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a good approximation for more complicated cases.
In addition, the matrix elements obtained can be
used to study the field dependence of other mo-
ments of the ion-distribution function.
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Wc discuss the relation between the observed spectra in the Rayleigh-Brillouin light-scattering

experiments for molecular fluids and the generalized transport coefficients. For a two-level molecular
Auid undergoing thermal relaxation, we derive the generalized hydrodynamic equations for the
conditions when translational motion is hydrodynamic. For two explicit examples of parahydrogen and

sulphur hexafluoride, we numerically evaluate the wave-number- and frequency-dependent transport
coefficients implied by the generalized hydrodynamic equations. We then critically examine the
implication of these results for the phenomenological analysis of the polarized-light-scattering spectra,

which is commonly employed by most workers in the field. We find that the most important quantity

for the description of such experiments on intermediate-density fluids is a frequency- and wave-number-

dcpendent bulk viscosity rather than a frequency-dependent thermal conductivity.

I. CORRELATIONS IN HYDRODYNAMIC VARIABLES
FOR A TYCHO-STATE FLUID

In the past few years many investigations which
utilize the laser light scattering to probe the dy-
namical processes occurring in liquids and gases
have been reported. One aspect of this topic which
has received considerable attention is the measUre-
ment and description of the polarized Rayleigh-
Brillouin spectrum of molecular fluids. In this
paper we will restrict our discussion to those
molecular systems that can be described by an ap-
proach in which the translational motion of the
molecules is hydrodynamic. This is not a great
restriction, since molecular liquids and all but the
lowest-density regions of gaseous systems can be

described in this manner. For such systems, one
usually modifies the normal hydrodynamic equations
in some manner which is designed to take into ac-
count the coupling to the internal relaxation pro-
cesses. Such modifications are often carried out
by introducing frequency-dependent transport coef-
ficients. The agreement between the dynamic
structure factor S(k, ro) calculated from these equa-
tions and the measured value in the scattering ex-
periment is then used to provide evidence for the
existence of frequency-dependent transport coeffi-
cients. Modifications of the hydrodynamic equa-
tions which involve the introduction of a relaxing
bulk viscosity have been able to adequately de-
scribe the light-scattering experiments on molecu-
lar liquids. The failure of this modification to de-
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scx"lbe tIle exper3. IQents OD IQoleculRr gRses Rt low
density has recently been attributed to the existence
of a relaxing thermal conductlvlty. ' One of the
goals of this paper will be to examine these inter-
pretations 1D some detail.

In the analysis that follows we will only consider
R particularly slIQple exalQpley the thermal re-
laxati. on of a two-state system. A detailed treat-
ment of this system has already been given else-
where. There, the starting equations have been
derived and S(k, ~) has been calculated for parahy-
drogen gas as a, function of density. Consequently,
none of the details given previously need be re-
peated here. However, rather than focus on S'(k, m)
or the roots of the dispersion equations, we will
cast the starting equation into the form of gen-
eralized hydrodynamic equations and interpret the
results on the basis of frequency- (~-) and wave-
number- (k- ) dependent transport coefftclents. In
ctoing this, we will be able to establish clear rela, -
tions between many of the previously proposed hy-
drodynamlclike theories Rnd dellneRte thelx' 1"RDge

of validity The principal x esult of this lnvestlga
tion is that the frequency dependence of the thermal
conducti, vity plays R minor role, Rnd it is the in-
troduction of wave number dependence i D the usual
frequency-dependent bulk viscosity that accounts
for most of the observed effects for the interme-
dlat6 -density fluids.

The general. zed LRDgevlD equatloD Rppx'oprlate
for the description of the thex mal relaxation of the
two-level system. can easily be obtained by using
standard methods. The results can be written in
the form

posed on the selection of the fourth variable (this
will be described more fully in Sec. II); it must be
chosen to be orthogonal to the conserved hydrody-
namic variables. Hence, we define u(k) as

u(f) = po[u„c(k) —c,T(f)],
where p ls the equilibrium IQRss density e ls the
internal specific heat per unit mass, and u~ is the
difference of the internal energies of the two
states. The linearized concentration fluctuation is
given by

c(k) = [poop)(k) —pgopo (k)]/po,

where p (k) is the mass-density fluctuation for
molecules in state e and p~0 is the corresponding
equilibrium quantity. Other variables propox'tional
to u(k) could have been selected, but u(k) is just
the orthogonalized internal-energy-density variable
used in Ref. 5.

