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The anisotropic liquid-structure factor of p-cyanobenzylidene-amino-p-n-octyloxybenzene has been

measured in the nematic phase using Cu Kot x rays. This material exhibits a second-order phase

transition to the smectic A phase at T, =82.8'C. The liquid-structure factor shows a non-Lorentzian

peak at a wave number of q0=0.179 A ' (equivalent d spacing 35.0 A) of the following form:

S,=1~[3Ser~10 [(q~~ qo)lqe]—'+06(q~/q )"}',where e=(T-T )tT, 7=1.49+01, r1=2 6+02,
»d &q~~ (&q, ) are the momentum transfers parallel (perpendicular) to the orienting field.

I. INTRODUCTION

The author' has recently published a measure-
ment of the anisotropic-liquid-structure factor in
the nematic phase of P-n-octyloxybenzylidene-P-
toluidine (OBT), a material which has a first-order
nematic- smectic-A- phase transition. The liquid-
structure factor is peaked in field direction and at
a scattering angle equal to the smectic-A Bragg
angle. The peak shape is Lorentzian and the peak
height grows as one approaches the transition to
the smectic-A phase. This pretransition phenom-
enon is physically due to small regions of the
nematic fluctuating into a smectic-A-like config-
uration. Mathematically one describes the phe-
nomenon using a Landau theory of the phase tran-
sition and calculating the scattering due to order-
parameter fluctuations. The Landau theory is due
to the author and to deGennes. ' The theory pre-
dicts a Lorentzian peak in the liquid-structure fac-
tor with the peak height varying as (T —T*) ', where
T* is a critical temperature somewhat below the
first-order transition temperature. The measure-
ments on QBT agreed well with the peak shape and

temperature dependence predicted by the Landau
theory. The correlation length is 84 A, 0. 3 C
above the phase transition.

In the present paper we present a measurement
of the anisotropic-liquid-structure factor in the
nematic phase of P- cyanobenzylidene- amino-P-v-
octyloxybenzene (CBAOB). In this material the
smectic-A-nematic-phase transition is second or-
der. The peak height varies as (T —T,) "with y
= 1.49+ 0. 1 and the peak shape is no longer Lo-

TABLE I. Transition temperatures and transition
entropies of CBAOB. The smectic-A-nematic transition
is unobservable on the scanning calorimeter.

Transition

Crystal -smectic A
Smectic A nematic
Nematic-isotropic

Temperature ( C)

73.2
82.8

107.5

Entropy

9.1Rp
& 0.02Bp

0.26Rp

rentzian but falls off faster in the transverse direc-
tion. The longitudinal correlation length is very
long, - 2500 A, 0. 2 C above the phase transition.

The x-ray apparatus has been described pre-
viously. The present sample showed stronger
scattering near the phase transition and it was,
therefore, possible to work at higher resolution;
collimators of 0. 3x3 mm were used in addition to
the 1&& 3-mm collimators used previously.

The sample of CBAOB obtained from Eastman
(No. 923247) was relatively pure and was recrys-
tallized once from ethanol. The transition tem-
peratures were measured with a polarizing micro-
scope equipped with a Mettler FP5 hot stage and
the transition entropies were measured on a
Perkin-Elmer DSC-1B differential scanning calo-
rimeter; these results are reported in Table I.
The smectic-A-nematic transition was unobserv-
able on the calorimeter, which candetectatransi-
tion entropy of about 0. 02RO; this transition is
presumably second order.

The experimental results are presented in Sec.
II and analyzed in Sec. III.
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II. EXPERIMENTAL RESULTS

The nematic phase is uniaxial and the liquid-
structure factor is a function of momentum transfer
parallel to the external field Aq„and transverse to
the external field )Ifi. The sample is aligned in a
field of 10 ko. In the nematic phase the liquid
structure exhibits a peak in the field direction
(qua= 0) for q„= Q. 179 A '; the equivalent d spacing
is 35. 0 A which is equal to the interplanar spacing
in the smectic-A. phase. The intensities measured
at three temperatures are presented in Fig. 1 for
the longitudinal section (I vs q„ for q, = 0) and in
Fig. 2 for the transverse section (I vs q, for q„
= 0. 1V9 A '). The peak intensity (for q„= 0. 1V9 A ',
q|= 0) versus temperature was also measured from
83 to 91 C. The data close to the peak were taken
with the high-resolution 0. 3~3-mm collimators
and the data in the wings (open circles) were taken
with 1&3-mm collimators which gave a factor of
43 greater intensity. The vertical scale in these
figures is the number of countsper 4-min counting
period for the 0. 3&3-mm collimators. The 1&&3-

mm data approach a constant 70 counts /counting
period (after subtracting a background of 30 counts)
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FIG. 2. Intensity versus q& for q„=qo —-0.179 A" for
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FIG. 1. Intensity versus q(i for q~=o for CBAOB in
the nematic phase. The open circles are data taken with
1 && 3-mm collimators at all three temperatures; these
data are independent of temperature. The solid lines are
from Eq. (3) convoluted with the instrumental resolution
fu11ctlon

for j.arge q in both the longitudinal and transverse
directions. This is the random-gas contribution
to the liquid-structure factor and permits one to
determine an absolute normalization for the data.
This constant term has been subtracted from the
data in Figs. 1and 2.

