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The long-time behavior of autocorrelation functions of conserved variables and of their corresponding

dissipative fluxes is studied using the Mori formalism, A set of variables including linear and bilinear

forms of the conserved variables is treated and consistent expansions to quadratic order in the
wave-vector dependence of the appropriate correlation functions are carried out. The treatment is

self-consistent and does not involve factorization of time-dependent correlation functions. Explicit
calculations for the wave vector k and the frequency-dependent shear-viscosity coefficient are carried
out in two dimensions. The asymptotic time dependence of the shear-viscosity correlation function is

proportional to t ' when k~0. The effect of higher-order nonlinear forms of the conserved variables

has not been studied; such a study is essential to ensure the validity of the asymptotic time

dependence found here,

I. INTRODUCTION

There has been much recent interest in the pres-
ence of long-time "tails" in time-dependent cor-
relation functions which were once commonly con-
sidered to be rapidly decaying. The correlation
functions in question are those of the dissipative
"fluxes, " whose time integrals yield the transport
coefficients of linear hydrodynamics, as well as
the self-diffusion coefficient. A long-time tail was
first observed~ in a computer study of the single-
particle velocity-autocorrelation function (the flux
for self-diffusion) by Alder et a/. Fol!owing
Alder's experiment, there have been numerous
theoretical calculations "' of the long-time tails.
These calculations have usually involved either
the mode-mode coupling theory of Kawasaki or
the Landau-Placzek method, 4 and they conclude
that, for long times, the ft.ux-autocorrelation func-
tions decay as t "~, where d is the number of di-

mensionss.

The effect of the t tails on the fluxes in two di-
mensions ' "' is to cause logarithmic infinities in
the transport coefficients; thus, linearized hydro-
dynarnics "does not exist" in two dimensions. The
analogous effect in three dimensions, while less
spectacular since the time integrals of the correla-
tion functions remain finite, is still of great im-
portance since the macroscopic equations are non-
local in time.

Since two-dimensional problems are easier to
treat theoretically than three-dimensional prob-
lems, we shall confine our attention in this article
to the nature of hydrodynamics in two dimensions.
%e take the attitude that an understanding of the
tmo- dimensional problem is qualitatively similar
to an understanding of the three-dimensional prob-
lem.

One question with which we shall be concerned
is that of the self-consistency of both the Landau—

Placzek method, and of the simpler versions of
the mode-mode coupling theory, as they have been
applied to the long-time tail phenomena. Let us
illustrate this point by outlining the mode-mode
coupling approach to the long-time tails. Suppose
that the density of the one conserved variable in
the (hypothetical) system is A(r, f). We define

A„-(f)-=fe'" "A(r', f) dr

and

i„-(f)-=fk j-(I)

where' is the flux for A.; for small 4, the region
of interest, the time variation of A becomes very
slow (A- 0). From Mori's' theory of irreversible
processes, we may obtain an equation for the cor-
relation function, (A„"(f)A f(0)&,

f e" (a-(f)a;(0)) df

(~„-~;&
s+ &'

I f"e "
&

' - (f)
" &'dtj&A A .)]

'

where ( ) denotes an equilibrium ensemble average,

&j;«)j;&'=&["'-"""(I-~.)j.;g(I- ~,)I „-&

-=&jl «) j;&,
and PI is the projection operator onto the space of
the slow variable Ag,

~, G=(&AG&j(w'&)&

for an arbitrary variable Gk. In Eq. (5) we have
omitted the k subscripts, and we have written (2 )
for (AgA g&. We shall employ this procedure,
from time to time, and we shall omit vector sym-
bols on k subscripts, in cases where our meaning
is hopefully obvious. Since A is the only slow
variable in the system, and since all the quantities
in .he correlation function in the denominator of
Eq. (3) are projected orthogonal to A, it is usually



assumed that &jk(t) j f& decays much more rapidly
than (A,,(t) A, ) for small k. Under this assumption,
one is led to the approximation

f, e"&j,(t)j,&'dt- f,"&j,(t)j,&'dt, ( )

i.e. , the Laplace transform is replaced by its
s=O value. Furthermore, for small 4, one gener-
ally attempts the substitution

&jk(t»-2&'- »m &jk«) i .&' . (7)
%~0

Under these conditions, we recover the usual' re-
sult

or
f e "(-A,(t)A, &dt=&A'&/(s+t'~)

(A„(t)A, )= (A') e '

