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The radiative decay of metastable nsnp 'P„atomic states is found to occur only by odd-parity
multiphoton modes such as EJM1 and 3El, in the absence of hyperfine structure. A detailed

calculation of the E1Ml rates for several members of the Be sequence is presented, in the
nonrelativistic approximation. Only the general properties of 3El decay are presented, Among other
results, the 3E.1 rate is found to be zero if any two photons have the same energy, and its spectrum,
unlike the symmetrical two-photon spectra, is found to be irregular and asymmetric, being peaked
somewhat below half the transition energy.

I. INTRODUCTION

In most atoms with two valence electrons, such
as the Be, Mg, Ca, Zn, and Cd isoelectronic se-
quences, the lowest excited state is nsnp Pp. En-
ergetically this state can radiatively decay only to
the nsns Sp ground state, but owing to the 0+0
selection rule, this transition is strictly forbidden
for all single-photon modes. In reality, this tran-
sition is observed as a forbidden line in laboratory
and astrophysical sources. Bowen' suggested that
this transition is enabled by the interaction of the
electrons with nuclear moments. In isotopes with
nonzero nuclear moments, the coupling of the nu-
clear spin I to the Pp state produces a state of
total angular momentum E= IW0, thus circumvent-
ing the 0 j-0 selection rule. This idea was tested
experimentally by Mrozowski, ~ Kessler, ' and by
Deloume and Holmes, who showed that only the
odd isotopes produce the emission line. Later cal-
culations by Garstang gave rates for Mg r, Zn x,

Cdr, and Hgx. Such calculations assume that the
hyperfine structure mixes the Pp and P& states,
and that spin-orbit and spin-spin interactions mix
the P, with 'P, states, thus enabling the Pp Sp
transition to occur in the electric dipole (El) mode.

In even isotopes, this mechanism is not possi-
ble-no single-photon decay can occur. We must,
therefore, consider multiphoton modes, for which
0-0 is allowed.

Two-photon decay has been studied several times
in the past. In atoms, the 2S- 1S transitions in
hydrogenlike and heliumlike ions occur primarily
by the E1E1 (or 2El) mode, and theory and ex-
periment are in good agreement. A recent cal-
culation by Johnson~ gave relativistic results for
the 2E1 rate of the 2 Sg/p 1 S&(2 transition of
hydrogenlike ions, and an estimate of the 2M1 rate.
Eichler and Jacob' have derived general properties
of ELEL', ELML', and MLML' modes, and Gre-
chukhin has extended these calculations and ap-
plied them to nuclear transitions. Experimental
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TABLE I. Classification of multiphoton modes by parity,
multipolarity, and multiplicity.

E1
M1
E2

m-2

~ ~ ~

2E1
2M1

E1M1
E1E2

M1M2
E2Ml
E1M2
E1E3

2E2
Ml M3

2M2
E1M3
E2M2
E3M1

3E1
2M1, El
2E1, M1

3M1
2E1,E2
E1MlM2
2M1, E2

2E1, M2
E1M1E2
2M1, M2

4E1
2E1, 2M1

4M1

3E1,M1
3M1, E1

evidence for double-quantum emission in an iso-
meric transition has been presented by Alvager
and Ryde. '

II. MULTIPHOTON MODES

Multiphoton modes are easily represented in
terms of single-photon modes. Each photon has
associated with it (besides its frequency &u, prop-
agation vector k, and polarization i: (i) multijo-
laxity, (L), which is 1 for dipole, 2 for quadru-
pole, etc. ; and (ii) parity, (P), which is (-1) "
for electric (E) modes and (-1) for magnetic (M)
modes. Multiphoton modes are specified by list-
ing (EL) or (ML) for each photon. A typical mode
might be (E1E2M1). Three properties of multi-
photon modes are of interest: (i) multiP/icity, m,
which is the total number of photons involved; (ii)
total multipolaxity (L), given by

L=ZL„'
n=g

and (iii) total parity (P), given by

n=g
(2)

These parameters allow us to classify the vari-
ous modes as in Table I. Conservation of energy
demands

n= j.
(3)

where E,- and Ef are the energies of the initial and
final atomic states. This relation defines a hyper-
plane in m -dimensional space whose orthogonal
axes are +„. Any single decay is characterized by
a single point on this hyperplane, i.e. , the values
(&o&, ur2, .. . , &u ). The observed spectrum depends

where Ln represents the angular momentum car-
ried by an L,-pole photon. Ln can assume any in-
tegral value ~ 1 (the intrinsic photon "spin"). The
"continuum" in this case is the set of multipole
paths a transition may follow (e.g. , E1ES and
E2E2).

