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The approximation scheme suggested by Schneider, Taylor, and Yaris is applied to the
scattering and the bound-state properties of the helium atom. Elastic scattering phase shifts
for s, p, and d partial waves, ionization potentials, one-electron ground-state properties
{i.e. , electron densities, the natural orbitals, and the ground-state energy), and excitation
energies from the ground to the excited states of helium have been calculated simultaneously
from the linear-response function and one-particle Green's function. This simultaneity is
made possible by concentrating all computational effort on calculating the one- and two-
particle amplitudes rather than on the ground- and excited-state wave functions. These am-
plitudes can be directly related to almost all the properties of physical interest in atomic
and molecular systems. Our results for both the scattering- and stationary-state properties
are in good agreement with experiment and other previous calculations.

I. INTRODUCTION

In recent years there have been several attempts
to exploit the Green's-function formalism, de-
veloped in quantum field theory, for cal.culating
atomic and molecular properties. ' " The
Green's-function formalism has substantial ad-
vantages over conventional wave-function meth-
pds. ' 2 The mpst impprtant feature pf thj. s tech-
nique is that almost all physical properties can be
expressed in terms of the one- and two-particle
Green's functions (G, and G,)." Thus, it is pos-
sible to calculate electron densities, density ma-
trices, ' transition amplitudes, excitation en-
ergies, ionization potentials, ' optical poten-
tials, ' and elastic ' and inelastic scattering"
cross sections directly without recourse to the
actual computation of the correlated ground- and
excited-state wave functions. Moreover, al/ of
these can be calculated simultaet. ously. This can
be a considerable savings in computational time
and effort. In essence, what we have achieved
computationally is to realize that in the calcula-
tion of the above-mentioned properties (working
in a matrix or basis-set representation and choos-
ing a basis set that is reasonable for the desired
properties) the major part of the integrations and
data handling can be done in common by obtaining
G, and G, . It has to be pointed out also that in this
formalism the full many-body problem is reduced
to a set of one- and two-body problems, albeit with

nonlocal and energy-dependent effective poten-
tials. " (These potentials account for the inter-
action of one and two particles, respectively, with
the rest of the electrons. ) Computationally this
means that only one- and two-variable integrodif-
ferential equations have to be solved. "

In this paper we apply the approximation scheme
suggested by Schneider, Taylor, and Yaris, '
called the generalized random-phase approxima-
tion (GRPA), to the scattering- and bound-state
properties of the helium atom. This scheme is
based on the Martin-Schwinger form'5 (using func-
tional differentiation) of the Green's-function tech-
nique. One remarkable feature of the GRPA, as
opposed to some of the earlier attempts to apply
Green's-function theory to atomic physics, is that
the polarization part of the optical potential is ex-
pressed in terms of a physically meaningful quan-
tity, the generalized response function. The same
scheme provides an equation for the generalized
response function, which is identified as the ran-
dom-phase approximation (RPA)'6 or time-depen-
dent coupled Hartree-Fock (HF) approximation'7
for this quantity. The RPA has been used with
considerable success by Dalgarno and others
to compute various frequency-dependent re-
sponses. This is a major conceptual advantage of
being able to transfer an approximation known to
be accurate for one physical property to the cal-
culation of a seemingly unrelated quantity. In a
complementary work, the pol.arization part of the
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GRPA optical potential has been analyzed and re-
lated to experimental quantities such as dynamical
polarizabilities and shielding factors. It has been
shown that it contains all dipole, quadrupole, non-
adiabatic, orthogonality, and exchange terms in a
compact and closed form.

In the GRPA, both the equations of motion for
the response function and for the one-particle
Green's function, within our approximation for the
optical potential, are solved. There have been
other calculations of the optical potential, which
used the Brueckner-Goldstone perturbation ap-
proach and primarily aimed at computing scatter-
ing cross sections. ' In all of these calculations,
no attempt was made to diagonalize the effective
one-particle Hamiltonian. In the present work,
elastic scattering s-, p-, and d-wave phase shifts,
ionization potentials, the ground-state energy,
natural orbitals, and the excitation energies from
the ground state to the excited states were cal-
culated in a single computation.