(8a)

where A, , the transport coefficient, is given by the
relation

g &(1-P)j»A k-k Ak) A A (10)
&(A A )2) k+k' -k' &

where k, is a "cutoff" wave vector such that
A~,~.A„~, is no longer slowly varying for k' & k„
and we have assumed that ((A„,«, A. », )(A k »„A.«„))
is zero unless k' =k". By slowly varying, we mean
slow compared to molecular relaxation times. The
quantity [(1—Pz, ) jk] "is the microscopic, or rapid-
ly decaying, part of (1 P2) jk, while-we have hope-
fully isolated the slowly varying part of (I P2)jk-
in the second term on the right-hand side of Eq.
(10). We have ignored trilinear and higher non-
linear parts of the flux, of form A~,„.,~.,A„~.A „. ,
etc., and we shall ignore these terms throughout
the article; this is our first basic assumption. The
consensus of opinion'3'" seems to be that the most
important effects are contained in the bilinear
terms, although this question remains somewhat
open s

As a consequence of the above, (j„(t)j k&I may no
longer be considered rapidly decaying, and we must,
at the very least, consider the transport coefficient,

k"O, s 0 2 & ) k O, s"0
(9)

The validity of Eqs. (8) depends upon the assump-
tion that (j„(t)j k&I is rapidly decaying, and the as-
sumption that lim„. k (jk(t)l „)Iis well behaved.

In the mode-mode coupling theory, one recog.-
nizes that, while l kt(t) is orthogonal to Ak in the
sellse that &Akl k(t)&=Op we Illay fol'111 R set. Qf l)11111-

ear variables, A~,~,A „,, with wave vector k for all
k', which do not have to be orthogonal to (1-P2) j, .
Since A~ is slowly varying for small 0, A~,~.A „.
will also be slowly varying if k and k' are sufficient-
ly small. Thus, we may writes

(1-P2)jk=[(1-P2)jk]
"

X [see Eq. (9)], to be a function of frequency. I.et
us, nonetheless, consider the calculation of
lim. .. 2, X(k, s). We have

' «1-P2) j»A k.'Ak&'
X =XmIs+ (A2)

11111 .m
((A A )2&2

X A~,„,A ~ t A„~ ~eA~. 0 ~N, 11

A comparison of Eqs. (12) and (9) shows that,
for long times,

"c
lim (j,(t) j k&tnt (A„.(t)A k, &I2.
0~0

If we substitute Eq. (8b) into the above, ignoring
the j' on the correlation function, and replace gs
by [Ii'/(2)I)s] f2»sdlI', where Vis the volume and d
the dimensionality, we obtain, for d= 2, the much-
discussed""' result

lim (j„(t)j k&IIIt ' (14)

for long times. As a consequence of Eq. (14), X,
as defined in Eq. (9), is logarithmically infinite in
two dimensions. These results depend upon the use
of Eq. (8b), a small-t„result, for (A„,(t)A «, & over
the whole range of k' & k, .

The self -consistency question'3"' mentioned
earlier is now visible; Eq. (14), which predicts an
infinite value for X, was derived using Eq. (8b),
which assumes a finite value for X. The laws
governing the behavior of the slowly varying vari-
able A~ are not at all obvious, in light of the in-
finite X predicted by Eq. (14). Since the infinite X

which we have calculated is actually the lim~, 0
of the more general k and s dependent quantity de-
fined in Eq. (9), one is led to the conclusion that
X(tI, s) is not well behaved for small ts and e. Thus,
Eqs. (8) wlllcll depend bo'th upo11 'the Rssulllp'tlo11
that X is not a function of s at small s, and the as-

where g@„arises from the "microscopic" part of
(1 —P2) jk, and we have ignored any cross correla-
tions between the slowly and rapidly decaying parts
of (1-Pz,) j k. If we further assume that the time-
independent correlation functions in Eq. (9) are in-
dependent of k and k', and if we make the factori-
zation approximation,

&[Ak.k A-» ](t)[A Ik.k )Ak ](o)&

= (A, , (t)A. ,) (A, (t)A.„,),
we obtain

1 &(1-P2) j()A»,A „,)2
IIc+ (A2) ((A A )2&2



1386 T. KE YES AND I. OPPENHEIM

sumption that we may take the lim„o, are upon
shaky foundations indeed. The calculations outlined
above are not sufficiently precise to determine the
validity of ordinary linear hydrodynamics, the va™
lidity of the k expansion, the presence of the t
tails, or the existence of infinite transport coef-
ficients in two dimensions.