Conservation of parity requires
m

IIP„=P,Pg,
tl= 1

(6)

where P, and P& are the parities of the initial and
final atomic states. This relation allows photons
with different parities to enter (e. g. , E1M2 and
MIE2).

The selection rules for multiphoton transitions
are easily derived from the selection rules for the
individual multipole operators. Each participating
photon mode may be considered a virtual transition
to an intermediate state. Hence the selection rules
on hJ, b, /, As, etc. , for the individual photons
must be obeyed.

There is no restriction on multiplicity; if other-
wise allowed, a transition may occur by any num-
ber of photons, and the modes compete. The
parity-change rule severely limits the possible
modes.

The multipolarity relation [Eq. (6)] also severely
limits the possible modes. In particular, for a

on how many photons are detected simultaneously.
If all m are detected, then the spectrum is just the
points on the m-dimensional hyperplane. If all but
one photon (say &o„) are detected, they form a con-
tinuum given by the projection of the hyperplane
onto the (m —1)-dimensional space perpendicular
to the ~ axis. Fewer detected photons requires
successive projections onto smaller dimensional
spaces. If only one photon (say &u, ) is observed
(the "singles" spectrum), then the spectrum is the
projection onto the &, axis and is still a continuum.
To the extent that the singles spectrum has struc-
ture, we can say that the photon energies are cor-
related.

Conservation of linear momentum requires
nl

Z R„=p~ —
pg ~

n=J

where p,. and p& are the momenta of the atom (as
a whole) before and after the decay. This relation
shows that the directions of propagation of the
photons also form a continuum. Again, the actual
distribution of directions depends on how many
photons are detected. And to the extent that these
distributions have structure, we can say that these
directions are correlated.

Conservation of angular momentum requires

Q L„=J, —Jt, (6)
n= 1
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J, =0-J&= 0 transition, this rule disqualifies all
single-photon modes (I, e 0) and forces all two-pho-
ton modes to have the same multipolarity (I., = I.a).

These selection rules are easily applied to the
nsnP Po-nses So transition. The parity-change
and multipolarity rules permit only the following:
(E1Ml), (E2M2), (3E1), and higher-order modes.
These modes are illustrated schematically in Fig.
1. Of these, the E1M1 rate is expected to be the
largest.

Section IQ presents a detailed calculation of the
E1M1 rate of the transition 2s2P Po-2s2s 'So for
some ions in the Be isoelectronic sequence.

III. CALCULATION OF THE E1N1 RATE

In second-order perturbation theory, the dif-
ferential rate of two-photon decay is given by

dAq, = —
~ (f~H„„ i)~ 8(E, Eq —e(g-, —h(g~)

=2r . 2

operator of the form

H~„= H~ AH~,

where

II„=-e 7~ n, A(r, )
j"-1

(8)

is the usual single-photon perturbation operator
involving the Dirac matrices n and the vector po-
tential of the electromagnetic field A. The opera-
tor A is the usual energy denominator times a pro-
jection operator, summed over intermediate states.
To simplify notation, we shall omit the summation
over i.

From Eq. (8) we want to pick out those terms
in which one photon has E1 character, the other
M1 character. The vector potential can be writ-
ten as a sum over frequency and multipole com-
ponents:

A= 5 Z [A~i((u)+A„i((u)], (10)
dkg dk2

(2.) (")" ''
where E,- and E& are the energies of the initial and
final atomic states, Ii) and

~ f), respectively, and

h~, and ~2 are the energies of the two photons
with propagation vectors k, and kz, respectively.

