 6(ri)

N lz
2,4
=t 7y
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process was repeated until the 2s and 2p wave func-
tions had converged as they should with the choice
made for the V7! potential. Only a few cycles
(about three) were needed for the convergence.

C. Formalism for Hyperfine-Interaction Constant

The Hamiltonian terms corresponding to the
Fermi-contact, dipole-dipole and magnetic-or-
bital interactions can be written

N o~ =
5 = 167 pppy 1.2, s;6(r;), (13)
3 qu =1
- & (38, T)T, 8, )
! MpHy i Litg i
=2 BLN Z( (14
JCd IaB i=1 vy ’Vis )
i=2 LA T 00 i (15)
Iagp i=1 73

In the experimental determination of atomic hfs,
one uses the spin Hamiltonian

wW=A1-F, (16)

where J is the total electronic angular momentum
and A, is the magnetic-hyperfine-coupling constant.
The individual hyperfine-coupling constants in Hertz
corresponding to the three types of interactions
mentioned above can be written in terms of expecta-
tion values of the three hyperfine Hamiltonian terms

v(J, MJ)> ,

VI, M,) >

[

D. Description of Hyperfine Diagrams

With the contact, dipolar, and orbital operators
introduced in the place of O in Eq. (7), the dif-
ferent terms in the perturbation series can be ob-
tained by assigning different integral values (in-
cluding zero) to m and n. A particular term in this
series can be represented by a group of Feynmann-
like diagrams drawn according to rules described
in the LCMBPT literature. "' As usual, in the
diagrams in Figs. 1 through 6, the downward lines
correspond to holes, and the upward to particles,
while the horizontal dotted lines correspond to elec-
tron-electron interactions., The diagrams corre-
sponding to » and » orders in Eq. (9) are referred
to as (m, n) diagrams. For example, the m =0,
n=1 contact diagrams in Figs. 1(a) and 1(b) are



1472 S. N, RAY, TAESUL LEE, AND T. P. DAS 7

e 4 & E.
VARV, MR

(e) (g) (h)

LA e

(i) (i (1

" Y T Am Al 2 oAm
hQ" mi }«c qQ‘ ’{ [rv-c h< X: lmc {: X lMC
. n . (I
___Vi ___\In i _'_J_ n
(m) (n) (o) (p)

FIG. 1. (0,1) and (1,1) contact diagrams.

referred to as (0, 1) diagrams. Similarly, the rest
of the diagrams in Fig. 1 are referred to as (1, 1)
and those in Fig. 2 as (0, 2) diagrams. Because
of the Hermiticity of the operators involved in Eqgs.
(17), the contributions from (m,n) and (r, m) dia-
grams are equal. In presenting the diagrams prop-
er care has been taken to include cancellations
among diagrams associated with spin and between
the potential terms and the electron-electron inter-
actions involving unexcited occupied states.

We consider first the contact diagrams. For
these diagrams, it is the ¢ vertex that has to be
used and, in view of its §-function character, it

has to be attached only to s-hole and particle states.
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FIG. 2. (0,2) contact diagrams.

In Fig. 1, we present the (0, 1) and (1, 1) contact
hyperfine diagrams. Diagram 1(a) represents the
influence of the asymmetry of the phase space
available for excitation to the 1s spin-up and spin-
down electrons because the 2s up-spin state is oc-
cupied, while the 2s down state is vacant. This
diagram, in keeping with the earlier literature in
the field, will be referred to as a phase-space dia-
gram, Diagram 1(b) represents the exchange core-
polarization (ECP) effect of the spin-up valence
electrons (2s, 2p) on the 1s core electrons. The
diagrams shown in 1(c)-1(h) represent single-
excitation effects in each of which, the contact-
hyperfine operator appears between two first-order
(single-excitation) wave functions. In Figs. 1(i) and
1(j) are shown the result of combinations of corre-
lation, phase-space, and ECP effects which may,
for brevity, be together referred to as core-polar-
ization effects. Figures 1(k) and 1(1) are the ex-
change counterparts of 1(i) and 1(j). The rest of
the (1, 1) diagrams [1(m) through 1(p)], represent
purely correlation effects. The (0, 2) contact
hyperfine diagrams are shown in Fig. 2. Diagrams
2(a)~2(1) can be obtained from diagrams 1(a) and
1(b) by attaching one more order of electron-elec-
tron interaction to hole and particle lines. These
diagrams represent an interplay between core-
polarization and consistency effects, whereas Figs.
2(m) and 2(n) represent interaction between corre-
lation and core-polarization effects. The last four
diagrams, 2(0)-2(r) in Fig. 2, show mutual polar-
ization effects in the second-order wave functions.
The dipole and orbital diagrams shown in Figs.
3-5 represent similar physical effects as in the
contact case, but with different hyperfine operators.
Equation (17) shows that dipole operator has the
form Y3 and so, this operator by the usual angular
momentum vector addition rules connects states
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FIG. 3. (0,1) and (1,1) dipole diagrams.
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FIG. 4. (0,2) dipole diagrams.