Recently, Zwanzig '"' used the phenomenological,
bilinear Navier-Stokes equation to show that the
flux correlation function for viscosity has a t ' tail
in two dimensions as 0 -0. Zwanzig's method
does not suffer from most of the problems outlined
above, and his work is similar in spirit to that
which we shall present. However, his use of the
phenomenological equation, and his early specializa-
tion to the 0- 0 limit, indicate that a more com-
plete, nonlinear approach to the problem is desir-
able.

In this article, we shall deal with all the above
considerations via the "complete"3 mode-mode
coupling theory. This is done by applying the Mori'
formalism with a set of variables consisting of
both the linear and bilinear "hydrodynamic" vari-
ables. All the fluxes which appear in the resulting
theory will therefore be orthogonal to both the lin-
ear and the bilinear hydrodynamic variables. As
we are ignoring tri- and higher nonlinear hydrody-
namic variables, the fluxes will be considered to
have no slowly varying parts, and the associated
transport coefficients may be considered indepen-
dent of 0 and s. We shall then solve the resulting
bilinear equations for correlation functions of the
linear variables. The results shall allow us to ex-
amine the phenomenon displayed in Eq. (14) (tata
flux-autocorrelation functions), which has hereto-
fore been derived with so many questionable assump-
tions.

II. DERIVATION OF EQUATIONS

In this section we consider a classical fluid sys-
tem consisting of N identical point particles in a
volume V. The results are valid in the thermody-
namic limit N, V ~, N/V fixed under the assump-
tion that only linear and bilinear combinations of
macroscopic variables need be considered.

A. General Theory and Variables

Mori's identity for the set of variables is

f e "(Q(t)Q*)dt= —v'(s) f e "'(Q(t)Q+ )dt,
(16)

where, e.g. , (Q(t)Q") is the matrix whose ij ele-
ment is (Q;(t)Qf &, and Qg is the complex conjugate
of QJ . The transport matrix g '(s) is given by the
relation

v (s)=[-(QQ*&+f e ' (Q(t)Q*&'«](QQ ) .
(16)

The significance of the dagger on the time-depen-

dent correlation function on the right-hand side of
Eq. (16) has been discussed following Eq. (4); the
only modification needed for this many variable
case is that the projection operator P projects onto
the space of the entire set Q. Since the set Q is
chosen to contain all the linear and bilinear hydro-
dynamic variables, we shall assume that (Q(t)Q&t
decays on a microscopic time scale. Thus K '(s)
may be replaced by its s = 0 value [see discussion
concerning Eq. (9)]. We may then take the inverse
Laplace transform of Eq. (15) to obtain the equa-
tions

dt
(Q(t)Q*&= —f '(s =o) (Q(t)Q*&

Equations (17) are a set of coupled linear differen-
tial equations for the correlation functions. We
shall call the coefficients which arise from the first
and second terms on the right-hand side of Eq. (16)
as the Euler coefficients and the dissipative coef-
ficients, respectively. The long-time tail behavior
of (Q(t)Q*& arises from the fact that, in the thermo-
dynamic limit, Q has an infinite number of com-
ponents and the set of Eqs. (17) consists of an in-
finite number of equations.

The conserved variables for a simple fluid are
the spatial Fourier transform of the number densi-
ty~

(18a)

of the momentum density,

(18b)

and of the energy density,

(19)

where r, , p, , and &,- are the center-of-mass posi-
tion, the momentum, and the energy of the ith par-
ticle, respectively, and N is the number of parti-
cles. In the following, for simplicity, we shall
ignore &~; this corresponds roughly to the assump-
tion that there exist no temperature fluctuations in
the system, and should not affect the general form
of our results. We shall denote the set of linear
variables of Eqs. (18) and (19) by Lk.