The operator Hyy ls an effective first-order

in which electric (E) and magnetic (M) multipoles
have also been separated. Substituting Egs. (9)
and (10) into Eg. (8), we find (with a slight nota-
tion change)

+yy +El(+2) A(+1) +Nl(+f) ++E1(~1)A(+2) ~N1(+2)

S
1 D1

1
D2

~ ~ ~ ~ ~ ~
~ 0 0 ~

1p
1

1p
1 ~ '

3p

M1 3P

E1

ElM1 E2M2

1so

FIG. 1. Virtual transitions in various modes for the mnp Po nsns ~SO decay. The arrows represent photons of E1,
Ml, E2, etc. , character, while the dotted lines represent the singlet-triplet mixirg due to the spin-orbit, spin-spin,
etc. , interaction H~.
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+ +@142)A(+ 1)RZl(+1) ++Nl(l) A(a z) Rzl(+2)

(11)
plus terms (E1E1), (M1M1), and higher multipoles.
In Eq. (11)

(12)

where In) is one of the atomic eigenstates.
If we approximate the exact Dirac states with

Pauli states, we can make the usual approximation

n ~ A- (1/mc) A p+ (I/2mc) o ~ v xA, (13)

and in the dipole approximation (k ~ r «1), the El
operator becomes H»~ e & ~ R, where eR is the
total electric dipole moment of the atom, while
the Ml operator becomes II»~ pzkxe (L+28),

2&; ———,
' f A(v, ) dv»

where
28 4 4

~(vi)dv~= z z v, vzdvil5gl. vomc
and

(14)

(15)

were pz(L+2S) is the total magnetic dipole mo-
ment (v, z= eh/2mc).

Returning to Eq. (7) we note that the total transi-
tion probability will involve integrating over dk,
and dk~. Using 5& =5k' and dk=k dkdg„we can
use the 5 function to immediately perform, say,
the dkz integration.

From a.ll these considerations, we derive the
following expression for the total transition rate
(sec '):

&fliz Rln) &nlrb&xi& ~ (L+28) li) &fli& Rln) &nlk zixz (L+28) li)+-
n Vn)+ Vy Vng + VP

&f lkz «z ~ (L+ 28) ln) &n le ~. R li) (f lk, xi, ~ (L+ 2S) In) &n l~z ~ R li)
&ng+ &t Vnz+ &p

1 g ~ ~ dQzg " dQzz
1

dQ, q dQsz
(16)

[J~lu. ~~„4z g 4& J 4v

~h~~~ [J,j =2 J;+1. The sum g„runs over all
possible states that can be coupled to Ii) and I f ).

An important aspect of Eq. (16) is the fact that
the sums may be different due to different coupling.
The operator L+2S can couple only states of the
same principle quantum number. Thus, I i) and
In) must be in the same fine-structure multiplet
for the first two terms (E1M1), whereas In) and

I f) must be in the same multiplet for the last two
terms (M1E1). For the 'P,- 'S, transition, this
means

S.lkx& (L+28) ln) &nl~ Rl 'p. &= 0 (19)

and the last two terms of Eq. (16) are zero. We
shall drop these terms in the following.

We now proceed to a detailed evaluation of the
Elhi l rate. For the moment we retain some gen-
erality by using Ii)= Iy;n, (L;S;)J;M;)= I J;M;), —

In these formulas,

~pp=hvg+Av2 =Eg —Ey

and is the total transition energy; v„,.= (E„—E,)/k;
&~ and &2 are parallel to the electric field of the
photons which have propagation vectors k& and k~,
A'III'G means the average over all polarization and
propagation directions, as well as the sum over fi-
nal and average over initial substates. It represents
the operation

R = (1/&3) (J,IIR IIJ,) T'(J J' ),

L + 2S = (1/ v 3) (Jq I IL + 2S I I Jz) T (Jq Jz),

(23)

(24)

where (II II) are reduced-matrix elements using
Edmonds' convention. '3 The operators A, and Aa
are scalars, since the energy denominators do not
depend on M„, and p ~„ I J„M„)&J'„M„ I

= projection
operator onto the J„state.-

Putting Eqs. (23) and (24) into Eq. (21) and using
standard recoupling formulas gives

etc. We want to examine the operators [in Eq. (16)]
gA

HE1M1 z 2 R Alki z 1 ~ (L + 2S)

+g, ~ RA, k, xgz ~ (1,+ 2S). (20)

We expect these operators to have certain sym-
metry properties of importance, and to elucidate
these properties we shall use spherical tensor
algebra. " First, since &, 0&&&, R, and I+2S are
vectors, or first rank tensors, and A ~ B=A ~ 8,
we can write

Hzg~g=ez eR Agkgxe g
~ (L+2S)

+&, z R Az kzxq z ~ (L y 2S). (2l. )

The recoupling is facilitated by using basis tensor
operators 3

T (J,Jz)= 5
l J,m, ) &J'z-mzl

m1m2

x (-1) "z 'zC(J, JzL; m, mzM). (22)

The reduced operator components R and (L+2$)
can be written as
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n Vent]+ Vy L=O

Vn&+ V2 L=O

where W() is a Racah coefficient and (] is an
Lth rank tensor.