On the basis of the numerical results we can
conclude that the GRPA optical potential is capable
of yielding one-particle properties to experimental
accuracy and two-particle properties to 5-10%%uo ac-
curacy of the experiment. These results were
not unexpected since our truncation procedure
amounts to making an approximation to the three-
particle Green's function. Since the two-particle
Green's function is directly related to the three-
particle Green's function G3 through its equation
of motion, it is significantly more sensitive to any
approximations to G3. It is possible to improve
the present theory by examining higher-order ef-
fects. This has been done~' and the results will
appear in a future paper. From a computational
point of view, more drastic approximation will
have to be introduced into these higher-order equa-
tions to get a tractable theory. We do not expect
these approximations to have any important ad-
verse effects on any of our numerical results since
we are interested in improving the present cal-
culation by 5%. In addition, this higher-order
theory is essential to obtain accurate inelastic dif-
ferential scattering cross sections and resonances
in the elastic scattering. However, there are
properties like the average values of operators in
excited states that are not easily obtainable in this
theory.

In Sec. II, we present an outline of the GRPA.""
No attempt is made to make this section complete.
Instead, we outline the physics of the truncation
procedure and summarize the important equations.

II. THEORY

We begin by considering the effect of an electron
scattering from an atom or molecule. The sim-
plest interaction is the electrostatic effect of the

target electrons on the incoming electron. For
low incoming electron energy, exchange and dis-
tortion effects also play important roles. The
distortions are basically due to the polarization of
the atomic charge cloud by the incident electron.
One can then think of the incident electron as mov-
ing in the potential of the polarized target. Since
the incident electron is moving, the target feels
not only a static electric field in which the external
electron moves but also that felt by the target
electrons. Thus the external electron probes the
interaction between target electrons as well as
reacting to the distortions of the target density due
to its own presence. The basic contribution of
Ref. 7 was to show how the effects of polarization
and exchange could be naturally incorporated into
the Green's-function method of Martin and
Schwinger. ' In brief outline, the scheme involves
the solution of two basic equations; the equation
for the linear-response function of the target and
the equation for the one-particle Green's function.
The first of these equations, that for the linear-
response function of the target, is identical with
the equation of the random-phase approximation
(time-dependent coupled Hartree-Fock theory). '~'7
The second equation, an integrodifferential equa-
tion for the Green's function, depends upon a
knowledge of the target-response function. The
dependence on the target response appears in the
self-energy function or optical potential that
governs the equation of motion for the Green's
function. This optical potential is the true non-
local energy-dependent potential seen by a par-
ticle moving in the field of the ground-state target.
On the basis of the calculation of various frequen-
cy-dependent moments with the time-dependent
HF method and from double-perturbation investi-
gations, one can expect very accurate target po-
larizations. Having obtained the response func-
tion and optical potential, we now proceed to use
that result to solve for the one-particle Green's
function, In solving for the Green's function, one
takes explicit account of the interaction of the po-
larized target and the incident electron and also
adds further correlation effects to the target. The
basic equations used in the calculation may be
summarized as follows:

G(r r' g) $ 0 1) 4' 1) ~Q 4 1) 4 I)
z —E —ie

&
z —E&+ ie

(1)
=G +G (»)

and
~I~ ~I~ sgn(W„) X"(rq rq) X"*(r~r2)R '1'2'1'8 ' = w"

g l~sgn(w)n

where
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X"(r, r,') =EX",,y,*(r,) y, (r,'),
a, c

n is the occupied orbital (hole), j is the unoccu-
pied orbital (particle), a and c are either occu-
pied or unoccupied orbitals, P„and (t),. are the Dy-
son amplitudes, X" is the Bethe-Salpeter ampli-
tude, E, is the orbital energy of the electrons, W„
is the excitation energy from the ground to excited
states of the system, and & is an arbitrarily small
positive number.

The equations satisfied by the Dyson amplitude
and the Bethe-Salpeter amplitude can be written
as follows:

hi(ri) (t) „(r,)+ J dri Z (ri ri, E„)(t)„(r,) = E„g„(ri),
(3)

(E, —E, —W„)X,",= (N, —N, )Z ( V„' —V d",) Xbd,
b, d

(4)
where h& is the kinetic energy plus nuclear attrac-
tion, Z is the optical potential, V„={adl 1/xi21 cb),
N, = & if a c G and is 0 otherwise, and indices g,

c, and d represent both occupied and unoccupied
orbitals,

Z(ri ri, 8) = Zap(ri ri) + Z'(ri ri, z) + Z (r, r,', 8),
(5)

where Z» is the Hartree-Fock potential,

Vbd(ri) Xaa xdb
gf g0 ~CQC abed Z E~ Wn g6

&& I V..(ri) 4.(ri) 0*.(ri)