differing in [ by zero or two, except that the former
is not allowed for s states. For example, in dia-
gram 3(f), one can have for ¢ a 2s state and for j

a d-particle state, or have ¢ as 2p and j as p. The
orbital operator in Eq. (17) involves I, and hence,
connects non-s states of same /. Figure 6 shows
some important third-order contact diagrams which
represent the combined effect of ECP and mutual
polarization effects.
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FIG. 5. Orbital diagrams.
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TABLE I.. Contributions to Fig. 2(o) from various
angular momentum states with m=2s*, n=1s*.

Contribution
j h in MHz
s s -1.100
P P -0.795
d d —0.150
f f -0.038

III. RESULTS OF CALCULATION

As mentioned earlier, the evaluation of diagrams
requires a complete set of basis functions. The
nature of the convergence with respect to [ ob-
served in the present work and in earlier work on
atomic hyperfine interaction indicated that it was
sufficient to use up to f states in evaluating the dia-
grams. To demonstrate the nature of this conver-
gence, contributions from various angular momen-
tum states to a typical diagram, namely, that in
Fig. 2(o0) is given in Table I. For particle states
of particular /, we include bound states up to prin-
cipal quantum number =10 while, the 2 values
that characterize the continuum states were chosen
appropriately to apply a 12-point Gauss—Laguerre
integration technique for 2 space. These bound-
and continuum-state wave functions were ob-
tained by solving Eqs. (11) and (12) using numerical
procedures discussed elsewhere, 13,14

We shall now consider the results of calculation
for the individual hyperfine interactions, contact,
dipolar, and orbital, separately. The conversion
factors K, and K, defined in Eq. (18) and used to
convert the values of the diagrams in atomic units
(a3 to megahertz were calculated!® to be —156. 84
and - 37,443, respectively.

In Tables II through VII, giving values of var-
ious diagrams, superscripts+ are used to indicate

wd

(c)

FIG. 6. Some important third-order contact
diagrams.
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TABLE II. Contributions from (0, 1) diagrams shown in
Figs. 1(a)—1(b).

Diagram Excitation Contribution in MHz
1(a) g=1s" m=2s i=2s" -1.417
1(b) g=1s* n=2s i=s* —16.572
g=1s" n=2p i=s" 6.545
Total —-11.444

the spins associated with the corresponding one-
particle states. When states 2s and 2p appear
without any superscript, the state is either a
spin-up state or the corresponding spin-independent
states used in the construction of the V¥-! poten-
tial. We use this convention because, with our
choice of V¥~ potential, there is no difference be-
tween the 2s, 2p states used in calculating the po-
tential and the corresponding spin-up states.

A. Fermi-Contact Interaction

There is a direct RHF contribution from the un-
paired 2s electron which gives - 98, 579 MHz. In
Tables II-V, for brevity, we have listed individu-
ally only the values of those diagrams which con-
tribute more than 0.25 MHz. For the rest of the
diagrams, only the net sum is indicated. In Table
II, we present the contributions from (0, 1) dia-
grams shown in Figs. 1 (a) and 1(b). The total
contribution from these first-order core-polariza-
tion diagrams is found to be - 11, 444 MHz which
is about 11.5% of the direct RHF contribution.