With the 0. 3&3-mm collimators the instrumental
resolution in both longitudinal and transverse di-
rections is adequate at the two higher temperatures;
however at the lowest temperature the peak height
is resolution limited. An attempt to fit these data
with a two-dimensional Lorentzian failed; the data
in the longitudinal direction are accurately Lorentz-
ian but in the transverse direction the intensity
falls off more rapidly than q~~. In order to probe
this behavior, the collimators were rotated 90
(3&&0. 3 mm) to provide high resolution in the trans-
verse direction, and the final collimator was opened
up to 8&&0. 3 mm. In this configuration one is mea-
suring the integral of the liquid-structure factor
over q„but with high resolution in the transverse
direction. These data are shown at the lowest
temperature in Fig. 3. The peak intensity versus
temperature was also measured.
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with e—= (T —T,)/T„y = l. 49+ 0. 1, r/ = 2. 5+ 0. 2, po
=3. 5, n„=10, and a~=0. 6. The absolute normal-
ization is accurate only within a 20% and no and n~
are independent of temperature within a 5%. The
solid lines in Figs. 1-3 were computed from this
expression with instrumental resolution folded in.
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FIG. 3. Intensity versus q& for the 3 && 0.3-mmcollima-
tors for CBAOB in the nematic phase. The solid line is
from Eq. {3) integrated over qI, . Finite slit-height cor-
rections are included here.

We have found a material with a second-order
smectic-A. -nematic-phase transition and have mea-
sured the liquid-structure factor in the nematic
phase. The order-parameter fluctuations are in a
critical regime with peak height eE '4' and longi-
tudinal and transverse coherence length proportion-
al to &

' ~ and &", respectively. The value of y
= 1.49 is somewhat larger than that found for other
phase transitions and the anisotropy of the expo-
nents for the coherence lengths was unexpected.
The hot stage used here was not designed for crit-
ical-point work, and it was not possible to work
closer than 0. 2 'C to the phase transition. The
longitudinal coherence length is 2500 A, 0. 2 'C
above the transition and the longitudinal resolution
is -300 A. It is desirable to have this experiment
repeated with an improved hot stage and with the

III. DATA ANALYSIS

The Landau theory of the smectic-A phase pre-
dicts a Lorentzian peak in the liquid-structure fac-
tor:

(
2~-1

S,=1+ P(T)+n„( "
i

+ (—
with I3 varying linearly with temperature,

P= Po(T T,) . - (2)

In order to fit the data on CBAOB we must modify
this expression in bvo ways. The exponent of q,
must be increased and the exponent of T —T, must
be increased. The dataof Figs. 1-3 are fittednicely
by choosing the exponent of q~ to be 2. 5 rather than
2. The solid lines in these figures show the fit ob-
tained with the parameters given in Eq. (3); the in-
strumental resolution has been folded in. Once
the other parameters have been fixed one can de-
termine P at any temperature from a measurement
of peak height at that temperature. Values of P/a„
determined from the peak height versus temper-
ature for both the 0. 3&&3-mm and 3~0. 3-mm col-
limator runs are shown in Fig. 4. The straight
line is drawn with an exponent of 1.49. Thus, we
find experimentally that the liquid-structure factor
of CBAGB is given by

Sq-—1+ Poe + co — — + Q~~—y C i Wo t'&-i
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FIG. 4. Inverse peak height versus temperature from
the 0.3&& 3-mm collimator data {open circles) and the 3
&& 0.3-mm collimator data {filled circles). The data have
been corrected for instrumental resolution. The solid
line is drawn with a slope of 1.49.
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full resolution of single-crystal techniques. Be-
cause of the resolution problem it was not possible
to separate the fluctuation and Bragg-scattering
contributions in the smectic-A. phase. It is desir-
able to have measurements on this material of
other properties (e. g. , heat capacity and elastic
constants) which are expected to exhibit critical be-
havior.

Some feeling for the domain of validity of the
"classical" Landau" and microscopic" theories
is beginning to emerge from this series of mea-
surements. The phase diagram predicted by the
microscopic theory appears to be qualitatively cor-
rect. In a given homologous series the shorter
members exhibit a wide-temperature range of the
nematic phase and a second-order smectic-A-

nematic-phase transition. Vfith increasing mo-
lecular length the width of the nematic phase de-
creases and at some point the smectic-A. -nematic-
phase transition becomes first order; the entropy
of this transition then increases with increasing
molecular length. Finally the smectic-A-nematic
and nematic-isotropic transitions coalesce. In
the region where the smectic-A-nematic transition
entropy is moderately large (& 0. 5RO), both the
microscopic theory (tested on cholesteryl myris-
tate2) and the Landau theory (tested on octyloxy-
benzylidene-toluidene') work quite well. For very
small transition entropy (cholesteryl nonanoate )
the microscopic theory does not work, and we have
shown that the Landau theory fails for a second-
order transition.
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