—V..(r,') O.(ri) y.*(ri)l,

Z)( r~ ) Q Q Q Vbd(ri) Xaa Xdb

Wn~0 j&G~ abed ~ Ej +n+ SC

~I.V..(,') y. ( ) e.*( ')

—V .(ri) e.(ri) e."(ri)l

('. (".) f&".a'(",) —a =(&,) .
X'P

Both Z and Z include direct and exchange po-
larization potentials.

These equations are written in the forms that
are most suitable for computation. From a sim-
ple examination of these equations, we see the
possibility of extracting ionization potentials and
excitation energies directly and not as the differ-
ence of two total energies. The continuous spec-
trum of Eq. (3) provides us with elastic scattering
phase shifts. The Bethe-Salpeter amplitude can
be simply related to the generalized oscillator
strength. The one-particle density matrix (and

therefore natural orbitals) can be extracted from
the Green's function by an appropriate contour in-
tegration. The total ground-state energy can also
be computed from the one-particle Green's func-
tion by a contour integration. In summary, we see
how a knowledge of the one-particle Qreen's func-
tion and the linear-response function provides a
host of static and dynamical information about the
system under study. These properties are ex-
tracted from the Qreen's function and linear re-
sponse in one calculation and without recourse to
the correlated ground- and excited-state wave
functions.

III. NUMERICAL PROCEDURE

The calculation of the e -H~ elastic scattering
phase shifts and bound-state properties of He was
carried out in five basic steps.

(i) Step one was to solve the Hartree-Fock equa-
tion for He on a finite basis set of Slater orbitals.
The basis set used consisted of 36 radial functions
(12 s-type, 12 P-type, and 12 d-type). This step
provides us with the Hartree-Fock Green's func-
tion in diagonal matrix form and all necessary in-
tegrals to perform the subsequent steps in the
computation.

(ii) The second step was to solve the RPA eigen-
value problem, ib given in Eq. (4), using the Har-
tree-Fock Green's function obtained from step 1.
The RPA eigenvalues are the excitation energies
of He. The eigenvalues and eigenfunctions (gen-
eralized oscillator strengths) are then used to
construct the optical potential.

(iii) The third step was to combine the results of
steps one and two into the optical potential of Eq.
(5). The optical potential is then subjected to a
partial-wave analysis in order to simplify subse-
quent calculations. Since the long-range nature of
the Hartree potential must be reproduced accurate-
ly in the calculation of the phase shifts, we have
tabulated this potential numerically. The exchange
and polarization parts of the optical potential were
evaluated using the basis-set expansion described
in step one. In the calculation of the stationary
properties of the helium atom it is not necessary
to reproduce the Hartree potential exactly and the
entire calculation is done with the basis given
above. In this calculation, the imaginary part of
Z is neglected (Z is real below the first inelastic
threshold).

(iv) The fourth step was to solve the Dyson equa-
tion [Eq. (3)], which is now a one-dimensional in-
tegrodifferential equation for the partial-wave
phase shifts, using the optical potential from step
three. This equation is converted to an integral
equation using the "free-wave" Qreen's function
and integrated numerically using the noniterative
technique of Sams and Kouri. The numerical in-
tegrations were done using Simpson's rule quadra-
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The one-particle density matrix ' can be obtained

by integrating G'(r, , rz, z) in the upper half of the
complex s plane. In the spectral representation
this amounts to "pole picking":

y (rg &g) =
2 . G(rg rg, z) dz
2m'

TABLE I. Comparison of several theoretical calculations
of s-Wave phase shifts for e -He elastic scattering.