The matrix elements %= (f 1 II»» 1 i) are easily
found using

(JfMfl T (Jf J;) IJ;M;)

= ([I]/[Jf]) C(J;L Jf, M, M Mf)& (26)

where C( ) is a Clebsch-Gordan coefficient in the
notation of Rose.

Having found % [Eqs. (25) and (26)], we can
write (5K ) directly, and this will involve the pro-
duct C(J;L J» M;MMf)C(J;L Jf, M';M Mf),
which, when summed over M, and Ms as required
by Eq. (18), gives 62&,.6„„. The result is

ZZ fmf'= J & &(JfllRIIJ.)
M) &2f IN,

x(J„llI.+2Sll J;)W (11JfJg '., LJ„)

X 62 Q)XE~ ~
N

1 L

V~&+ VS

2

+ (2i(k2X e2)] ~
Vn&+ V2

We now specialize to J, =Jf = 0, so [J,] = 1,
W(1100; LJ„)= (1/v 3) 6~ ~52 2. Thus, M=O and

(e2(k~xe, ))2= —(1/g3) e,s(k, xei) = —(1/v 3) e2 k, xd, ,
with the result

f'= r ~ (qfllRllq. ) (q„llL+2Sllqg)
N) J2f n

1 - 1
e2 k~ x g~+ g1 k2 x $2l

V~~ + VX V~)+ V2 )
(28)

where y, and ys represent J= 0 states, and p„
must therefore represent J= 1 states.

Now consider the angular averages of Eq. (28),
which has the form

I~ "I'I ~2 ki«il'+l~" I'I ~i. k2«21'

—2 Z ' ' Z ' ' '
I
k2' (E'g x f2) kg' (eg x c2).2 1 2 1 1 2

(29)

If AVG represents the integrals of Eq. (18), then

1~2 &i eil'vo -l~i k2 e2IAvo =-. (30)

The vanishing of the cross terms is in contrast
to the E1E1 case, where the correlation is the
same (e.g. , 1 e, 'e21 ) for both terms.

With this result, we can write the complete aver-
age of Lb@i as

I'+—' l~
n Vnc+ Vt n Vn&+ V2

where

X,„,=(qfllRllq„) (q„llI. +2sllq, ). (33)

I q„)= ln'P, )+2 a„„.n"P, )

(34)

where the coefficients a„„.and b~. involve a ma-
trix element divided by an energy difference.

Substituting Eqs. (34) into Eqs. (33) and (32), we
have

Xsam

V„;+Vi

( S2IIRiin P~) (n P|IIL+2SII P2)
v(n'J', —2p2)+ v,

( S2IIR Iln P&) (n P& li L + 2S II P„)
v(n P, -'P, )+ v,

Now consider the possible states q„ that can cou-
Ple with P~ = Po and ps='So. The selection rules
show immediately that only y„= ' Pz are possible.
The sums over n are to be carried out over P~
and P, states, separately. However, since neither
R nor L+ 2S can mix singlets and triplets, it is
clear that the decay can proceed only if the states
y„are not purely singlet or triplet. Spin-orbit and
spin-spin interactions which mix P, and P, states
are therefore necessary.

In order to simplify the notation, I shall repre-
sent the 2s2p 2P multiplet (which contains the meta-
stable state 12s2P 2P2)) simply as I 'P~), J= 0, 1, 2,
and the ground state 12s2P 'S2) simply as 1'S2).
Other states (with different principle quantum num-
bers) will be written as, e.g. , I n P, ) and 1

n'
P~).

Assuming that the spin-orbit and spin-spin in-
teractions are small, we can use first-order per-
turbation theory to write

and
»»&

~h

(&22' tg X &2 k&' Ej X e2)Avo& (31)
(35)

But all (n'P, III.+ 2SII2P2) = 0, except the single
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1$ 1F 3$

2$3$

2p3d

2p3p
2p3s
2s3p

2P3P
2p3d
2$3d

2p3d

2$3$

2p3d
293P

2$3d

CO
O

LLI

0
LLJ

U
K
LLI

Z
UJ

2s2p

2p2p
2p2p

Q
2$2$

2s2p

a

FIG. 2. Energy-level diagram for the Be-like ion P xrz. The fact that the 2l2l' levels are substantially lower than any
2l3/' levels is the basis for one approximation used in the calculations.

