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We present a general theory for the calculation of the single-particle time-correlation func-
tion c.(t) = ([a, a t(t) i)'which is the canonical average of the commutator between the particle
annihilation a and creation af (t) at time t. The theory is based on the projection-operator
method. The complex spectral function a. (co) is expressed in terms of the natural frequency
of oscillation Q and the width function p(co). From the analytical property of z (co) in the com-
plex ~ plane for the weak-coupling limit, the long-time behavior of the correlation function
n(t) and the relaxation functions is obtained. For a harmonic oscillator immersed in a heat
bath, the perturbation calculations for 0 and j (v) are given in the power of the coupling con-
stant. By means of this series, the spectral function Q, (co) for a single normal mode of an an-
harmonic system is explicitly calculated as a function of the frequency ~ and the temperature
T. As a possible application of the results the electrical conductivity due to a localized mode
is discussed.

I. INTRODUCTION

Statistical-mechanical theories of transport prop-
erties of quantum-mechanical systems are most
conveniently described in terms of the single-
particle time-correlation function or the Green's
function. ' Actual calculation of this function,
however, often requires tedious combinatorial and
diagrammatic arguments. Another approach to the
problem is to use the projection-operator method
first developed by Zwanzig and later by others„
In particular, Mori has shown that this method
applied to a dissipative system leads to the gen-
eralized Langevin equation of motion of a dynamical
quantity. The time correlation of the random force
determines the damping function y(t) of the equa-
tion.

The purpose of the present work is to calculate
the single-particle time-correlation function n(t)
by means of the projection-operator method. The
essential feature of the theory is based on the fact
that the projection-operator method provides the
spectral function in terms of the natural frequency
0 and the width function y(~), which is the imagi-
nary Laplace transformation of the damping func-
tion. In a theory of impurity-induced infrared
absorption profiles in condensed systems, the
authors used a similar approach with the simplify-
ing assumption of the linear coupling of the impuri-
ty mode to the bath. As pointed out by Greer and
Rice in their recent review article, this approach
shifts the emphasis of the calculation from the
determination of the frequency dependence of the
absorption-profile function or the spectral function
to the determination of the width function whose

frequency dependence is weaker. This is also
precisely what is accomplished through the use of
the variational method introduced by Sehwinger
for calculating the frequency-dependent Green's
function.

The present projection operator [Eq. (2. 5)] is
quite different from those previously introduced
in the sense that it is directly based on the funda-
mental commutation relation [Eq. (2. 2)] in quan-
tum mechanics. It does not require an additional
"normalization" which makes the operator idempo-
tent since the commutation relation itself auto-
matically takes care of it. The operator is so
effective that from the simple property of 0 being
positive we can deduce the analytical properties of
the spectral function n(&u) in the complex &u plane
(Sec. II). The pole of Z(&u) in the weak-coupling lim-
it determines the l.ong-time behavior of the single-
particle correlation o.'(t) and the various response
and relaxation functions between the position and
the momentum of the particle (Sec. III). These
functions play a fundamental role in many aspects
of transport phenomena. In particular, they de-
scribe directly the stochastic theory of Brownian
motion.

Next, we shall consider a harmonic oscillator
immersed in a heat bath. With the assumption of
weak coupling we shall develop a perturbation
series for the natural frequency 0 and the damping
function y(t) up to the order of X, where X is the
coupling constant. In the special case when the
coupling is linear with respect to the normal co-
ordinate of the oscillator, the random force re-
duces to the coupling force. This means that the
damping function y(t) becomes the autocorrelation
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function of the coupling force, which is a result
previously obtained by Lax' and Wilson, King,
and Kim' (Sec. IV). At this stage, the results are
still general and applicable to many systems.
With the further specification of the Hamiltonian to
that of an anharmonic system of small vibrations
we obtain the explicit form of the complex spec™
tral function n(w) as a function of &u and tempera-
ture. The actual calculation is carried out up to
the quartic order in the normal coordinates in the
power-series expansion of the coupling potential.
The extension to the higher-order terms does not
require much further calculation since the result
is given by a general expression of the product of
the uncoupled correlations to which all the re-
quired terms are reduced by the Wick theorem. "
As a possible application of the results the elec-
trical conductivity due to a localized mode is dis-
cussed.