Energy
{eV)

Present
results

Phase shifts {in radians)

Bef. 27 Ref. 25 Bef. 3 Ref. 26

0.136
0.50
1.00
2.00
2.50
3.40
5.00
7.65

10.00
13.605
21.25

3.0367
2. 8898
2. 7813
2.6304
2. 5669
2.4741
2. 3471
2. 1797
2. 0699
1.9372
1.7403

3.017
2.8945
2.7869
2. 6371
2. 5783
2.4878
2.3590
2.1979
2.0877
1.955
1.756

2.8997

2.4942 2.4781

2.2012

1.9530
1 ' 7483

1.9412 1.9330

ture formula. The region of integration was di-
vided into ten zones with the integration mesh size
doubling in each zone. The initial mesh size was
chosen to be 0, 01 a.u. As a check on the method,
the phase shifts were calculated using only the
Hartree-Fock potential. The results were in good
agreement with previous static-exchange calcula-
tions found in the literature, The calculations
were performed with smaller basis sets and dif-
ferent orbital exponents to ensure that the set ex-
pansion has converged with respect to the cal-
culated properties.

(v) The last step was to solve the Dyson equation
with the optical potential of step 3 for the ioniza-
tion potential, ground-state energy, and natural
orbitals. ' These quantities were evaluated by
finding the poles and residues of the Green's func-
tion in the region of negative energy. The deter-
mination of the poles of the Green's function in-
volves guessing an energy, evaluating the optical
potential at that energy, and diagonalizing the Dy-
son equation in matrix form. This procedure is
iterated until input and output energies agree to
eight decimal places.

The final form'4 for the one-particle Green's
function can be written in spectral form as

G(,-,-,) p a.'I.(ri) e.*(ri)
n tl

where

dZ„(z)
8'n= &

dz g g

TABLE II. Comparison of several theoretical calculations
of P-wave phase shifts for e -He elastic scattering.

0.136
0.50
1.00
2.00
2.50
3.40
5.00
7.65

10.00
13.605
21.25

0.0094
0.0175
0.0226
0.0506
0.0606
0.0806
0.1189
0.1684
0.2079
0.2510
0.3133

0.003 06
0.0118
0.0242
0.0497
0.0625
0.0845
0.1213
0.1729
0.2094
0.2508
0.3014

0.0128

0.0926 0.0732 0.0750

0.1891

0.2749
0.3332

0.2449 0.2477

= Q g-„'y„(rg)y+(ri) .
Sq &D

(7)

Since the Q&„) do not form an orthonormal set, we
~/

must diagonalize y(r, r~) in our original Hartree-
Fock basis. This yields the natural orbitals and

occupation numbers directly in terms of the occu-
pied and virtual Hartree-Fock functions. The
ground-state energy ' can also be evaluated by
integrating the Green's function in the upper half-
plane via

Eg~,'= —— dz bm dr, (z+&1(rg)) G(rlr| z)
4m

(8)
where

All diagonalizations in this calculation were per-
formed using the "QB algorithm. "z4 The entire
calculation takes 30 min on the IBM-360-V5.

IV. RESULTS AND DISCUSSION

A. Elastic Scattering Phase Shifts

The phase shifts from this calculation for s, P,
and d waves in the energy range 0. 136-21,25 eV
are presented in Tables I, II, and III, respectively.
These phase shifts are compared with those ob-
tained from the theoretical calculations of Pu and
Chang, 3 Duxler et gl. ,

' Knowles and McDowell,
and Callaway et al. ~ Fox a visual comparison, all
these calculations and the theoretical fit to the ex-
perimental data by Bransden, Knowles, and Mc-
Dowell~' are p'otted as a function of energy in Figs.
1-3. Our calculation of the d-wave phase shift
should not be expected to be as accurate as our 8-
and p-wave phase shifts for the following reason:
We chose to ignore orbitals off and higher angular
momentum in the construction of our optical po-
tential. This introduces an asymmetry in our cal-

Phase shifts {in radians)
Energy Present

{eV) results Ref. 27 Ref. 25 Ref. 3 Ref. 26
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FIG. 1. e -He s-wave phase shifts.
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culation for d waves when compared to our 8- and
p-wave phase shifts. In addition, we think that
our d-wave basis is not large enough to represent
all those parts of the optical potential important to
the d-wave phase shifts.

A few comments on the previous theoretical cal-
culations are in order. Pu and Chang used many-
body perturbation theory to construct an energy-
dependent optical potential but neglected the terms
in Z~ depending on the bound part of one-parti. cle
Green's function {i.e., G~) and used the distorted-
wave Born approximation to compute the phase
shifts. Quite recently Knowles and McDowell"

have extended the calculation of Pu and Chang by
inciuding the exclusion principle violating {EPV)
diagrams and higher partial waves. They too use
the distorted-wave Born approximation to calculate
the phase shifts. Cal. laway et al.2' have included
contributions fr om certain direct nonadiabatlc
terms in the potential but have neglected the ex-
change-polarization terms completely. The full
polarized-orbital. method of Temkinso has recently
been applied to the e -He problem by Duxl. er et al.3'

This technique includes al, l adiabatic effects in the
scattering but ignores the energy dependence of the
optical potential. compl. etely.