The core-polarization contribution is composed
of —16.572 MHz due to the ECP effect of the va-
lence 2s state on the 1s® core, 6.545 MHz from the
ECP effect of the valence 2p state, and - 1.417
MHz from the phase-space diagram in Fig. 1 (a)
associated with the influence of the 2s state. Thus
the net core polarization of — 11, 444 MHz is com-
posed of ~ 17,989 MHz from the influence of the 2s
state and 6. 545 MHz from the 2p state. The
greater relative contribution from the 2s state,
opposite in sign to that from the 2p state is in
keeping with the trend observed for the ground
(35)? and excited (2P) states® of lithium, the over-
all difference in sign from the lithium results being
a consequence of the opposite signs of the nuclear
magnetic moments of Li”and Be®,

The contributions from (1, 1) diagrams are pre-
sented in Table III. The diagrams in Figs. 1(c)-
1(h) all involve single-particle excitations, since
they all have only one particle line at any time.
These diagrams are all seen to contain one or two
1s-hole lines. Because of the relatively large neg-
ative energy of the 1s state, the energy denomina-
tors involved in these diagrams are substantial and
hence, their contributions are small, as shown in
the second line of Table III. The diagrams 1(i)—
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1(1) appear to involve two particles excited simul-
taneously at certain times. However, it has been
shown earlier that the influence of these diagrams
can be characterized as a one-electron consistency
effect, representing the influenceé of the self-con-
sistent interaction between the electrons on the
core-polarization effect. The contributions from
these diagrams are, therefore, listed under the
heading consistency in Table III. The preponder-
ance of the combined contributions of diagrams
1(j) through 1(1) compared to 1(i) is a consequence
of the greater importance of ECP effects repre-
sented by 1 (b) as compared to the vphase—space con-
tribution in diagram 1(a).'® The rest of the (1, 1)
diagrams [1(m)-1(p)] represent correlation effects
having two particles excited at any time. Their
contributions are listed in Table III, the major
contributions from this class arising from the
2s-2p correlation effect as expected. The con-
tributions from the diagrams 1(m) and 1(n) are
cancelled substantially by their exchange counter-
parts 1(o) and 1(p), respectively. The total con-
tribution from the (1, 1) diagrams was found to be
0.281 MHz, which is only 0. 3%of the direct RHF
contribution and of opposite sign.

Tables IV and V contain the contributions from
the various (0, 2) diagrams of Fig. 2. In Table IV,
we present the values of diagrams 2(a)-2(n). The
major contributions from this class come from
second-order diagrams 2(a), 2(b), 2(i), 2(j), and
2(n), which are topologically related to the core-
polarization diagrams. Due to relatively impor-
tant contributions from these diagrams, as com-
pared to others of second-order, some third-order
diagrams which are extensions of these diagrams

TABLE III. Contributions from (1,1) diagrams shown in
Figs. 1(c)—1(p).

Contribution
Diagram Excitation in MHz
Single excitation

1(c)—1(h) 0.054
Consistency

13) q=1s* m=1s" n=2s —0.479

g=1ls" m=1s* n=2p 0.269

Other consistency diagrams =0,052
Correlation

1(m) qg=1s* m=2s" i=s* j=s* —0.394

q=2p* m=2s* i=st  j=s* —0.776

1(n) q=2p" m=n=2s* 3.981

q=2p* m=1s* n=2s"* —0.521

1(0) m=2s* n=1s* h=s* i=s* j=s* 0.365

m=2s* n=2p* h=p* i=s* j=s" 0,504

1(p) q=2p* m=1s* n=2s* 0.355

q=2p* m=2s* n=2s* —2.867

Other correlation diagrams —0.158

Total 0.281
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TABLE IV. Contributions from (0,2) diagrams shown in
Figs. 2(a)-2(n).

Contribution

Diagram Excitation in MHz
2(a) m=n=1s" q=2s —-0.512
2(b) m=1s* q=1s* n=2s i=s* -2,761
m=1s" q=1s" n=2p i=s" 1.552

2(i) m=1s" q=2s n=2p j=s" ~0.796
2() m=n=1s* ¢=2s 7=2s -0.780
m=n=1s" ¢q=2p v=2s 0.541

2 (n) m=1s" q=1s" n=2s —0.383
Other diagrams 0,013
Total -3.126

will be considered. Table V shows values of dia-
grams 2(0)-2(r) which represent correlation ef-
fects that may be characterized as mutual polariza-
tion of pairs of orbitals by each other. The major
contributions in this case arise from the correla-
tion of 2s and 2p and of 1s and 2s, the former being
the leading one. The total contribution from (0, 2)
diagrams was found to be — 5. 445 MHz, that is
about 5.5% of the direct RHF contribution.