For convenience the 9R(k) matrix in Eq. (1.1) is
given in the Appendix along with a list of the ap-
proximations made in obtaining the explicit form
of SR(k) used in this work.

In the remaining part of Sec, I we will be con-
cerned with equations which describe the relaxation
of the conserved variables in the presence of an in-
ternal relaxation process characterized by u(f).
We denote the collection of variables (p(k), T(f),
Z(f) f by the vector B(k). Using the solution for
u(k, f) in the remaining equations, we obtain, after
Laplace transformation in time„ the result

H(f, «)-. [« I + M(i, «))-' [H(f)+ I (f, «)],
where M (k, «) is given by

= —% (k) A(k, f)+ F(f, f),

ter a Markov approximation to the damping ma-
trix has been made. The vector A(f) contains a
collection of variables, [p{k), T(K), J(f), u{k)],
and F(l ) ls the corresponding random force vector
Three of the variables are the normal conserved
hydrody»«ic va»abies; p(k), T(k), and ~(f) are
the spatial Foux'ier transforms of the total mass-
ctensltyy temperatux'6, RDd longltudlnal momentum-
density fluctuations, respectively. For the two-
level systexn under consideration, i. e, , one in
which the translational motion is hydrodynamic,
little difficulty is encountered in specifying the
nature of the fourth variable; it must be a variable
which characterizes the relative populations of. the
internal. states„There is still a, certain degree of
flexibility, since many variables of this type can
be constructed [e. g. , one could choose c(f), the
concentration fluctuation, or u(k), the internal-
er.ergy-densi. y fluctuation]. However, if one is in-
terested in constructing extensions of hydrodynamic
equations „RD RM1I;lonal constraint must be lm-

&'x(u, «)
~0ev

— a
' '&(+, «) '*

p0ev &

—c)po""{'') ""' [«+~(r)] '

/ A.+er ev
b(k) = (Dc„„po+— ' +

Pocv g cv cv rs

ill, ~ &(&, «) —[~-q++q„(u, «)]
P0 K' K. P0

(1.5)
The frequency- and wave-number-dependent quan-
tities in the above equation are defined by

( )
k poc~cv (X~/poc„- D)

c„[«+a(k)]

~(~ ) 1
0'c, (X*/Po c„„—D)

c„[«+5(k)]
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In Eqs. (l. 5)-(1.9) X is the thermal conductivity,
X=)*+p, c~D, where X* is the translational contri-
bution, and D is the self-diffusion coefficient. c„„
is the contribution to the specific heat per unit
mass when internal degrees of freedom are frozen,
with c„=c„„+cz. g,* and g„* are those parts of the
shear and bulk viscosities, respectively, when the
internal degrees are frozen, while z and n~ are
the isothermal- compressibility and thermal- expan-
sion coefficients, respectively. The low-fre-
quency sound speed is co, and the high-frequency
value is denoted by c„.

The vector f (k, s) in Eq. (1.4) is related to the
elements of F(k, s) and the initial value u(k), as

Ej k, g 0

f (k, s)= Ez(k, s) )

-( k~(L) —X*/poc„„)/(poc„)

F,(f, g) / i a„)/(p 0) )
u(k)+ F,(k, s)

s+ 6(k)

Note that if u(k) were not selected to be orthogonal
to B(k), f (k, s) would not be orthogonal to B(k).
However, since (f (k, s) B(k) ) = 0, where we have
denoted the average over the equilibrium ensemble
by ( ~ ~ ~ ), the equation describing the relaxation of
the matrix of conserved variables can be written
in the simple form

( B(k, e) B(k)')( B(k) B(k)') '= [s I + M(k, s)] '.
(1.11)

In the polarized-light-scattering experiment
(Rayleigh-Brillouin), one probes the fluctuations
in the scalar dielectric coefficient 5g. In calcu-
lating its autocorrelation function for one-compo-
nent systems, one usually expresses 5& in terms
of the fluctuations in two thermodynamic variables,
viz. , 5p and 5T, and then makes the approximation
that, owing to the smallness of the thermodynamic
derivative (&s/BT)„ the term in 6T car. be ne-
glected. Then the measured line shape is propor-
tional to the double Fourier transform of the den-
sity autocorrelation function S(k, &o). If the one-
component fluid under consideration is a molecular
fluid, the above identification also implies that the
molecule will have the same polarizability, re-
gardless of its internal state.