The bilinear variables B~ ~, are n~, ~.n ~, , n~~. p „.,
p~,~. n „., and p~,~.p ~, , for all k'&k, . We include
both n~~. p ~. and p~,~ n „.as an alternative to keep-
ing just one of the forms, say n~,~ p» with the
recognition that both k;=k ' and k, =k-k' lead to
different variables of form L~,~, L'~, . Of course,
a variable Lk, k L k is identical for R, =k' and k,

The derivation of the bilinear "hydrodynamic"
equations is simplified if we use bilinear variables,
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8'„„,which have been orthogonalized to the linear
variables, in the sense that &B~ «. L.«&= 0. The
necessary orthogonalizations may be performed
with the aid of the relations~

(n„n, ) =Ng(k), (20)

&f)p~)=mksT 6), I, (21)

where I is the unit tensor, 5,&
is the Kroneker 5, T

is the absolute temperature, k~ is Boltzmann's
constant, and m is the particle mass. We also re-
quire the definition

&n~;n;n «&=Nf(k& k'), (22)

where f(k, k') is of the order of unity, and involves
a three-particle distribution function. The orthog-
onalizations are

where g(k) is of order unity and involves a pair dis-
tribution function, and

diagonal blocks (for each k') which may be of order
N«, and off-diagonal (block) elements which may
be of order N. Owing to our orthogonalization,
there are no linear-bilinear coefficients in &QQ*) '.
It may then be seen from an expansion in 1/N that
&QQ*&

' has diagonal blocks of order 1/N and 1/N2,
with off-diagonal elements of order 1/N .

We may now schematically carry out the multi-
plication, &QQ*& &QQ*& ', to obtain the Eule'r equa-
tions. It is necessary to realize that, while /-~
in the thermodynamic limit, so does M, the num-
ber of values of k' between 0 and k„ the cutoff
wave vector. Thus, some of the elements of the
product matrix, &QQ*) &QQ*), will consist of M
terms of a given order in N, and the total N order
of the matrix element will be M times the N order
of the individual terms. The number M is given
by

(p„«.I~ «.)'= (p'a, «. I~ «,) ™aTn«I, (23a)

k

M= 5 I=Vs", ,
Cs~o

(24)

(n«,«.p «.)' = (n«,„.p „.) -g(k+k')p„, (23b)

(p«.«n «} - (p«.«n «) -g (k ) p« (23c)

(n«,„.n „.)' = (n~«. n «.) —[f(k, k'}/g(k}]n„. (23d)

The 8' variables, plus the linear variables, con-
stitute our "complete set" of slowly varying vari-
ables. Hereafter, we shall refer only to the
primed bilinear variables, and we shall therefore
omit the primes.

B. Euler Equations: Schematic

We now use Eq. (16) to derive the bilinear Euler
equations. First we shall give a general discus-
sion of the order of magnitude inN, the number of
particles, of the elements of the matrices &QQ*&,

&QQ~&, &QQ*& ~, and the Euler V' ~ matrix, (QQ"&
(QQ*& '; N becomes infinite in the thermodynamic
limit, and is an important ordering parameter.
We wish to determine which coefficients may be
discarded, as well as to outline the detailed deriva-
tion which is to follow. The static average of a
product of two linear variables, or of the product
of the time derivative of a linear variable with a
linear variable, may be of order N; these same
averages, for bilinear variables with the same k',
may be of order N . The static average of the pro-
duct of a bilinear variable with a linear variable,
a bilinear variable w ith a different k, or the deriva-
tive of a bilinear variable with a different k', may
be of order N. We shall arrange the components
of the vector Q with the linear variables first,
followed by the bilinear variables for a given k',
followed by the bilinear variables for a different
k', and so on. Then, the &QQ*) and &QQ*& ma-
trices have a diagonal block in the upper left-hand
corner which may be of order N, a further set of

where we have used the substitution

V is the volume, and 4 is the number of dimensions
If we let V =Na", where a is a length on the order
of the interparticle spacing,

M =N(ak, ) . (26)
/

It is @basic requirement of our approach that k,
is a wave vector with the property that (ak, )"«1.
With this fact in mind, we obtain the "schematic"
Euler equations

dt &L«(f)Q-«&=1&~«}Q-«&+ —~ &g««&(f)Q )
(26a)

df &B .d(f)Q )=1(L (f)Q «&+1&B,«~(t)Q „)
d

.—~ &B.,y(f) Q,&, (26b)
g2gg1

where L and 8 represent linear and bilinear vari-
ables, respectively, and Q «may be any member
of the set of variables. Equations (26) are merely
intended to indicate the N order of the coefficients
in the coupled equations; although Eqs. (26) were
derived with the Euler equations in mind, they are
in fact correct for the complete (Euler plus dis-
sipative) equations.