In considering third- and higher-order diagrams,
it is convenient for purposes of discussion to sepa-
rate these diagrams into two categories. The first
category involves corrections to hole and particle
states involved in lower-order diagrams due to the
use of a V¥~ potential. This category, often re-
ferred to as ladder diagrams,is exemplified by taking
higher-order counterparts of diagrams 2(f) and
2(j) with m =%=1s and with another 2s bubble at-
tached to the hole side. Thus, 2(f) and its next-
higher-order counterpart represent the first two
of the set of hole-hole ladder diagrams associated
with 1(a). Similarly 2(j) and its next-higher-order
counterpart represent the first two of the ladder
diagrams associated with the ECP diagram 1(b)
with »=2s or 2p. These ladder corrections are
carried out to all orders by replacing the V¥-! 1g
energy in the energy denominators of diagrams
1(a) and 1(b) by the Hartree—Fock ls energy. Simi-
larly, diagram 2(b) with m =g =1s and its higher-
order counterpart involving another horizontal in-
teraction line represent the first two of the hole-
particle ladder diagrams associated with tne ECP
diagram 1(b). These hole-particle ladder correc-
tions cannot be summed analytically as in the case
of hole-hole ladders. Instead, as is usually the

practice, the geometric series nature was tested
by taking ratios of successive orders and checking
for their constancy. The influence of these ladder
corrections were nearly equal and opposite for the
2s and 2p core-polarization diagrams leading to a
total correction of — 0,062 MHz.

The hole-hole and hole-particle ladder correc-
tions were applied to all orders, since they repre-
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sent corrections to the one-electron energies from
those appropriate for the V¥-! potential chosen to
the proper self-consistent ones for the various
hole states.

We feel however, that selective summations toall
orders should not be applied to a few of the other
classes of higher-order diagrams, unless one can
do this for all important third-order diagrams of
comparable magnitude. This was not an impor-
tant consideration here however, because the
third-order diagrams besides the ladder types al-
ready considered were quite small, A few typical
classes of third-order diagrams that we have con-
sidered are presented in Figs. 6(a)-6(d), of which
Figs. 6(a) and 6(b) are referred to as renormaliza-
tion diagrams. The contributions from these dia-
grams are, respectively, 0.045 and - 0.020 MHz,

The final result of our calculation for the con-
tact contribution to the hyperfine constant in-
cluding RHF, (0,1), (1, 1), and (0, 2) contributions,
together with the hole-hole and hole-particle lad-
der corrections and third-order diagrams in Fig.
6 is — 115.22 MHz.

B. Dipole-Dipole Interaction

The dipole-dipole operator is also spin dependent
like the contact operator so that there would again
be a cancellation between the lowest-order contri-
butions from two 1s electrons. However, in view
of the tensor nature of the dipole-dipole interaction,
the individual contribution from each 1s electron
also vanishes, The direct RHF contribution,
therefore, arises only from the unpaired 2p elec-

TABLE V. Contributions from (0, 2) diagrams shown in
Figs. 2(0)-2().

Contribution
Diagram Excitation in MHz
2(0) m=1s" n=1s* 0.731
m=2s* n=1s* —4.629
m=2s* n=2p" ~3.475
2(p) q=1s" m=1s* n=2s* i=s* 0.397
g=1s" m=2s" n=1s* i=s* 0.916
g=1s* m=n=1s" i=2s" —0.969
q=1s"  m=n=1s* j=2s 0.820
q=2s* m=n=1g" i=2s" -0.369
g=m=1s" n=2s* 0.353
g=m=2s* n=2p* 0.256
m=n=2s" g=2p* 2.722
2(q) m=2s* n=2p* 1.153
m=2s"* n=1s" 1.814
m=1s" n=2s" 0.939
m=1s" n=2p" 0.536
2(r) m=n=1s" ¢q=2s" —0.360
m=n=2s" q=2p* —0.668
m=¢q=1s* n=2s" -0.992
m=¢=2s" n=1s" —0.989
m=q=1s" n=2p* 0.382
Other diagrams 0,185
Total -2.319
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TABLE VI. Contributions from (0,1) and (1, 1) diagrams
shown in Fig. 3.