The calculation outlined earlier using the set of
variables {p, T, t', u] leads to a definite result for
S(k, ~). Since the variables T, J', and u are or
thogonal to p, S(k, co) does not depend on their
initial values. In our previous work ' we have
used three other sets of variables, {p„p~, 8, Z},
Q„g, 8, J], and Q„p, 8', Z]. All these sets are
linear combinations of the set {p, T, t, u] con-'
sidered here. Moreover, the linear combinations
are such that the orthogonality with respect to the

total density variable p is maintained in the initial
and the contracted descriptions. As a conse-
quence, regardless of the initial value chosen for
the remaining variables, the results for S(k, (0)
using all four sets of variables are identical. The
orthogonality of the density variable is an impor-
tant requirement in the calculation for S(k, (d) using
any extended set of variables in a generalized hy-
drodynamic theory.

It is important to keep in mind the fact that the
starting equations of the present treatment have
been derived (see Appendix of Ref. 2) and are ob-
tained by introducing certain well-defined approxi-
mations in the exact microscopic equations of mo-
tion. These starting equations are not equivalent
to those assumed by Mountain in his theory which
introduces a relaxing variable (M~ theory). As a
consequence, S(k, &o) calculated by Mountain [Ref.
6, Eqs. (21)-(23)]is different from that obtained
using any of the four sets of variables just discussed.
This difference has previously been discussed by
us both analytically and numerically for the case
of parahydrogen gas, From Fig. 2 of Ref. 2, we
note that for the two-level system, S(k, &o) implied
by Eqs. (1.11) and (1.5) agrees with the result of
a translationally kinetic calculation, ' whereas that
implied by the M, theory disagrees.

II. GENERALIZED HYDRODYNAMIC EQUATIONS AND

(k, u )-DEPENDENT TRANSPORT COEFFICIENTS

Within the range of validity of the Markov ap-
proximation, Eq. (1.1) and the corresponding con-
tracted Eq. (1.4) describe the time evolution of
the microscopic fluctuating variables A(k, t) and

B(k, t), respectively. From Eq. (1.4), we note
that if the translational motion is hydrodynamic,
the lag of the internal motion provides the memory
in the evolution of the hydrodynamic variables as
given by the nonhydrodynamic form of the elements
of M(k, s). Moreover, f (k, s) depends not only on
the random force F(k, s), but also on the initial
value of the internal-energy density u(k).

In order to deduce the generalized hydrodynamic
equations, we have to average the microscopic
equations given in Eq. (1.4) over a nonequilibrium
ensemble which corresponds to the usual hydro-
dynamic description. This implies an ensemble in
which only the fluctuations of the three hydrody-
namic variables are constrained to have the speci-
fied initial values B(k). In this ensemble, the ini-
tial values for the variables orthogonal to the hy-
drodynamic variables [u(k, t) is such a variable]
are not constrained and are assumed to be random.
When averaged over such an ensemble, the average
value of u(k) becomes zero. The random forces
F(k, s) are orthogonal to B(k), and thus they also
contribute zero to the nonequilibrium ensemble
average. Thus, if we denote the nonequilibrium
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ensemble average ( ~ ~ ~ )„, Eq. (1.4) becomes

( B(k, s))„=[s I + M (k, s)] '(B(f))„. (2. 1)

These are the generalized hydrodynamic equations
for the macroscopic hydrodynamic variables
(B(k, s))„. The relaxation matrix M (k, s) is given
in Eq. (1.5); from Eq. (1.5), we can deduce the
generalized transport coefficients. These are
given in Eqs. (1.6)-(1.9). The important conclu-
sion emerging from these equations is that the
transport coefficients depend on wave number as
well as frequency. We shall show later that (i)
for the two-state model, the wave-number depen-
dence can be quite significant in practice, and (ii)
the (k, ar) dependence in the elements M23 and M»
through the Burnett-type transport coefficient G
is the feature which is absent in the previous phe-
nomenological treatments.