15gl',.=A
I ~(")I "k

I
s( .) I',

where

(36)

S(v) = Z c„('SollRlln'Pg)

element ( P~IIL, + 2SII Po) = —Z2 connecting fine-
structure levels. Hence the double sums of Eq.
(35) are reduced to single sums, and Eq. (32) be-
comes

trix elements of B for the resonance lines, and the
various energy levels. It is emphasized that the
sum extends over all the n P~ states, including the
continuum, but that only one Pj state enters.

For heavy ions, the 2s2P 'I'j state lies appreci-
ably lower than any other 'Pj state (cf. Fig. 2);
hence one value of c„, namely,

c,= ('P, lie, ll'P, )/[E('P, ) —&('P,)j (»)

and

1
3 3 Sv(n Pq —Po) + v v( P, — Po) + v

is considerably larger than all other c„'s. In other
words, the 2s2P'P, state mixes predominantly with
2s2P P& and very little with any other 2snp 'P,
states. Under this condition we can use the def-
inition

c„=(n 'P, lie, ll'P, )/[Z(n 'P, ) —Z('P, )] (36)

is the singlet-triplet mixing coefficient, 0& being
the spin-orbit, spin-spin, etc. , interaction Hamil-
tonian.

Equations (36)-(38), together with Eqs. (14)
and (15), are now in a form for numerical calcula-
tion. Needed are the mixing coefficients, the ma-

(gy&, = (4~m/3n) v('P, —'S,)
I
('S.ll&ll'Pi)

I

'

with

('S,Ilail'P, ) =- c,('S,IIZII'P, )

to rewrite the transition probability as

2'm' n' '
A(vg) dvg = 3 (gf )9 c

(4o)
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FIG. 3, Spectrum of single photons in the E1M1 decay
of the 2g2p3PO level of Pxrr.

1 1

( (P+ y) (p+ y) (P+ 1-y) (p+ 1-y)

(42)
P = v( Pg Pp)/vp ~

and p —= v( P~ —Pp)/vp, with

10

lv('Pi —'Pi) 1'
p

(p ~
)

vp E(y) dy, (42)
&t — ~o

where n, ao, and e are the usual atomic constants,
and

E(y) -=y'(1 —y)'

y = vi/vp ~

The spectrum seen as single photons is given by
E(y), where 0 ~ y ~ 1 corresponds to the interval
0 & v~ ~ vp. A plot of E(y) for Be-like phosphorus
(P xxI) is shown in Fig. 3. It is clearly symmetric
about —,

'
vo, and resembles the continuous spectra

of 2El modes, except for the central dip. This
dip originates from the small value of q = v('Pi
—PPp)/vp; larger values, say v(n P~ —PPp)/vp do
not enter because of the ~n= 0 selection rule on the
Ml transition. This dip may be slightly exagger-
ated due to neglect of higher yg'I'~ states. For
heavier ions, near Z=20, this should be less than
10'%%, but will be more serious for lighter ions,
since for them the 2s2p'P, state is not as well-
isolated from higher 'P, states. A plot of F(y) for
Be itself is practically identical to Fig. 3, being
perhaps 15%% larger. We can, therefore, guess
that there will probably be a very slight central dip
for Be, if any, and that the area under E(y) is
perhaps 50%% more than the area for Z =20. Hence
the major Z dependence of the transition probabili-
ty is in the coefficient of E(y) dy.

The Z dependence of the transition probability
is easy to determine from Eq. (42). The (gf), val-
ues have been computed by Garstang, ' and have
the strong Z dependence shown in Fig. 4. The en-
ergy levels' of the 2s2p'P, , 2s2p'Io, and
2s2p I'~ states of Be-like ions are plotted in Fig.
5, which shows that the frequencies appearing in
Ec{. (42) all depend linearly on Z, giving a net Z
dependence. The over-all Z dependence is there-

I I I

1O-4 =

1o-7 =

4 ~
E

LA
O

I-

CO

O
Z
D0
CL"

U
LLI 2 ~
00
Cl

U
IX

1
LLI

LLI

1o-9' I I I I I I I I I I I

2 4 6 8 'IO 12 14 16 18 2Q 22
I I I I I I I I

5 7 9 11 13 15 17 19

FIG. 4. Values of (gf)3 computed by Garstaug {Ref. 5)
for the 2s2p P1 2g2s So transition.