Diagram Excitation Contribution in MHz
3(a) q=2s* m=2p —0.0661
3(b) q=1s* n=2p 0.1086

g=2s* n=2p 0.1331

Total from (0, 1) diagrams 0.1756

33) m=2s* n=2p* 0. 0498
m=2p* n=2s"* 0. 0061

3(k) m=n=2p* g=2s* —0.0892
3() m=2s" n=2p* —0.0292
3(m) m=n=2p* g=2s* 0.0643
Other diagrams -0.0075
Total from (1,1) diagrams - 0.0059

tron and is 2,208 MHz. This is the major contri-
bution from the dipole-dipole diagrams, since all
the higher-order diagrams are an order of magni-
tude smaller than the direct one. In Tables VI and
VII, we present the values of those diagrams which
contribute more than 0.003 MHz, Table VI lists
the contributions from the (0, 1) and (1, 1) diagrams
shown in Fig. 3. The first three lines list the con-
tributions from the three (0, 1) diagrams which,
taken together, contribute to 0.1756 MHz, This
is about 8% of the direct RHF contribution. The
one-electron-type diagrams [Fig. 3(c)-3(e)] and
consistency diagrams [Fig. 3(f)-3(i)] do not make
appreciable contributions. The contributions from
correlation diagrams [Fig. 3(j)-3(m)] are mainly
due to 2s-2p correlation. The total contribution
from (1, 1) diagrams is — 0. 0057 MHz, which is
only about 0. 25% of the direct RHF contribution.
In Table VII, the contributions from the (0, 2) dia-
grams of Fig. 4 are listed. Among the one-elec-
tron-type diagrams, the contributions from Figs.
4(b) and 4(i) are relatively larger. Both these
diagrams involve 2s and 2p hole states which are
expected to interact strongly. However, these
two diagrams have opposite sign and thus nearly
cancel each other. Similarly, the next two im-
portant one-electron (0, 2) diagrams in Figs. 4(a)
and 4(e) also nearly cancel. Consequently, the
net contributions from all the diagrams in Figs.
4(a)-4(p) are very small. The relatively small
sizes of these diagrams and their close cancella-
tions indicate that in this case, the laddering for
the (0, 1) diagrams is even less significant than for
the contact interaction.

The correlation diagrams 4(q)-4(t) of order
(0, 2) individually contribute very little as shown in
the table. The appreciable ones among these are
the diagrams which involve 2s-2p correlation. The
total contribution from (0, 2) diagrams is — 0. 0523
MHz, which is only about 2.4% of the direct RHF

contribution. The net contribution to the hyperfine
constant from the dipole-dipole interaction is then
found to be 2.4302 MHz.

C. Magnetic-Orbital Interaction

The magnetic-orbital operator has the same ra-
dial form as the dipole-dipole case. The angular
part here is different from the dipole-dipole case
and there is no spin dependence involved. There
are no (0,1) diagrams in this case. The values
of most of the orbital-hyperfine diagrams of or-
der (1,1) and (0, 2) shown in Fig. 5 can be ob-
tained from the corresponding dipole-dipole dia-
grams by multiplication with appropriate angular
factors. However, in view of the absence of spin
dependence, some new diagrams appear in the or-
bital case, which had cancelled out for the dipolar
interaction through the spin dependence of the lat-
ter. The values of only those orbital diagrams
which are larger in size than 0,003 MHz are listed
in Table VII. Summarizing, the direct RHF con-
tribution from the magnetic-orbital interaction is
—11.0381 MHz. There are no (0, 1) diagrams,
The contribution from (1, 1) and (0, 2) diagrams are
—0.0650 and +0.3091 MHz, respectively, adding
up to a total magnetic-orbital contribution of

TABLE VII. Contributions from (0,2) diagrams shown in

Fig. 4.

Contribution

Diagram Excitation in MHz
4(a) m=n=2s" q=2p i=d* —0.0529
4(b) m=n=1s* q=2p i=d" 0.0249
m=n=2s" q=2p i=d" 0.1140

m=1s* n=2s" q=2p i=d" —0.0052

m=2p* n=2s* q=2p i=p* —0.0055

4(c) m=n=2s" ¢g=2p i=d* 0.0035
4(d) m=n=2s" gq=2p i=d —0.0078
m=2p* n=2s* q=2p —0.0042

4(e) m=n=2p q=2s" i=d* j=d* 0.0520
4(i) m=n=2p q=1s* j=d* -0.0139
m=n=2p q=2s" j=d -0.1120