Px = at ([a, x]), (2. 5)

where x stands for an arbitrary operator. From
the basic commutation relation, [a, at]= 1, the
projection operator thus introduced indeed satis-
fies the fundamental condition,

(2. 6)

An analogous projection operator may be intro-
duced whenever there exists a basic commutation
relation. For example, from the commutation
relation between the coordinate Q and its conjugate
momentum Q, [Q, Q].= ih, where k is Planck's con-
stant divided by 2m, we have a projection operator
defined by

P'x = Q([Q, x])//i tt . (2 7)

The present operator is quite different from that
of Mori in the sense that it is not possible to
make the bracket between A and B,

II. BASIC THEORY g, B]= ([A, B])—, (2. 8)

n(t) = ([a, at(t) ]), (2 1)

where ( ~ ) is the average over the canonical en-
semble, a and a~ are the annihilation operator and
the creation operator of the "particle, " a~(t) is the
Heisenberg operator at time t, and [A, B] is the
commutator between A. , B. For a boson

[a, at]=1.
Even though the present theory applies equally well
for fermions, in which case the bracket is taken
to be the anticommutator, we shall limit ourselves
to Bose-Einstein statistics for definiteness.

In the actual calculation of the transport proper-
ties we need the Laplace transform n(&u),

n(&u) = J n(t)e ' ' "dt, (2. 3)

where & is an infinitely small positive quantity.
As is well known, the real part of n(+) divided by
m is called the spectral function and has many im-
portant properties. We may write down some of
the properties for later use":

Hen(~) ( n(t) 3~~ ei ~i dt--(d

2m g

Ben(~) &—=0 for =0, (2. 4)

Hen(~)
d

71'

In order to calculate n(t) by means of the projec-
tion-operator method, we introduce a projection
operator P defined by

We define the sin. gle-particle correlation function
of the form

have all the necessary properties of the scalar
product where At is the Hermitian adjoint of A. .
For instance, (A, A] is identically zero. In spite
of this the present operator is quite effective in
the practical calculation of n(t).

Once the projection operator P is introduced, it
is a simple matter to obtain the equation of motion
of n(t), following Mori and Zwanzig,

n(t) =iQn(t) —J y(s) n(t —s)ds, (2. 9)

0 = ([a, Ja~]),

y(s) = ([f f(s)]) .
Here J is the Liouville operator defined by

Ix =- (I/O) [H, x],
f(s) is the random force defined by

f(s)= —e"~ P' '(1 —P)I.at

(I P)eiI n P)sf at

(2. 10)

(2. 11)

(2. 12)

(2. 13)

y(s) =y(-s)* . (2. 15)

and f is the adjoint of f(0). The random force is
obviously "orthogonal" to a~ since

Pf (s ) = a ([a, f(s )])= o .

Mori is the first to identify f(s) as the random
force in the generalized Langevin equation. We
note, however, that the above definition of the ran-
dom force is taken differently from Mori's by a
factor —i to ensure the physical significance of the
concept [see Eq. (4. 12)]. If the Hamiltonian is
invariant under time reversal, the symmetry of
the damping function y(S) follows:
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The natural frequency 0 is a positive quantity,
since it can be expressed as an integral of a posi-
tive quantity,

Q= h f &a(-ibad)a )d$ & 0 .
0

(2. 16)

Now, the Laplace transform of the equation of
motion yields

n(co) = —i/[co Q——iy(co)], (2. 17)

where y((o) is defined analogously to n(+), defined
in Ell. (2. 3). We may call y(~) the width function
since its real part describes the width of the spec-
tral function. Separation of y(&u) into the real and
imaginary parts gives

r(~) = y&(~) ir2—(~) . (2. 18)

These two parts are related by the well-known
Kramers-Kronig relation. Substitution of this into
n(&) gives

v=Q+y(Q),
I' = y, (Q) & 0 .

(2. 24)

(2. 25)

The position Q and the momentum Q of a parti-
cle are related to a and a~ as follows:

It is well known that one could make an analogous
argument in terms of the analytical properties of
the one-particle Green's function. The beauty of
the present approach is that it gives the width ex-
plicitly in terms of the random force. Later, in
Sec. IV, we shall calculate the frequency depen-
dence of the width function of a single normal mode
of vibration for a system of small oscillation„ In
Sec. III, however, we shall calculate the so-called
response function and the relaxati. on function be-
tween the coordinate and the momentum from the
long-time expression of n(t) given by Eq. (2. 23).