It should be clear from the discussion in See. I
that it is not necessary to use the above general-
ized hydrodynamic equations in the interpretation
of light-scattering experiments. This is due to
the lack af sensitivity of these experiments to the
temperature and momentum-density fluctuations.
By choosing for A(k) any set of variables which is
a linear transformation of the set fp, T, J, u]
and making arbitrary assumptions about the initial
values of the variables orthogonal to p(k), the
same correct expression for S(k, &u) is obtained.
A particular example of this procedure is de-
scribed in Ref. 2, where an equation which de-
scribes the relaxation from an initially constrained
state [equivalent in the present notation to setting
c(k)=0] is used to calculate S(k, &o). The calcula-
tion in Ref. 2 uses a nonequilibrium ensemble that
is different from the nonequilibrium hydrodynamic
ensemble used in deducing Eq. (2. 1). Since c(k)
is orthogonal to p(k) this constraint has no effect
on the calculation of the light-scattering spectrum.
Hence„many relaxation equations using a variety
of nonequilibrium ensembles can provide a correct
description of the density fluctuations. However„
only the generalized hydrodynamic matrix M(k, s)
in Eq. (1.5) can be used to calculate all the ele-
ments of the correlation function matrix
(B(k, &) B(k) ). In addition it is only this matrix
which will reduce ta the normal hydrodynamic ma-
trix whenterms upto order k are retained and g is
set equal to zero. Using any other set of variables,
one can get a relaxation matrix with (f, s)-depen-
dent elements; however, these cannot be inter-
preted as generalized transport coefficients.

In recent years, it has become customary ' ' to
analyze the light-scattering spectrum from molec-
ular fluids by using hydrodynamic equations with
frequency-dependent transport coefficients. There
are many hazards in such a phenomenological ap-
proach. For example, in the correct generalized

hydrodynamic equations given in Eq. (2. 1), there
appear the off-diagonal elements M» and M» which
depend on frequency and wave number. These are
analogous ' to the generalized Burnett transport
coefficients of the dilute-gas kinetic theory and
describe the coupling between the energy- and mo-
mentum-density fluctuations. In the theories where
frequency-dependent transport coefficients are
phenomenologically introduced in the ordinary
hydrodynamic equations, there is no way to intro-
duce these caupling effects unless one incorrectly
introduces frequency dependence in equilibrium
thermodynamic derivatives like specific heat.
However, such coupling transport coefficients have
been found to appear naturally in previously derived
generalized hydradynamic equations. '

In most of the previous studies which use fre-
quency-dependent transport coefficients to analyze
light-scattering spectra, not only are the effects
due to (k, &u) dependence in the elements M» and

M32 absent, but also the wave-number dependence
in the usual transport coefficients is neglected.
The latter is quite crucial in calculating the cor-
rect line shape for some ranges of density and
fr equency.

The frequency and wave-number dependence in
the transport eoeffieients can arise because of two
different effects. One is purely due to the possi-
bility of the translational motion being kinetic. In
such a situation, a kinetic equation is usually more
apprapriate as compared to the generalized hydro-
dynamic description. In the translationally hydro-
dyriamic region, the nonhydrodynamic nature of
the internal molecular motion provides the (k, ~)
dependence in the transport coefficients. In par-
ticular, for the two-state model, there are two
competing means available to the fluid to average
out the hydrodynamic fluctuations; one which makes
an excited molecule diffuse away from a given posi-
tion, and another which makes it decay to the
ground state at the same position. Owing to the
former mechanism, the relaxation rate becomes k
dependent. Equation (1.9), which gives the k-de-
pendent relaxation rate for all the transport coeffi-
cients in the two-state model, makes the abave
discussion quantitative. Provided that (i) relaxa-
tion time Tz is so small that 7'~ dominates the re-
laxation rate 5(k) and (ii) the scattering experiment
is performed for such small k values that the terms
of order k and higher are negligible in various
elements M&; in Eq. (l. 5), then Eq. (2. 1) reduces
to the form in which there is no wave-number de-
pendence in the transport coefficients X, G, and