4(j) m=n=1s" gq=2p r=2s 0. 0050
4(p) m=2p* n=2s* q=2p 0.0053
4(q) m=2s" n=2p* 0.0224
m=2p* n=1s* i=p* 0.0837

m=2p* n=2s* i=p* 0.1306

4(r) m=1s* n=2p* q=1s* i=d" —0.0063
m =2p* n=1s* g=1s" i=p* —0.0073

m=2p* n=2s* q=1s* i=p* —0.0035

m=2p* n=2s* q=2p* i=p"* —0.0079

m=n=2p* q=2s" i=p* -~0.0728

4(s) m=1s* n=2p* -0.0089
m=2s" n=2p* —0.0282

m=2p" n=1s"* i=p* —0.0120

m=2p" n=2s" i=p* ~0.0932

4(t) m=n=1s* q=2p* i=d* 0.0077
m=n=2s" q=2p* i=d* 0.0035

m=n=2p" g=2s* i=p* 0.0280

m=q=2p* n=2s" i=p* 0.0100

Other diagrams 0.0033
Total -0.0523
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TABLE VIII. Contributions from diagrams shown in

Fig. 5.
Contribution

Diagram Excitation in MHz
5(e) m=1s* n=2p* —0.0273
m=2s" n=2p* —0.2777

m=2p* n=1s* 0.0182

m=2p* n=2s" -0.2373

5(f) m=n=2p* ¢=2s* 0.4460
5(g) m=2s* n=2p"* 0.3311
5(h) m=n=2p* g=2s* -0.3215
Other (1,1) diagrams 0.0035
Total from (1,1) diagrams —-0.0650
5@) m=2p* n=1s* ¢=2p i=p* —0.0047
m=2p* n=1s* q=2s i=p* —0.0034

5(j) m=2p* n=1s* q=2p i=p* —0.0052
m=2p* n=1s* q=2s i=p* 0.0045

m=2p" n=2s* q=2p i=p* 0.0274

5(k) m=2p* n=1s* g=2s i=p" —-0.0060
m=2p"* n=2s" ¢=2p i=p" —0.0053

5(1) m=2p* n=1s* g=2s i=p" 0.0033
m=2p* n=1s* q=2p i=p* 0.0046

m=2p* n=2s* q=2p i=p* 0.0055

5(m) m=2p* n=1ls* q=2s i=p"* -0.0050
m=2p* n=2s" q=2p i=p* -0.0044

5(n) m=2p* n=1s" q=2s i=p* 0.0069
m=2p* n=1s* q=2p i=p" 0.0029

m=2p n=2s* q=2p i=p 0.0091

5(0) m=2p" n=1s* q=2s i=p* —0.0030
m=2p* n=2s* q=2p i=p" 0.0111

5(p) m=2p* n=1s" q=2s i=p° 0.0040
m=2p* n=2s* q=2p i=p* —0.0242

5(q) m=2p* n=1s* i=p* —0.4185
m=2p* n=2s" i=p* —0.6530

5(r) m=2p* n=1s* g=1s" i=p" 0.0365
n=2p* n=1s* q=2s" i=p* 0.0030

m=2p* n=2s* g=1s* i=p* 0.0225

m=2p* n=2s* q=2p* i=p* 0.0395

m=n=2p" q=2s* i=p* 0.3635

5(s) m=2p* n=1s* i=p* 0.0600
m=2p* n=2s" i=p* 0.4660

5(f) m=n=2p" q=2s" i=p"* —0.1400
m=q=2p* n=2s* i=p* —0.0499

m=2p* n=1s* q=2s" i=p* —0.0043

Other diagrams -0.0525
Total from (0,2) diagrams -0.3091

—-11.4122 MHz.

The total contributions from the contact, dipole-
dipole, and magnetic-orbital interactions that we
have obtained are presented in Table IX. The net
calculated contribution to A is found to be — 124. 206
MHz. The accuracy of our results and comparison
with experiment are considered in the Sec. IV.

IV. DISCUSSION AND CONCLUSION

The main feature of the results in Table IX is the
good convergence of the results in terms of various
orders of perturbation. The convergence of the
contact contribution is really better than it appears
from Table IX, since a substantial part of the (0, 2)
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contribution really refers to ladder corrections to
(0,1). On regrouping these results, the (0, 1) con-
tribution, including ladder contribution, comes