Consider the solution, via Laplace transform, of
the schematic equations

&L«(s)Q «) (s+I) = &L«Q «)+—Z&B««s(s)Q «),
1

(2Va}

&B«,«i(s)Q «&(s+I)= I, «|Q „)+&L«(s) Q,)
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1 Z (B...~(s) Q,&, (27b)
k 2gk1

1 1 1
(L,(s)L,) (s+) s —2 — ~ ~ Z Z ——

«1 «2~ «g S + 1

(sk )' g p y &B«.«'(s)L «&

). "a "s " a "s (s+I)
k k Ck k34k, k

(29)
By repeating the above process, we see that the
contribution to the spectrum of (L«(s)L „)due to
coupling among bilinear variables of different k'
is of order (ak, )"[I+(ak,) +(ak, ) '. ..], i.e. , of
order (ak, )«'g"„0[(ak,)M]". The sum over n is just
a geometric series, and thus the coupling among
nonlinear variables of different k' contributes a
part of order (ak,)"to the spectrum of (L„(s)L «&,

while the contribution of linear-nonlinear coupling
is of order (ak, )". The B„,—B«„coupling is there-
fore a "higher order" effect which we shall ne-
glect in all the following. Since the only effect of
the off-diagonal elements of the inverse matrix,
(QQ*&-', is to produce the B,.—B,"coupling, we
may then assume that (QQ*)"' is (block) diagonal.

C. Euler Equations

It is now a simple matter to calculate (QQ"&,
and, by inversion of each diagonal block, (QQ*& ~.

We need the relation

where (Q(s) Q*& is the Laplace transform of (Q(t) Q«&

As we wish to obtain the correlation functions of
the linear variables, we let Q„« in Eqs. (2'7) be
L „. Combining Eqs. (27), and using the orthog-
onality of L and B', we obtain

(L (s)L ) (ss) s —2 ()
= (L L «)

1 1

k~

+ ~~ ~ ~, &B«,"(s)L .& (28)
1 1

k k 2gk1

The I/N g-„~ [1/(s+ I)] term, which multiplies
(L„(s)L „)on the left-hand side of Eq. (28), repre-
sents a contribution to the frequency spectrum of
@«(s)L «& due to linear-nonlinear "coupling, "which
is of order (ak, )", and which therefore remains
finite as ~-~. To obtain the first contribution to
the spectrum of (I.«(s)L «) due to coupling among
nonlinear variables of different k, we combine
Eqs. (28) and (2Vb), with the result

The second term on the right-hand side of Eq. (31)
~ Icontributes only if k'= —~k.

We shall assume that g(k) or g(k') may always
be replaced byg(k-0), which we shall write asg.
The argument of g(k) is always less than k, , and,
away from the critical point, g(k) does not differ
significantly from g(k-0) until k ' is of the order
of the range of the intermolecular potential. Simi-
lar considerations hold for f(k, k') [see Eq. (22)].
With the above information, it is seen that (QQ~&
is not only block diagonal; it may, with negligible
error (the error is of order 1/N, with no compen-
sating factors of M), be considered diagonal. The
Euler equations may thus be written

df &9;(f)Qy&=~ q'q' (Q (t)Qg&.
l l l

All the elements of (QQ*& follow easily from the
information presented above, the conservation
laws, and the relation

(AB& = —(4B&.

(32)

(33)

The first of the resulting equations is

—&n«(t)Q «&=—&I~««)Q «»
j.k

(34)

which is the equation of continuity. The bilinear
Euler momentum transport equation is

dS(fs(S)()s)=)" ' (s.(S)()s)s)S~ ()- s)

XE ([n,...n, ](t)Q,&+
— 5 ([ik p,...p, .

k k

+p,.f." 'k](f)Q, & (35)

The factor —,
' preceding the g-„s's prevents over-

counting via the symmetry of k' and —k-k'.
In order to discuss Eq. (35), recall that, near

equilibrium, the equations governing the dynamics
of correlation functions are believed~ to be identical
to those governing the dynamics of nonequilibrium
ensemble averages of the slow variables. The
heuristic, nonlinear Navier-Stokes equation is

—(p(r, t)&'= V (P(r, t)+V. (p(r, t) v(r, f)&', (36)

ficient for our purposes:

&(A«.«& «)(C «« fl«)&=(A«.«C-«-«&(D«&-«&

+ &«.«&'& (8 ' C ««&. (»)

(n p „&=0, (30)

as well as the properties of averages of various
products of single-particle momenta, which fol-
low from the Maxwellian distribution. We also
require the factorization approximation for equal
time correlation functions, which is correct to
order 1/N (away from the critical point), and suf-

where ( )' denotes a nonequilibrium ensemble aver-
age, g is the pressure tensor, and v is the velocity
field. We may inverse Fourier transform Eq. (35)
to obtain