g„, and only g„retains the frequency dependence.
This limit gives the form for 8(k, ur ) which is
identical to the weak-coupling theory used by
Mountain. These conditions are fulfilled in light-
scattering experiments on some liquids where the
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their variation with the dimensionless variable
y =P/(kvor), ), where vo = 2ks T/m. Experimentally,
the same variation can be seen either by changing
k (scattering angle) or the pressure P. The latter
variation is usually more convenient while working
with low-density gases. Thus, in the figures
both the y parameter and the pressure are shown
as abscissas. The transport coefficients are
plotted after dividing by their hydrodynamic values,
and the relaxation rate is rendered dimensionless
by dividing with keo. For comparison, the range
of values that &u/kv, takes in a typical Rayleigh-
Brillouin experiment is between 0 and 1, 5. It is
assumed that in the pressure range shown, B and

7~ are inversely proportional to density. For
simplicity in calculations, the ideal-gas law is
also assumed to hold. But the corrections to the
ideal-gas law are small for both pH~ and SF6 in the
pressure range of interest and do not change the
quantitative conclusions.

The frequency dependence of the three general-
ized transport coefficients (found by putting s = —i&@

and taking the real part) is Lorentzian with the
relaxation rate fixed by the values of )|, and p or y.
This relaxation rate for both pH2 and SF6 goes
through the characteristic sharp minimum, making
the k dependence of the relaxation rate quite im-
portant in the description. Turning to the varia-
tion of the transport coefficients, one notes again
the qualitative similarity in the results for pH~
and SF6. The change in the bulk viscosity is much
greater than that in either the thermal conductivity
or the coupling transport coefficient t". The vari-
ation in G is greater than that in A. . These conclu-
sions are valid for the variation as a function of
k, p, or y at fixed + on the one hand, and also for
the variation as afunction of + withfixed k and P. The
transport coefficients 1, 6, and q„ implied by all
three theories of Mountain"' would yield a
straight line with constant (y-independent) value
of unity in both the figures, whereas the relaxation
rate would be a straight line passing through the
origin and having a slope determined by 7„alone.

The explicit numerical calculation as well as the
general discussion prior to the calculation has
been made to demonstrate our conviction that
ad hoc extension ' ' of ordinary hydrodynamic
equations using only the frequency dependence in
some or all of the hydrodynamic transport coeffi-
cients to analyze the polarized-light-scattering
experiments from molecular fluids may lead to

For completeness, we present the elements of
the 3R(k) matrix which forms the starting point of
the analysis presented in this paper. As men-
tioned in the text, this matrix is just a linear
transformation of the corresponding matrix pre-
sented in the Appendix of Ref. 2, which has been
derived from the microscopic generalized Langevin
equation by making a Markov approximation. If
we let v, ~ =Dr= f„,=0 in ~s. (A22)-(A40) of Ref.
2 (where the approximations are discussed in de-
tail) and let u denote the matrix which transforms
the set of variables fp, (k), p2(k), 8(k), J(k)f to the
set (p(k), T(k), J'(k), u(k)) then

m(k) =~(SR(k))„.. .~-'.
The elements of K(k) are

~~(k ) = K,p (k) = SR2, (k) = Ã4g(k) = K)4(k) = 0, (A2)

(Al)

SR,3(k) = —ik,

SR»(k) = k'~/p, c„
SR2, (k) =- ik Tonr/poc„x,

SR„(k)= —k'(X*/p, c„„—D)/p, c„,
%3 g (k ) = —ik/po x

SR„(k)= —iknr/x,
SRss(k) = (k'/Oo)( s n.*+n.*),

%34 (k ) = ak n r /Iooc„„x

%42(k) =k'p, e,(D- X/p, cv),

SR43(k ) = 'Lkc~ Tpn r /c&ppK &

X+cI c„
SR44(k)= Dc„„pa+ I +-

pocv cv cv 7z

(AS)