0.36

I

O.I6

O.I2

0.08
ANG

d McDOWELL

FIG. 2. e -He p-wave phase shifts.
The turnover in the results of Brandsen
et aE. (Ref. 28) around 16 eV is possi-
blp not reSHstlc (see Se0. IV A).

0 g t s I

0 2.0 40 6.0 8.0 IO.O I2.0 I4.0 l6 0 l8.0 20.0 22.0 24,0
ENERGY (eV)
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TABLE III. Comparison of several theoretical calculations
of d-wave phase shifts for e -He elastic scattering.

TABLE IV. Ionization potential (IP) and Ground-state
energy (GSE) of helium atom (including s, p, and d sym-
metries).

Energy
(eV)

Phase shifts (in radians)

Present results Ref. 27 Ref. 25 Ref. 26
Hartree-Pock

(a.u. )

Exact
(a.u. )

Present
results
(a.u. )

Ref. 4
(a.u. )

1.00
2.00
2.50
3.40
5.00
7.65

10.00
13.605
21.25

0.002 636
0.003 905
0.005 217
0.005 332
0.008 687
0.013 675
0.('19 241
0.028 19
0.047 98

0.0029
0.0060
0.0076
0.0104
0.0154
0.0239
0.0312
0.0419
0.0620

0.0115 0.007 45

0.0262

0.0458 0.035 16
0.0676

The present calculation includes (i) direct and
exchange polarization on an equal basis, (ii) all
nonadiabatic effects, and (iii) EPV terms and

solves the Dyson equation exactly for the phase
shifts. This should exhaust all the important
physical effects for low-energy e -He elastic scat-
tering.

An examination of Figs. 1-3 reveals that for al-
most all incident energies the theoretical calcula-
tions are below the experimental curves. The
close agreement of our calculation with the recent
results of Knowles and McDowell suggests that
the semiempirical analysis of Bransden, Knowles,
and McDowell might slightly overestimate the
phase shifts. Both our calculation and that of
Knowles and McDowell 6 account for all important
effects in the optical potential, It is highly unlike-
ly that a more sophisticated treatment would cause
the calculated phase shifts to increase to any sig-
nificant degree.

IP
GSE

-0.9175 -0.9037 (Ref. 38)
-2.8617 -2.90372 (Ref. 39)

-0.9033
-2.9056

-0.906
—2.9009

The ionization potential and ground-state energy
of the He atom are presented in Table IV and are
compared with experiment and the Green's-func-
tion calculation of Reinhardt and Doll. ' The

This calculation can also be extended to arbi-
trarily high incident energies (for example, E= 500
eV), as demonstrated by LaBahn and Callaway"
and Khare and Shobha, '~ because it includes non-
adiabatic polarization effects in a rigorous man-
ner. ~ However, it has to be pointed out that the
resonances in the e -He elastic scatterings~ (for
example, the well-known 19.3-eV ~S resonance)
cannot be calculated in the present scheme. The
inclusion of resonances in this method requires a
coupling of the triplet part of the response function
to the one-particle Green's function in the optical
potential. Since the optical potential used here
contains only the singlet part of the response func-
tion, a high-order truncation scheme is needed to
treat resonances in the Green's-function forma-
lism. This truncation must bring in the particle-
particle interactions that are omitted in the RPA
approximation.

B. Ionization Potential, Ground-State Energy, and
Natural Orbitals

0.072

0.064-

0.056-

0.048—

0.040-

2

0.032-

0.024-

O.OI6-

et al.

al.

McDOWELL

FIG. 3. e -He d-wave shifts. The
turnover in the results of Brandsen
et al. (Ref. 28) around 14 eV is pos-
sibly not realistic (see Sec. IV A).

0.008-

0 I s I I I I I I I I I I I I I I I I

0 2.0 4.0 6.0 8.0 IO.O I2,0 I4.0 I6.0 I8.0 20.0 22.0 24.0
ENERGY {eV)
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TABLE V. Occupation numbers of natural orbitals of helium atom.