III. RESPONSE AND RELAXATION FUNCTION FOR
ONE PARTICLE

R n( )
rg(~)

[~- Q- r2(~)]'+yi(~)
—&u+ Q+ y~(&u)Imn(~) = [~- Q- r~(~)] +r&(~)

'8 Z

(2. 19)

(2. 20)

(a+a~),

(a —a'),
(3. 1)

From the first of these and the sign of the spectral
function given in Ell. (2. 4) we have

y, (~)= 0 for ~= 0. (2. 21)

The direct proof of this important property from
the definition of y(ur) is not very simple since the
random force f(t) does not obey the usual dynami-
cal law of motion.

Now we are ready to discuss the analytical prop-
erties of n(&u). So far, all the results obtained
above are exact and independent of the specific
form of the Hamiltonian. If we assume, however,
that the interaction energy between "particles" is
small compared to the characteristic energy of os-
cillation, Q» ly(~) (, we may conclude that the
pole of n(a&) from Ell. (2. 1'7) must be located in the
vicinity of ~. Thus in the first approximation we
have for the location of the pole &~

(d~ ——Q+ ir(Qpp)

where &0 is the intrinsic frequency of the particle
which may or may not equal the natural frequency

The results which follow do not depend on ~0
explicitly.

The response function between Q and Q is given
by

0' (t) = (1/'@) &[Q, Q(t)]& = R (t) (3. 2)

From the long-time behavior of n(t) we have im-
mediately

P, (t) = e 'cosvt, I't »1 . (3.3)

By differentiation with respect to t we obtain the
autocorrelation function of momentum,

$2(t)= . &[Q, Q(t)]) = e (rI scvot+vsinvt),
(3. 4)

and by integration we have the autoeorrelation func-
tion of position,

= Q+ ra(Q)+ir~(Q), (2. 22) n(t') dt'

which is in the upper half of the complex & plane,
since Q is positive [from Ell. (2. 16)] and, accord-
ingly, y, (Q) is also positive [from Ell. (2. 21)7.
This means that in the weak-coupling limit the
amplitude function Ben((u)/v is Lorentzian. From
the inverse Fourier transform of Eq. (2. 4) we ob-
tain the long-time behavior of the correlation
function n(t),

n(t) e$vt-rl tl (2. 23)

where l~ l denotes the absolute value of t and

rt
(v sinvt —1"cosvt) .

v +I' (3, 5)

&A, B(t))= p 'f &A(-ibad)B(t))dg

= (imp) 'f"
&[A, a-(t')])dt',

assuming that the zero-frequency component of

(3.6)

The relaxation function of A and 8 is defined by
Kubo~ as follows.
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A. (t) or B(t) is zero. From the last formula we ob-
tain the following relaxation function, s:

C'o(t) = &Q, Q(t)& = t) ' 4o(t')«'

where qo and q~ are the coordin3tes of the harmonic
oscillator and the bath molecules. In what follows
we use the Liouville operators I, I, and I', cor-
responding to H, H, and V, respectively. From
the assumed Hamiltonian we immediately obtain

F, p- e "' [(v'- 1') cos vt+ 2 vF sinvt],
(3.7)

(3.8)

LQ = h)OQ + XV

.Lu = —boa —XV',

where —V' is the coupling force defined by

(4. 4)

(3.9)

These quantities enter into the various aspects
of the tran. sport properties. For example, these
describe the stochastic theory of the Brownian
motion of a simple-harmonic oscillator. Similar
results are obtained by Mori and others. 4 ~

Their results appear different from the above by
an order of 1'/v. The reason for this is that Q

and y(t1) are expressed in terms of the commutator
in the present work, whereas in Mori's work 0
and y(A) are expressed in terms of the Kubo scalar
product given by Eq. (3.6).