(A4)

(A5)

(AS)

(A7)

(AS)

(AO)

(Alo)

(A11)

(A12)

misleading results. From the present discussion,
it is clear that much of the effect attributed to a
relaxing thermal conductivity can actually be
traced to a relaxing bulk viscosity with a modified
k-dependent relaxation time. We also note that
the (k, &u) dependence in the higher-order Burnett-
type transport coefficients cannot be obtained by a
phenomenological extension of the hydrodynamic
equations.
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Measurement of Smectic-A-Phase Order-Parameter Fiuctuations near a Second-Order
Smectic-g —Nematic -Phase Transition
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The anisotropic liquid-structure factor of p-cyanobenzylidene-amino-p-n-octyloxybenzene has been

measured in the nematic phase using Cu Kot x rays. This material exhibits a second-order phase

transition to the smectic A phase at T, =82.8'C. The liquid-structure factor shows a non-Lorentzian

peak at a wave number of q0=0.179 A ' (equivalent d spacing 35.0 A) of the following form:

S,=1~[3Ser~10 [(q~~ qo)lqe]—'+06(q~/q )"}',where e=(T-T )tT, 7=1.49+01, r1=2 6+02,
»d &q~~ (&q, ) are the momentum transfers parallel (perpendicular) to the orienting field.

I. INTRODUCTION

The author' has recently published a measure-
ment of the anisotropic-liquid-structure factor in
the nematic phase of P-n-octyloxybenzylidene-P-
toluidine (OBT), a material which has a first-order
nematic- smectic-A- phase transition. The liquid-
structure factor is peaked in field direction and at
a scattering angle equal to the smectic-A Bragg
angle. The peak shape is Lorentzian and the peak
height grows as one approaches the transition to
the smectic-A phase. This pretransition phenom-
enon is physically due to small regions of the
nematic fluctuating into a smectic-A-like config-
uration. Mathematically one describes the phe-
nomenon using a Landau theory of the phase tran-
sition and calculating the scattering due to order-
parameter fluctuations. The Landau theory is due
to the author and to deGennes. ' The theory pre-
dicts a Lorentzian peak in the liquid-structure fac-
tor with the peak height varying as (T —T*) ', where
T* is a critical temperature somewhat below the
first-order transition temperature. The measure-
ments on QBT agreed well with the peak shape and

temperature dependence predicted by the Landau
theory. The correlation length is 84 A, 0. 3 C
above the phase transition.

In the present paper we present a measurement
of the anisotropic-liquid-structure factor in the
nematic phase of P- cyanobenzylidene- amino-P-v-
octyloxybenzene (CBAOB). In this material the
smectic-A-nematic-phase transition is second or-
der. The peak height varies as (T —T,) "with y
= 1.49+ 0. 1 and the peak shape is no longer Lo-

TABLE I. Transition temperatures and transition
entropies of CBAOB. The smectic-A-nematic transition
is unobservable on the scanning calorimeter.

Transition

Crystal -smectic A
Smectic A nematic
Nematic-isotropic

Temperature ( C)

73.2
82.8

107.5

Entropy

9.1Rp
& 0.02Bp

0.26Rp

rentzian but falls off faster in the transverse direc-
tion. The longitudinal correlation length is very
long, - 2500 A, 0. 2 C above the phase transition.

The x-ray apparatus has been described pre-
viously. The present sample showed stronger
scattering near the phase transition and it was,
therefore, possible to work at higher resolution;
collimators of 0. 3x3 mm were used in addition to
the 1&& 3-mm collimators used previously.

The sample of CBAOB obtained from Eastman
(No. 923247) was relatively pure and was recrys-
tallized once from ethanol. The transition tem-
peratures were measured with a polarizing micro-
scope equipped with a Mettler FP5 hot stage and
the transition entropies were measured on a
Perkin-Elmer DSC-1B differential scanning calo-
rimeter; these results are reported in Table I.
The smectic-A-nematic transition was unobserv-
able on the calorimeter, which candetectatransi-
tion entropy of about 0. 02RO; this transition is
presumably second order.

The experimental results are presented in Sec.
II and analyzed in Sec. III.