FIG. 5. Energy levels of certain states in the Be
isoelectronic sequence.
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TABLE II. Computed E1M1 rates for 2s2p Po 2s2s ~0
transitions in Be-like ions.

decay. The operator involved is

82@1=62'R+1 E'1'R+ e1 R+2 f2' 8,~

Ion

Ca xvII
K xvx

Ar xv
Cl xzv
S xxzx

P xaam

Si xz
Al x
Mg zz

20
19
18
17
16
15
14
13
12

(af)3

8.1x 10-4

6.9x ].0-4

4.3x 10~
3.0x 10 4

2, 5x 10+
1.6x 10 4

9.6x 10-~

5.9x10 ~

3,5x 10-5

f&b» 4
0.048
0.049
0.050
0.051
0.052
0.053
0.054
0.055
0.056

n~(sec-')

1.2x 10 6

8.1x10 7

4.2 x 10-7

2.4x10 7

1.6 x10 ~

8.1 x 10-8

3.7 x 10-8

1,8x10 8

7.8 x10 ~

&pgg = + (~yll&ll&„) (&„ll&ll&g) + ~"(11&q&g, ~„)

where

x{~,~,)"7'(Z,Z, ) [X,+(- I)'X,], (45)

A~ = (v„, + v„), 0 = 1, 2.

Using the same recoupling techniques applied to
Eg. (21), we find

fore Z' times the strong dependence of (gf), times
the weak dependence of E(y).

In computing the total transition probability of
the Elll mode, the rate for P xix (Z = 15) was com-
puted directly, and then scaled for other ions. The
results are listed in Table II. The accuracy is
probably about 10%, and is relatively better for high-
er Z ions. If no other processes compete with this
mode, the lifetime in Caxvrr is about 10 days,
while that for Mg zx is about 4. 3 years.

IV. E2N2 MODE

The E2M2 mode occurs via the «'D2 states, which
are mixed by H, in the same way as the ' P1 states.
In this case, however, the M2 operator involves
R, and couples the '&p state to all n'D2 states. The
spectrum will also be symmetrical about —,'vp, but
the total rate should be less than the E1M1 rate by
the factor

E1 M1 v D2- 3Pp

hence should never compete. Note that the AS
=+1 M2 transition cannot occur.

V. PROPERTIES OF 3El DECAY

The 3E1 rate is probably smaller than the E1M1
rate. However, experimentally it would be easy
to distinguish this mode, even in the presence of
considerable background. This is becaues a triple-
coincidence measurement strongly rejects single
and double-coincidence events. An analysis of
multiple-coincidence measurements is given in the
Appendix. Rather than present a complete evalua-
tion of the 3E1 rate, I shall derive some basic
properties of this mode from a consideration of the
symmetry properties of the operators.

First we review some known properties of 2E1

The general features of the 2E1 spectrum are easily
obtained from these formulas. For J&=J, , such
as 2 S1]2- 1 $1( 2 and 2 Sp- 1 Sp L = 0 and the ex-2

pression involves sums of terms like

A2+ X~ = (2v„( + v~+ v2)/(v„( + vq) (v„, + v, ) (47)

which is a broad flat-topped distribution peaking at
—,
'

vp. The same is true for J, —J&=~ 2, which re-
quires L =2.

But for J, —J&=+1, such as 2 S,-1 Sp, L=1
and we have sums of

X, —),= (v, —vp)/(v„, + v, ) (v„, + v,), (48)

x 5(E& —E& —Smi —h a&z —Kar3) (49)

where the operator H„~ in the nonrelativistic 3E1
approximation is proportional to

l p,

H3Z1- 1'R&2 E'2 ~ R A3 g3 ~ R+ 2'RA1E1 R~3 E3'R

+ E1'R~3 63' R+2 f2'H+ &2' R~3 ~3' 8~161~

+ f3 RA1 f1 RA2f2 R+ f-3 RA2a2 RA1 al R p

(50)
where the prime indicates there are different in-
termediate states. Assuming the transition takes
place as Z; -J„-J„-J'z, the recoupling of Eq. (50)
leads to

which has a zero at v, = v2= —,'vp. This zero is a
direct consequence of the symmetry properties
and does not involve any dynamical quantities.
From this simple relation, we deduce that the spec-
trum must be symmetrical about —,'vp, where it is
zero, and must have two humps, one on each side