The results given above are only their first ap-
proximations. We can improve the results starting
from the more accurate calculation of the pole of
n(&o). In many applications, however, we need
only the Fourier transforms of these functions,
which can be expressed in terms of n(&u). For
example, for the Laplace transform of Q, (t) de-
fined by Eq. (3. 2) we have

P,((o) = j P,(t)e ' ' "dt = ,' [n((u)+ —n*(-co)].
(3. 10)

If necessary, we can calculate P,(t) from the in-
verse transform of this. We shall use this formu-
la in Sec. V.

IV. PERTURBATION SERIES FOR Q AND y(t)

H=H +XV,

H =Ho+H~, (4 1)

where Ho, H» and XV represent the harmonic
oscillator, the heat bath, and their coupling. Ho
is given by

As an application of the basic theory developed
in Sec. II we shall calculate the one-particle cor-
relation fun. ction for a harmonic oscillator immersed
in a heat bath. The system Hamiltonian may be
described by

&p"
yP

a ~qo
(4. 5)

which has the dimension of frequency. Now we
are ready to calculate the natural frequency 0 and
the damping function y(t).

A. Natural Frequency

From E@s. (2. 10) and (4. 4) we obtain

Q = &[a, La~]& = ~o+ X&P'&, (4. 6)

That is, the shift is given by the average gradient
of the coupling force —V'. Accordingly, in the
special case of linear coupling, the natural frequen-
cy ~ reduces to 0. The above result is still
exact. If we use the perturbation theory to reduce
the canonical average ( ~

& into the canonical
average &

~ ~ )o of the uncoupled system described
by H, we obtain

0 —(so= X&V"&o- X J &V(-ibad) bV"&od$+0(X'),

h
(4. 8)

6+II 'yll &y/I&

B. Damping Function y(t)

According to Eq. (2. 11), the damping function
y(t) is given by the correlation of the random force
f(t), w»c»»e»«d to the true coupling force
—V' as follows:

(4 8)

where use has been made of Eg. (4. 4).
FoU.owing the perturbation scheme developed in

a previous paper, we separate the projector I' in-
to bvo parts;,

Ho = (ata+-';) k(uo, P=I' + XP', (4. 10)

where &do is the intrinsic frequency of the harmonic
oscillator. To proceed, it is safe to assume that
the coupling potential V can be expanded as a power
series in qo,

V(qo, qe) = Z b„(qs)qo qo=a+at
n=o

(4. 11)

which obviously commutes with L . Substitution
of Eq. (4. 10) into Eq. (4. 9) yields

f(t)= —xe" '(1-Po) V'+ .O(x')
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~(t) = ~'A[V', V'(t)f&. —"""&V"&P.O(~'),
(4. 13)

where —V'(t) describes the uncoupled motion of the
fol ce

V'(t) =e' ' V' (4. 14)

To see the significance of the second term we take
the Fourier transform to obtain the width,

ry oo

&[V' V'(t)j& e *"'«
4 a 2e

—225(&u —~0) &V")20 ~ O(X) . (4. 15)

One notices immediately that the second term di-
verges at &d= &o. However, according to Eq.
(2. 21) y, (e) is positive when &u&0. This means
thai the first term must contain a divergent compo-
nent at u= uo which cancels the second term. This
is actually the case. When &V"&Do0, V'(t) must
depend on q0(t), which contributes a Fourier com-
ponent with the frequency wo.

For further calculation of the comPlex soidth.

function y(v), it is necessary to give the explicit
form of H~ and V'. Previously we have calculated
the impurity- induced inf rared absorption for an
imperfect crystal system and obtained a similar
but less general width function with the assumption
of linear coupling. In that calculation, however, we
neglected the terms &a2a2(t)& and &22a(t)&, so that
the final result is valid only in the vicinity of ~=: ~o.

In order to show the effectiveness of the present

= —X(e' ' V' —e' 0'a2&V"&0)+O(X') . (4. 12)

In the special case of linear coupling, the random
force coincides with the coupling force up to the
order of X. Substitution of the above result into the
definition of y(t) given by Eq. (2. 11) yields

method, which is based on the perturbation series
of 0 and y(t) given by Eqs. (4. 8) and (4. 13), we
shall calculate the width function y(v) and the fre-
quency G of a single normal mode of vibration for
a system of small vibration with higher-order cou-
pling.