—
&0( f)Q(0 o)&= ' '7«n(, t)Q&
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+ ' (I-f/g')V([6n'(r, t)/n, ]Q&

+V. ([f(r, t)p(r, t)/nom]Q), (3&)

where ne ia the average number density and On is
the density fluehmtion. This result is correct in
a cue, use-grsamed sense, i.e. , for lengths & k, .
This hmitation should not be a factor in comparing
Eqs. (38) and (37), as the heuristic, macroscopic
Eq (3.8) is itself only intended for use over mac-
roseayie distance scales. One compares Eqs.
(38) and (3'I) by realizing that a term (Q(r, t)Q& in
Eq. (37) ssrresponds to a term (Q(r, t))' in Eq. (36).
I; is weB. knee a that the first term on the right-
hand side of Eq. (SV) corresponds to the linear
term ia the expansion in the density fluctuations
Of the pressure gradient, which appears on the
right-hand side of Eq. (36), i.e. ,

— — rTn(F, t)=f. —' n(r, t).
g '

dno
(36)

The second berm on the right-hand side of Eq. (SV)
is easily shmvn to correspond to the quadratic term
ia ihe expa~on Of the pressure in the density.
The velocity field f(r) is related to our variables
by the relation

f(F) =f(F)/mn(F).

E @re mr~he

n(Fj=n, +on(F),

(39)

(40)

—„,([n, .n .](t)Q.„)= — ik (p„(t)Q, &

(z- f/z) .-

&[p«.«n «]«)Q-«&
i(k+k ')

m

and if we combine Eqs. (40), (39), and (36), and
expand im. pcnvers of the density fluctuations, we
obtain

d
( ( )), p ( )

(p(r, t)p(r, t))'
SpPS

(j(r, t)p(Ft)5n)' ,) )4))
cpm

The first term in the large parentheses on the right-
hand sids of Igq. (41) corresponds to the bilinear
tnomentum term which we have derived in Eq. (37).
Thus, we see that simple expansions of the heuristic

(38), to bilinear order in the fluctuations, gen-
erate the Euler equation which we have derived in-
deissndently. One should recall that the bilinear
variabtes w'hich appear in Eq. (3'7) are actually the
orthogonalissd variables defined in Eqs. (23).

There exist no heuristic analogues to our Euler
equations for the bilinear variables. These equa-
tions are

—([n«,«. p f"(zk /m)](t)Q. «&, (42)

d k~T. I
—,([n„„p.„](t)Q.,) =- ' i ([n„;;.n „-.](t)Q „)

p

~ ([p., p ~ ](t)Q &, (43)

—([p ~ p- ](t)Q- &=&,T&[kp~(t)+p (t)'k]Q

D. Dissipative Coefficients

We now treat the dissipative coefficients, i. e. ,
the coefficients arising from the second term on
the right-hand side of Eq. (16). Our main aim
here is to demonstrate the origin of the t '~' tails
of the correlation functions. Therefore, while we
shall be careful in treating the physics of the prob-
lem, we shall be somewhat cavalier in handling the
alg ebra involved.

Our basic physical assumption is that the set Q,
which consists of linear and bilinear forms, con-
tains all of the pertinent slow variables in the sys-
tem. Thus, while a k expansion of the dissipative
terms in which onl.y linear forms are included is
not valid, a k and k' expansion for the set Q is valid
in two and three dimensions. We shall retain terms
up to quadratic order (k, kk, k') in these vari-
ables.

It is necessary to obtain the correlation functions
((1-P)Qe~' ~"~'(1-P)Q& [see Eq. (4)]. Since p«
and ~„„.p ~. are contained in our set of variables,
and since ri, = zk p„and

d i(k+k ') ik '
0+4 m pa+a'+-a' ' zan' p-a' ~m

it is easy to see that (1-P)n«=0 and (1 —P).
x (n«,«,n «. )' = 0. Furthermore,

d
(1 —P) (n„.„.p,.) = (1——P)(ik n„„.o «. ), (46)

where the stress tensor o~ is defined by the relation

p~ =zk (46)

There are no obvious subtractions, similar to
those described above, owing to the action of
(1 —P) upon (d/dt)p, or (d/dt)(p„, „.p „.). Of course,
(1—P) is expected to remove any linear or bilinear
hydrodynamic contributions to Q, allowing us to
assume that the dissipative coefficients are inde-
pendent of frequency and expandable in 0 and k .