Type
Present results
SQ Total

Ref. 34
Sgj Total

Ref. 4
Total.

Ref. 35a
Total

1
2
3
4
5

6-12

0.993 193
0.002 559
0.000 089
0.000 008
0.000 001
&10-' 0.995 850

0.991863
0.003 849
0.000 054
0.000 005

0.995 771

0.994 612
0.002 333
0.000 068
0.000 004
6 x 10"~

0.996 017

0.992 148
0.004 053
0.003 665

0.999 866

1
2
3
4
5

6-12

1
2
3

5
6-12

0.003 7465
0.000 2129
0.000 0223
0.000 0035
0.000 0007
&10-'

0.000 2788
0.000 0362
0.000 0060
0.000 0013
0.000 0004
&10 '

0.003 986

0.000 324

0.003 896
0.000 136
0.000 004

0.000 180
0.000 004

0.004 036

0.000 184

0.002 690
0.000 143
0.000 011
5 && 10-'

0.000 207
0.000 018
2x 10"'

0.002 844

0.000 225

0.001 302
0.000 031

0.001 333

0.000 029 0.000 029

0.999 991"Sum 1.000 150 1.000 086 1.001 228

aIn this paper a configuration-interaction-type wave function for helium atom is given in terms of natural orbitals.
The results quoted here correspond to the square of the expansion coefficients of their function P2, which includes

(s, p, d) natural orbitals.
"These authors include f type symmetry -also in their calculation. With f contribution added to this result, the trace is

exactly equal to 1.0. They calculate the one-particle density matrix by the method of superposition of configurations.
The density matrix was then diagonalized to get natural orbitals.

agreement between theory and experiment for the
ionization potential is superb. Our value for the
correlation energy is 4. 5% above the experimental
value. Since there is no minimum principle for
the energy when expressed as a functional of the
one-particle Green's function, it is possible to
overestimate the correlation energy. In spite of
this, we regard our results for the total ground-
state energy as meaningful for the following rea-

TABLE VI. Low-lying singlet excitation energies of helium
atom.

Excitation

1'S-2'S
1'S-3'S

Exact
(Refs. 38 and 40)

(a.u. )

0.7577
0.842

Present
results
(a.u. )

0.7756
0.8754

Ref. 37 Ref. 19
(a.u. ) (a.u. )

1 ~$~2 iP
1'S 3'P
1'$-4 'P
1'$-5'P

0.779 88
0, 848 58
0.872 65
0.8842

0.7970
0.874 98
0.9794a
1.1897'

0.7965
0.8637
0.9083

0.79697
0.8636
0.887 21
0.898 21

1 S B~D 0.8648
1 $~4 ~D 0.925 29

These excitation energies are greater than the ioniza-
tion limit. This is caused by the use of finite set of HF
orbitals (occupied and virtual orbitals). This discrepancy
can be easily removed by solving the RPA eigenvalue
problem numerically as in column 5. These remarks are
also valid for optically forbidden transitions (see Sec.
IV C).

son: The one-particle Green's function has been
used to compute phase shifts, ionization potentials,
and natural orbitals, all to a high degree of ac-
curacy. It is highly unlikely that these properties,
which depend on quite similar physical effects,
would be given so well by our truncation scheme
and not also the ground-state energy. Another
check on the calculation is to compute the trace of
the Green's function. This trace, which should be
equal to the number of electrons in the system, is
shown in Table V. This result verifies that we
have conserved particles in our approximate self-
energy. The natural orbitals3' are obtained by di-
agonalizing the density matrix in the Hartree-Fock
basis after performing the contour integration of
Eii. (8). The results are presented in Table V and
compared with other theoretical calculations. "'"'"
The very small lack of trace conservation is not
due to numerical errors but arises from using an
approximation to the xact optical potential. From
our one-particle density matrix it is possible to
calculate a variety of physical properties to a high

degree of accuracy.

C. Excitation Energies and Oscillator Strengths

The eigenvalues and eigenvectors of the RPA equa-
tion represent excitation energies'6 and general. ized
oscillator strengths, s'ss respectively. The low-ly-
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TABLE VII. Low-lying triplet excitation energies of
helium atom.