1of pvp ~

Now we apply these same techniques to the 3E1
decay mode. The differential rate of three-photon
decay is

2m 2 dk1 de.
d'art =

g I &fI )'trl ) I (2&)s (2&)& (2&)&

&gag = ++ (&gll&ll& ) (& II&Il&.) (&.Il&ll~g)
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2

XZ Z ([&])'" ({C,e2Pe3) ~ T (Z~Z()
K~O L

x ( 1)1'«-" (X+(-1) ~)XJf J J„J„J]Jf

1 1
+(- 1)' -'~"

Jf Jg
~, (X,+(-1)"~,)

L

i f m m n

where X„ is given in Eq. (46) and

&3 =
(Vm& + Pn) (52)

The various selection rules for 3E1 decay are easy
to determine from the triangular relations on the
6-j and 9-j coefficients. Clearly, 1J) Jfl
If l J, —Jfl =3, then only the L=3, E=2 term is
nonzero, and the transition has an "even" charac-

ter, similar to 2E1 decay for I Jf Jf 1

For the Po- So transition, we have J, =Jf = 0,
requiring L= 0, E= 1. The square bracket in Eq.
(51) reduces to

[ ]=—(1/3v"3) [X,(X, —X,)+ X,(X, —).,)+ X,(X, —X,)].
(53)

Putting in Xn and X, from Eqs. (46) and (52), we ob-
tain

&3s1 = —++ ('&3il&lip„) (p.ll&lip. ) (q.lf&ll'P3) I&1&2&3}3
m n

(P, —V, ) (V, —V, ) (V, —P,) (54'
(Vmf + V1) (Vml + V2) ( mi V3) (Vnf + V1) (Vn1+ P2) (Vn1+ V3)

where

(&1&2&3)O=—(3&6) ~1+&2' e (55)

is the triple scalar product of the three polariza-
tion vectors, which is independent of the coupling
scheme.

The only limitation on the photon frequencies is
that their sum represents the transition energy:

P1 + P2+ V3 = (E1 —Ey)/8 = V2 ~ (56)

This equation is plotted in Fig. 6(a). Any point on
the equilateral triangle represents a possible decay.
Associated with each point is a decay rate, which
is zero for points on the edges and possibly else-
where.

From Eq. (54), we see that the 0- 0 rate is zero
whenever any two photons have the same energy.
This is shown in Fig. 6(b), in which the perpendic-
ular bisectors form "nodal lines" that divide the
spectrum into six separate regions. The 3E1 rate
also vanishes if the intermediate states have the
same energy [v„=(E„—E„)/h= 0], and in the limit
that one photon has zero energy (v1 = 0, etc. ).

The frequency condition, Eq. (56), says that for
any value of v, , the other two photons form a con-

tinuum between 0 and vo- v, . That is, if we do a
triple-coincidence experiment and then select only
those events having one photon with energy hv3,
then the other two photons in those events will form
a continuum between 0 and vo —vs.

If, on the other hand, we only detect two coinci-
dent photons, letting v, be any value whatever, then
we get a double continuum, represented by the pro-
jection of the triangle of Fig. 6(a) onto the v1, v2

plane as in Fig. 6(c)~ Any point within the 45' tri-
angle is a possible pair of values for v~, v2. The
rate associated with these points shows the zeros
along the projected nodal lines, and probably rises
to a broad maximum somewhere within each of the
six triangular regions.

We now ask what we mould observe if we detected
only single photons. To get this we must project
Fig. 6(c) onto the v1 axis. This is most easily done
by dividing the figure into three sets of triangle
pairs (indicated by similar shading). Since Fig.
6(b) shows each of the six triangles to be identical
(or mirror imaged), we infer that the "volumes"
of each triangular hump are equal, and are equal
to +6 of the total 3E1 transition rate. Furthermore,
the peaks must lie in pairs at three values of v, .
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FIG. 6. Spectra of the 3E1 decay in a J;=0 J~=0 transition. (a) The 3-plane triangle. Any decay is represented by
a point on this plane. (b) Front view of the triangle showing nodal lines where the transition probability is zero, and the
6 regions of equal volume transition probability I(v~v2v3) plotted perpendicular to plane of triangle. (c) Projection of (b)
onto the v~vq plane, when one photon is unobserved. (d) Single-photon spectrum, showing contributions from various re-
gions of the three-plane triangle. These contributions are found by projecting (c) onto the v~ axis.