First consider the p~, p~ dissipative coefficient.
We have

+ (ks 7/g) i(k + k ') ( [n„.„.p, .](t)Q „&

—(ksT/g)([p«. «.n „.ik'](t)Q „&. (44)

The equation for ( [p„„.n «. ](t)Q «) follows from
Eq. (43) via the substitution k '- —k —k '.



hm
~

e "&p«(t)p „& dt=~~ dt(-ik) ~ &(1 —P)o, e" " '(1 —P)g„& ~ (ik) =Nmk T if ~" ~ -if,
8"0 a'O

where a» ' is the "bare" kinematic viscosity tet-
rad; z«) differs from the ordinary kinematic vis-
cosity tetrad insofar as it has no bilinear hydrody-
namic contributions. The tetrad &» ' is related to
the bare coefficients of kinematic shear and bulk

viscosity, g and g~, respectively, by the relation

(ik ' o" ' ' —ik) p„= ik (i) [ikp + p„ik - ik—
~ p l ]

+rfsif p, l ),

where I is the unit tensor.
In a similar fashion, we define

OO +Oo

lim e" (1 —P) —(n.»;p,».)'e" ~"~'(1-P) (n„«.p—„.)' dt= dt8t &(1- P)(n «;g „.e" '" 's(1 —P)

x(ii„„e,.)& —if'=+gems, r(-if') P"'(if' ). (49)

It ls not necessaly to consider the oztBLogonalized
form of the 8 variables in Eq. (49), and in similar
equations, as the effects of the orthogonalizations
are of order 1/¹ The decay of the correlation
function appearing in Eq. {49)might be expected

to resemble the decay of the o autocorrelation func-
tion, as n» is slowly varying. Thus, o'i ' and P'4'

might be simply related; this point requires further
study. Finally, we define the remaining diagonal
matrix element,

lim, 8 ' 1 —P —p q ~~p qs e "
1 —P —pq~sp q. dt = Nmk~T i k+k ~ y» ~ —i k+k '

g»0

-if' qi'& if'+i(f+f') e'" if'+ik' ~ s"' ~ i(f+f')]. (5O)

It is expected that the sixth-order tensor y' ', like
P' ', should have a close relation to the bare vis-
cosity n' '. However, q' ' involves correlation
functions equal to zero at t = 0, and should be very
small.

We shall ignore the off-diagonal dissipative coef-
ficients. Our equations already contain linear-
bilinear coupling, linear-linear coupling, and bi-
linear-bilinear coupling which arises from the

Euler equations; the coefficients which give rise
to this coupling are linear in k and k . Off-diagonal
dissipative coefficients will be bilinear in A and k

and, since we are a,ssuming that k and k may be
treated as small quantities, these coefficients
should be neglected, The validity of this procedure
shall be explicitly visible later on.

We may now write down the bilinear hydrody-
namic equations to second order in k and k

cf ik—&n,(t)Q, &= —~ &p(t)Q & (51a)

—&p„(t)Q, &=if '
&n, (t)Q.,&+ik ' 1-~ P&[n„„.n-, , ](t)Q-, &

+= 5&[if p...,p, , +p...,p,. if]{t)Q,&+(ik u"' if) ~ &p„(t)Q,), (51b)

i t'—&I&«.«&-«](t)Q-«&= ik &p«(t)Q-«&+ — — &[p"»,s» l(t)Q «& ——&[&«.«p-«](t)Q-«& {51c)

—„,&[&«" p-« l«) Q-»& =- k'&[ „,'. ](t)Q.,&
— — &[p...p, ](t)Q, &

(if'.g"' k') &[..., p, l(t)Q. &,

(5ld)

«&fp"p '](t)Q-.&=)i,T [if &p, (t)Q, &+&p (t)('k)Q &]
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[t(k+ k ') ([n,.„,p „,](t)Q.„)—(fp„„,n, , (tk ')](t)Q, &]

+ [t(k+4'). y"'.t(k+k')+tk' ~ y' ' ~ tk —t(k+4') e tk —tk e' ' t(k+k')] ([p,...p «.](t),&.