out as — 14,354 MHz while the (0, 2) contribution
reduces to — 2.406 MHz. This situation is in
marked contrast to the situations for the ground
states of the rest of the elements of the second
period (excluding lithium), where one has two
paired s shells, 2s and 1s whose core polarizations
cancel strongly, making the (0, 1) contribution weak
and thereby enhancing the relative importance of
the higher orders. The nature of the contact in-
teraction in the present case is closer to lithium-
atom ground state with 2s giving a substantial zero-
order contribution. As compared to lithium, the
core-polarization effect is somewhat weaker rela-
tive to the zero-order contribution, because of
some cancellation between the core-polarization
effects of 2s and 2p electrons on the 1s shell, as
seen from Table II. As regards the correlation
contribution, the major effect arises from the dia-
grams 2(0)-2(r) as in the case of lithium and order
alkali atoms. These diagrams represent the effects
of the instantaneous polarization of the unpaired 2s
orbital by the 1s core electrons as in lithium and
in the present case by the 2p electron. Due to sub-
stantial cancellations among the four diagrams
2(0)-2(r), the net influence of 2s-2p correlations

is reduced substantially, even though, as can be
seen from Table V, the individual contributions
from diagrams, for this correlation effect, are
substantial, The relative importance of the cor-
relation between the 1s? and 2s orbital (relative to
the zero-order contribution) as described by dia-
grams 2(0)-2(r) is somewhat less compared to lith-
ium atom, mainly due to the weaker polarizability
of the 2s orbital in beryllium,

Regarding the orbital and dipolar contributions,
the convergence of the various orders is seen from
Table IX to be about as good as for the contact in-
teraction. It is interesting to compare the rela-
tive contributions from various orders with those
for the 2P excited state of lithium. The ratio of
the (0, 1) and (0, 0) contributions to A, is signifi-
cantly larger than in the case of lithium-atom 2p
state. The reason for this can be seen from Table

TABLE IX. Contributions from each order to the three
types of magnetic hyperfine interaction (in MHz).

Order A, Ay A,
(0,0) —98.579 2.208 -11.038
(0,1) —11.444 0.176 0.000
(1,1) 0.281 —0.006 -0.065
(0,2) —5,445 -0,052 -0.309
Higher than (0, 2) -0.037 cee o
Total —115,224 2,430 -11.412
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TABLE X. One- and many-electron separation of the
hyperfine constants (in MHz).

Constant Direct RHF value One electron Two electrons Total
A, —98.5790 —14.8110 —1.8340 -115.2240
Ag+A, —-8.8300 0.1960 —0.,3480 -8,9820

VI. Thus, in addition to the 1s-2p exchange de-
scribed by Fig. 3(b) which also occurs for the 2P
state of lithium, we now have additional contribu-
tions of the same sign from 2s-2p interactions both
through diagram 3(b), as well as 3(a). The con-
tribution from (1, 1) diagrams are comparable in
importance, although in the present case, the
major contribution comes from 2s-2p interaction
instead of 1s-2p as in the case of lithium, The
(0, 2) dipolar contributions indicate an interesting
influence of the role of 2s-2p interactions. Thus,
in the case of lithium 2P state, the main contribu-
tion arose from the 1s-2p correlation represented
by diagram 4(q). The contribution from the com-
parison diagram 4(r) was of opposite sign but
small, The same feature holds here as far as the
1s-2p correlation is considered. However, for the
2s-2p correlation, the contributions of diagrams
4(q) and 4(r) are of comparable order and opposite
sign. The consequence of this is that the net
2s-2p correlation effect is opposite in sign to 1s-
2p, and there is substantial cancellation between |
the two. This makes the net (0, 2) dipolar contri-
bution for beryllium relatively weak compared to
lithium., A similar situation also holds for the
magnetic-orbital interaction where there is again
substantial cancellation between the 2s-2p and 1s-
2p correlation contributions.

From the considerations of the contributions to
the different types of hyperfine terms, it is clear
that 2s-2p correlation effects play a decisive role

=3

in determining the relative sizes of the various
orders. For the sake of comparison, when con-
figuration-interaction calculations are available,
we have listed in Table X the relative contributions
from one-particle and two-particle excitations!”
through combinations of the contributions from the
pertinent diagrams.

The only earlier theoretical calculations that have
been performed on the hyperfine constant in Be
(P) state are one electron in nature. One of these
is an unrestricted Hartree—Fock procedure!®
(UHF) which was designed to include core-polariza-
tion contributions only for the contact interaction,
since no angular excitations involving admixture of
different [ states were incorporated. Since the
UHF procedure involves self-consistency, to ob-
tain a comparable result from our diagrams, one
has to collect all diagrams that are one electron
in nature. This number, namely, —113.390 MHz,
listed in Table XI in the second column under the
category “one-electron diagrams, ” was obtained by
adding the (0, 0),and the higher-order one-electron
contract contributions in Table X. The small dif-
ference between our diagrammatic one-electron
result and the UHF result probably originates out
of partial correlation effects included in the UHF
procedure.