Thus, we can correlate with each pair of triangles
in Fig. 6(c) a peak on the A(v~) vs v, plot of Fig.
6(d). The three peaks have equal area but different
shapes. The total 3E1 singles spectrum is given by
the sum of these three peaks, and is plotted as a
heavy line.

The surprising result is that the 3E1 spectrum is
not symmetrical about —,'vo, like the two-photon
decays. Instead, it is irregular, and peaked some-
what below pro ~ This is understandable in the
sense that if we detect one photon at —,'vo, the re-
maining photons have many possible ways to use the
remaining energy, all giving two photons below
1
gPO ~

It may be anticipated that the singles spectra of
higher multiplicity multiphoton modes mE1 become
peaked at lower and lower energies.

VI. CONCLUSION

There may be some astrophysical application of
these results. In supernovas rich in heavy ele-

ments, the energy balance could be affected by
loading a sink of long-lived metastable atoms which
would return the energy some months or years la-
ter. Also, the metastable component could serve
as a probe of ion abundances in regions of much
smaller density than stellar atmospheres. In both
cases, knowledge of the lifetimes would be needed.

The prospects for laboratory detection of these
decay modes are probably not good. The only real
possibility would be to collect enough metastables
that even a small specific activity could be detected,
as is now done for long-lived isotopes. Under such
conditions, however, the collisional quenching would
have to be suppressed. The Appendix shows that
should these decays become experimentally acces-
sible, separation of E1M1 and 3E1 modes would
not be difficult.
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APPENDIX: ANALYSIS OF MULTIPHOTON COINCIDENCE
COUNTING EXPERIMENTS

Let R'"' be the decay rate of n-photon decays. If
we use N detectors, the true coincidence rate due
to these decays will be

A„=E' +t g" R", (A4)

where & is the resolving time of the coincidence
circuitry and

In addition, there will be accidental coincidences
at the rate

(Al) R= ZnR'"' (A6)

where

& = &i' ' '
&ar (A2)

is the total single-photon rate.
The total coincidence rate using N detectors is

therefore
is the product of the detector efficiencies and f„'"'(8)
is an angular-correlation function that depends on
the positions of the detectors. The total true coin-
cidence rate will be the sum over all multiphoton
modes:

(As)

CÃ= TN AE

2 (fp(8) + Nl(rg)" 'g)p&"&
nl

N! (n —N)!
(A6)

Written out in full, for 1, 2, 3, and 4 detectors, the
coincidence rates are

(I/e, ) C, =R,

(I/~, e,) C, = 2~R'+ f"'(e)R"'+ 3f,'"(e)R"'+ 6f,'"(e)R'"+"
(I/egfgeg) Cs = 6T R +f '(e)R"'+4f,'"(e)R'"+ ~ ~ ~

(1/e, e, e,e4) C, = 24''R' + f"'(6)R"'+ ~ ~ ~

(AV)

(As)

(Ao)

(A10)

f (3)(e) R(3)/ 6/ 2R3 ) I

If we say fs' '(8) - 1, and assume that in

R =R'"+2R"'+3R"'+".
(A11)

(A12)

Note that there are no true coincidences when there
is only one detector and when there are fewer coin-
cident photons than detectors.

In this paper we are concerned with whether true
triple coincidences (3E1) could be observed against
a strong background of double-photon (EIM1) decay.
Thus, we require

the R' ' term dominates, we have the criterion

R(s&/R(&) ) 46(yR(3))& (A13)

If the resolving time is & -10 sec, and the two-
photon rate R '-10, then the 3E1 rate must be
R' ' & 10 s~ sec ', which is a certainty. Alternative-
ly, if we assume R'"/R'" - 10 ', then R'" must be
less than - 10 ' sec, which is also certain. Thus,
detection of 3E1 against the E1M1 background would
not be difficult, assuming they are both above the
noise level.
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