V. SPECTRAI. FUNCTION n(u) OF A SINGLE NORMAL
MODE

Consider a system of small vibration. Then the
Hamiltonian introduced in Eq. (4. 1) takes the form

H = Z (a 222; + 2) I2+;, (5. 1)

N

V = —Z V„,&q'„q, q~
rSP=O

N

+ Z V„q2„q„q~qpq„+ ' ~, (5. 2)TSPM P S P Q

where

q; = a&~+ a&, i=0, 1, . . . , X

and a; and a~ are the annihilation and creation
operators of the ith normal mode of vibration and
E is the total number of the normal modes. In the
calculation which follows we shall take only the
cubic and quartic coupling in q', neglecting the
higher-order terms in the coupling potential V. As
before, we write simply a and a for ao and ao.
According to Eq. (4. 13), the damping function y(t)
for the zeroth phonon takes the form

y(t) = &5", V'(t)]&. -e * o'&V"&'. , (5. 4)

where we have neglected the O(A. ') term and set I,
= 1. If we use Wick's theorem' it is a simple
matter to calculate this. From the explicit form
of the potential V given by Eq. (5. 2) we can write
y(t) in the following compact form:

y(t) = Z Z V0,„„22„+— C, (t) + — Z (V0„,) C„,(t)y — Q (V2,q) C„,~(t) e' o'Q V00„„22„-+-
S=0 r=O

(5. 5)

where n„ is the average phonon number of the rth
normal mode of vibration,

22„= (e'"" -1) ', (5. 6)

and the functions C,(t), C„,(t), and C„z,(t) are the
first three members of the following general func-
tion:

C'~'(t) and G'"'(t), respectively. In order to ob-
tain a general and symmetric expression of G'"'(t)
we write the one-particle correlation in the form

&q; q, (t)&0 = 2Z, cos((u; t —,'i pf2(u, ), —(5. 8)

where 8; is the harmonic-oscillator partition func-
tion

,C2~(t) = 2i ImG, 2...~(t),

G22-'(t) = Ig &q2q2(t)&0,
(5. 7)

Z2 = g Cosech(2 pt2GJ2)

From this and Eq. (5. 7) we obtain

(5. 9)

where the subscripts 12 ~ ~ p, are obvious shorthand
notations for 0, s, P, ~ ~ ~ pth phonons. Hereafter,
whenever it is convenient we write these simply as

2P

G (t) = Z Q cos(Qy t —~22 P&Qp) ~ (5. 10)

where n& is one of the 2~ combination of the fre-



quencies of the normal modes,

(5. 11)

2P

C'"'(f) = 2iZ'" Z sinh(o Phn, ) sinn, t . {5.12)

Q =+ 601+ (02+ ~ ~ ~ 6 (d&,

From the imaginary part of G '"'(t) we obtain the
required result,

A. High-Temperature Limit

1
ReC"'((o) - v — (o

~

(a
~ g (o, Q 5((o." o.', )

{5.16)
I@I -1 0imC"'(o)- — g&u, Q ~-", . (5. 17)

This completes the expression for y(t) given by
Eq. (5. 5). What we need for the transport proper-
ties is the complex with function. This in turn
requires the Laplace transform C'«'(&o) of C'«'(f),

B. Low-Temperature Limit

ReC '«'(m)-2v&5((u —o.'„) + O(e o" «), (5. 18)

C'«'((o) = J C"'(t) e"' '""dt .
G

The real and imaginary parts are

(5. 13) ImC «'(u&)- & — " + O(e ""«)2 g2
Q2I Q)

2 (5. 19)

ReC '"'(~) = 2vZ "'sinh(-, phd&)
~

&o ~Z 5(~'- o',,),
(5. 14)

I C'"'(o) = 2Z"'Z»nh( 'P@~)-I

(5. 15)
where t(d l is the absolute value of & and P denotes
the principal value. One notices that ReC~«'(v) is
an odd function of (d and is positive when»0,
whereas ImC '«'(&) is an even function of ~.