The other earlier result listed in Table XI in-
volved the incorporation of core-polarization ef-
fects through the moment-perturbation (MP) pro-
cedure.® In this procedure, one perturbs the core
1s orbitals by the nuclear contact hyperfine inter-
action and then computes the exchange energy with
the valence electrons using these perturbed orbit-
als. A comparable result can be obtained from
our diagrammatic procedure by adding to the (0, 0)
contribution, all (0, 1) diagram contributions in-
cluding ladder corrections. The result one obtains

TABLE XI. Comparison of the present calculation with earlier theoretical results and experiment (in MHz).

Method A, Ag+AR Total
UHFP -113.5 -8.8 —122.3
MP® -111.9 -8.8 —-120.7
Present calculation
One-electron diagrams —113.390 —8.634 —-122,024
Core-polarization diagrams —112.995 e s
Net including correlation -115,224 —8.982 -123,206+ 0.5
Experiment®
—~115.05+ 0.4° —-8.49+0.4
-115,81+0.4f -9,23+0.4 —-124.5368+ 0.0017
“The results under UHF and MP for A;+A4, do not in- °See Ref. 19.

clude core-polarization effects. But the diagrammatic 9See Ref. 8.

calculations under core-polarization and one-electron
diagrams do.
’See Ref. 18.

°Separation made using A4 to A, ratio as —0.2.
fSeparation made using A, to A, ratio as — 0,213,
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this way is seen to differ by only about 1 MHz from
the MP result. This difference is most likely a
consequence of a local approximation used in
solving the first-order perturbation equations in the
MP procedure.

In Table XI we have also listed the contributions
to A;+ A, from core-polarization effects alone, as
well as from all one-electron effects. The former
would be comparable to the results including MP-
type contributions for the dipolar effect, when
available, while the latter would be suitable for
comparison to the results of UHF-type calcula-
tions,

In making a comparison between our calculated
hyperfine constant and experiment, one needs to
make two considerations, namely, the range of
error in our nonrelativistic calculations and the
importance of relativistic effects. The error limit
of +0.5 MHz quoted in Table XI is composed of
three items. The first item is the over-all numer-
ical accuracy of our computations which we con-
servatively estimate to involve a range of error
+0.2 MHz. The second item is connected with the
role of higher-/ multipole components of 1/, /2 for
electron-electron interaction vertices beyond f
components which we believe involves an error
range of +0.1 MHz., Finally, one should include
+0.2 MHz due to the effect of higher-order dia-
grams,

As far as relativistic corrections are concerned,
one can make a rough estimate of the relativistic
correction to the direct (0, 0) 2s contribution using
results of relativistic calculation® for lithium, 2!
Taking account of the ratio of the magnetic mo-
ments of Be® and Li” leads to an estimated rela-
tivistic contribution of about - 0.3 MHz. While
the relativistic corrections to the core-polarization
contribution and to A, + A, are somewhat more dif-
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ficult to estimate, together they are not expected
to be larger in magnitude than — 0.1 MHz. With
these estimates of the relativistic contribution,
the theoretical result is — 124.6 MHz, which is in
good agreement with experiment within the range
of our error limit in Table XI.

As far as the individual contributions A,, A4,,
and A, to A are concerned, unfortunately, no
strictly experimental values are available to com-
pare with our calculated nonrelativistic results
in the last row of Table IX. The reason for this is
that, while the number of constants is three, only
two sets of data are available, namely, those for
the total values of A for J=1 and 2 states. How-
ever, Blachman and Lurio have used the one-elec-
tron value of — 0.2 for the ratio of A; and A4, to ef-
fect the separation of A, and A,;+ A, leading to the
values indicated in the first row under experiment
in Table XI. While the agreement between the ex-
perimental values of A, and A, + A, obtained this
way and our theory is quite good, the agreement
is further improved if one uses the ratio of — 0.213
for A,/A, which we have obtained from calculations
(including correlation effects), to devise the values
of A, and A;+A, from experiment. These are
listed in the last row of Table XI. It would be use-
ful to have level-crossing data of the type available
for the 2P state of lithium to combine with the
hyperfine data for J=1 and 2 states in order to ob-
tain experimental values of 4,, A;, and A, to com-
pare with theory.
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