Excitation Present results Exact (Refs. 38 and 40)

1'S-23S
1'S 33S

1 'S-2'P
1 iS~33P

1 S 33D

0.7236
0.8541

0.7733
0.8632

0.8647

0.728 41
0.834 98

0.7703

See Sec. IV C regarding high-lying excitation energies.

ing singlet and triplet excitation energies of helium
atom are presented in Table VI and VII. In the
case of the optically allowed singlet transition we
can compare our results with the variational solu-
tions of the coupled Hartree-Fock equations of
Sengupta and Mukherji3' and the accurate numerical
solutions of the same equations by Jamieson. '
This comparison immediately shows that the RPA
equation is capable of predicting accurate excitation
energies for both low- and high-lying atomic tran-
sitions. Unfortunately, it is difficult for variation-
al calculations to reproduce the proper functional
form of the high-lying states without resorting to
extremely large basis sets. This is particularly
true of variational solutions that, like ours, are
based on Hartree-Fock virtual orbitals that all. lie
in the continuum. However, if one solves the RPA

equations numerically, one predicts the excitation
energies ' and oscillator strengths to an accuracy
of about 5/g. it should be emphasized that we could
have calculated these properties from oux solution
to the RPA eigenvalue problem but did not do so
since they were already available. We have sacri-
ficed accuracy in these properties in order to sim-
plify the computation of properties that depend upon
the one-particle Green's function. This has no ef-
fect on our phase shifts since only the average be-
havior of the response function is needed for the
construction of the optical potential.

This theory should, in principle, be judged on our
Gg properties and RPA quantities of Schneider and
Jamieson, since these results exhibit the full
power of the method.
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Scattering of Light Ions in the Weakly Screened Coulomb Field of Gold Nuclei
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The differential cross section for scattering of 300-2000-keV H' and 300-500-keV He' and
Li' through 3'—15 by gold targets has been measured. The targets were thin {34-220 pg/cm ),
vacuum-deposited polycrystalline foils. To eliminate the influence of multiple scattering,
several target thicknesses were used to allow extrapolations to zero thickness. The agree-
ment between our experimental data, theoretical predictions, and published experimental data
is found to be satisfactory.

I. INTRODUCTION

Elastic scattering of ions on atoms yields in-
formation on the screening of the Coulomb inter-
action by the electrons surrounding the partners
in the collision and is thus of interest for theore-
ticians as well as for experimentalists. While it
is fairly straightforward to calculate the electron
distribution of a single atom from a statistical
model, the description of the electron distribution
of two colliding atoms is more complicated. For
close collisions, interaction by an exponentially
screened Coulomb potential is found to work
rather well, but this interaction potential falls off
much too rapidly with distance. A Thomas-Fermi
(TF) calculation may then be attempted also for
the two-atom case.

In a comprehensive paper, Lindhard et al. 3

showed that the similarity properties of atoms in
the TF model, together with some simple assump-
tions, allowed a very simplified expression for the
differential cross section. They expressed the cross
section as being a function of one single parameter
proportional to the product of projectile energy
and recoil energy in the collision. If, further,
these energies are expressed in dimensionless TF
energy units, it is necessary to calculate only a
single universal function numerically. By means
of a simple procedure, this function may then be
used to find differential cross sections for all com-

binations of projectiles, targets, projectile ener-
gies, and scattering angles.

The experimental verification of the above-men-
tioned predictions has not been very extensive.
Loftager et a/. investigated mainly the region of
larger impact parameters corresponding to scat-
tering in strongly screened fields. Other investi-
gators" obtained a large number of experimental
data that may be directly compared to those of the
present paper, but these data were not analyzed to
test the scaling properties, nor were they com-
pared in absolute magnitude with the TF cross
section.

Thus, there appears to be a need to investigate
experimentally the results of Lindhard et al. , not
only for the intrinsic interest in interaction poten-
tials, but also because the weakly screened cross
sections are important for further progress, for
example, in the calculation of phenomena involving
recoil energies of target atoms. Recent examples
are calculations of sputtering yields' and radiation
damage. '

The present experiments have been made partly
for the above-mentioned purposes, partly for the
purpose of examining the possibilities of using
solid targets for measurements of scattering cross
sections at relatively large impact parameters
(see also Ref. 5). 300-2000-keV H' and 300-500-
keV He' and Li' ions scattered through 3'-15' in
the laboratory system were used. The targets