Similar symmetry does not hold for the complex
width function y(~) unless the second term in Eq.
(4. 13) or in Eq. (4. 15) is negligible. As one can
see more clearly from the basic equation for the
damping function given by Eq. (2. 11), the function
y(~) does not have to satisfy such a symmetry,
since the random force f(t) is not Hermitian. How-

ever, very often the contribution from the second
term of Eq. (4. 13) is negligibly small compared to
the first term, so that we can approximately as-
sume such a symmetry for y(&u) in the weak-cou-
pling limit. In the following we give the limiting
expression of these functions with respect to tem-
pex ature.

where e, is the maximum frequency of a~ given by

Q„= (d1+ QP2+ ~ ~ ~ + CO@ (5. 20)

o = (V"&.—,„([V,V"(t)]).«,
0 (5. 21)

where we have neglected the O(X ) term and set X

= 1. Following the same procedure as in the case
of the damping function we obtain

and &„is the minimum frequency of 1, 2, . . . , (d~ .
The drastic simplification in the low-temperature

limit is easily understood by means of a physical
picture that describes one-photon (K~&0) interac-
tions with p, phonons. In the low-temperature limit
al.l the phonons are in the lowest-energy levels. As
a x'esult the minimum work which a photon can do
is to promote the p. phonons involved in the inter-
action to the next-higher-energy levels. This ob-
viously requlx'es the enex'gy AM~.

In the description of the spectral function n(tu)
given by Eq. (2. 17) we need the natural frequency
0 in addition to y(to). We may rewrite Eq. (4. 8)
for in the following form:

0 —o'o = Z Voo«j n + — M V„„,Voo«n ~ ™«(0)—— Z V„„,&Voo,n n„J — ™,~(0), (5.22)
rsP=G

where ImC'"'(0) is given by

2f'

lim ImC'"'(&u) = 2Z"'Z n, 'sinh (-,' Pko, ,)
0 0~1

(5. 23)
from Eq. (5. 15). Here care must be taken when
one of the Qt~ equals zero. In such a case it is un-
derstood that

X"'sinhX~x, o
--- 1. (5. 24)

The calculation of y(&u) and 0 for the assumed
potential V completes the calculation of the spectral
function a(&u) unless further information for the

potential coefficients is assumed. As a possible
application of the present result we may consider
the U-center lnfx'ax'ed absox'ptlon. This problem
has been studied extensively by Maradudin1 and
others. '

According to the Green-Kubo formalism ' the
absorption due to the localized mode is described
by the complex conductivity o'(&u), which is shown
to be given by the complex spectral function n(&u)

as follows [see Eq. (3.11)]:

( ) =,~ ', &[Q @o()]&
QG
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=~e nv +a* —co (5. 25)

We have used the projection-operator method to
calculate the single-particle time-correlation func-
tion which provides in a simple manner all the

where eQO is the effective electric-dipole moment
of the localized mode. The results by the previous
workers for a'(v) are equivalent to the present one,
even though the present result is much more gen-
eral in the sense that the higher-order coupling
does not require much further calculation because
of the general expression of the function given in
Eqs. (5. 14) and (5. 15).

VI. CONCLUDING REMARKS

necessary spectral and response functions for the
calculation of the various transport properties.
The perturbation theory applied to the correlation
of the single normal mode amply demonstrates
the effectiveness of this approach. Because of the
generality of our results, they should be applicable
to a host of transport problems in the condensed
state. We have in mind application to the vibra-
tional relaxation in liquid systems where Greer and
Rice have recently made progress with an inter-
esting suggestion for the coupling terms. Further,
the problem of laser-excited vibrational fluores-
cence of molecular impurities in solids at low
temperature, such as CO in solid argon, is worth
looking into with the present method.
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The three-body recombination coefficient has been measured in a partially ionized plasma jet mainly by
using a spectroscopic technique. Experimental data were treated by the consideration that the net number of
particles that were deexcited across a minimum in the total rate of deexcitation of atoms was
substantially equal to the number of electronic recombinations. Experimental results are in good agreement
with other investigated values and show T, "dependence of the recombination coefficient.

I. INTRODUCTION

The electron-electron-ion three-body recombi-
nation in an optically thin plasma of moderate den-
sity has been the subject of numerous studies for
a long time, and a large amount of attention has

focused on this phenomenon. Considerable prog-
ress has been made in the theory of electronic re-
combination by the appearance of a collisional-
radiative recombination theory of Bates, Kingston,
and McWhirter, ' and a quantitative agreement be-
tween observed and calculated values has been ob-