(51e)

Equations (51) are based upon our two fundamental
assumptions; the assumption that trilinear and
higher-linear variables may be ignored; and the
assumption that k and k may be treated as small.
The solution of Eqs. (51) for the autocorrelation
functions of the linear variables will constitute,
within the context of our assumptions, a self-con-
sistent treatment of the problems discussed in the
introduction. We remark that, although the re-
mainder of our work shall be concerned with two
dimensions, Eqs. (51) are also valid in three di-
mensions .

actually determine rt(k, s); this will allow us to
examine the properties of limy 0 Oq(k, s). We

may then inverse Laplace transform rt(k, s) to de-
termine the autocorrelation function of the flux for
p', , and to determine if a t" tail exists. Thus, a
calculation of (p„'(s)p",) "includes" a calculation
of the hydrodynamic part of the flux autocorrelation
function.

Let us now Laplace transform Eq. (51b), for
Q„„=P"~; the result is

&P Ps)p "-a&&p «P'-a&
'

III. SOLUTIONS

(53a)

f e "(p,"(t)p"„&(p,'p", &
'dt= I/(s+k'rt), (53b)

0

where g is the ordinary coefficient of kinematic
shear viscosity. The area under the normalized
time-correlation function is equal to (p '„(s = 0)p '„)
x(p,'p'~& ', i. e. , to (k'g) ' [see Eq. (53b)].

It is possible to write' an exact equation,

f e "(p",(t)p",&(p~p', &
'dt= I/[s+k'i)(k, s)],

(54)
where q(k, s) is determined as in Eq. (4),

j'oo gt( (I ~)p y e(1 I ) l2 8(1 P)P 9& dt
r((k, )= '

k, (-'-„

(55)
Equations (53) result from Eqs. (54) and (55) if
ij(k, s) is independent of k and s for small k and s,
and q(k, s) is replaced by lim „o„op(k, s) = q.
After we finish the calculation of (p"„(s)p "~&, we

may cast it in the form of Eq. (54) in order to

It is not possible to answer the questions which
interest us by just examining Eqs. (51); the equa-
tions must be solved. We shall discuss the proper-
ties of the transverse momentum autocorr elation
function in two dimensions from Eqs. (51). This
discussion illustrates all the general features of
nonlinear effects upon hydrodynamic correlation
functions in two dimensions. Thus, we let k=kx,
and we calculate (p~~(t)p "„). As we shall proceed
by Laplace transform methods, the quantity which
we shall actually obtain is

&pl( )ps".&= f, ~ "&p,'(t)p', )«. (52)

For comparison's sake, we first mention the
predictions of ordinary linear hydrodynamics for
(p~(t)p', &; they are (k=H)

&Pl(t)p', &&P,"P",&'= '"',

-1
+([P",„.P".„.](s)p", &] (P "(s)P ' ) ', (56)

where n~=g, the bare shear viscosity discussed
earlier. The bilinear contribution to il(k, s) [see
Eq. (54)] is contained in the third term on the
right-hand side of Eq. (56). Our task is to use the
linear Eqs. (51) to express the correlation func-
tions involving P~,„.P",. and P ~„.P",. in terms of
the P ~ autocorrelation function, and thus to evaluate
the bilinear shear viscosity contribution.

Since Eqs. (51) are rather complicated, we shall
employ some simplifying assumptions, and treat
some limiting cases, in what is to follow. We
emphasize that none of our simplifications will
violate any important physica, l ideas, but will
rather be in the nature of neglect of "fine points ";
we shall discuss each approximation as it arises.
First, we shall calculate ( p „"(s)p"«&, and q(k, s),
for s = 0 and k negligible with respect to k'. Later
on we shall see that ignoring k with respect to k'
leads to a small error. Next we shall outline the
calculations, and present the results, for the two
cases, finite k and s =0, and finite s and k«k'. In
the finite k calculation, we shall assume that the
"viscous" tensors, n' ', P' ', and y' ' may be re-
placed by scalars times the unit tensors, aI 4',
PI' ', and yI'@ and that s' ' may be equated to
zero. These approximations will not affect the
essential features of our results. Finally, we
shall perform the calculations for finite k and s,
under the above mentioned assumptions, and under
the assumption that the fluid is incompressible.
As we shall see, the assumption of incompressibil-
ity leads to a simple multiplicative error in rt(k, s),
owing to overcounting of "shear" modes.
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A. Calculation of q(0, 0)

In order to eliminate correlation functions in-
volving p,"„.p', . and p„'„.P",. from the right-hand
side of Eq. (56), we introduce a very useful trans-
formation. For a given k ', consider an (x, y')
coordinate frame in which k' ll x' (recall k fix). We
have

= lim (ik„iksT [1+ 2 (1 —f/g )J (p» (s =0)p'.»)
0 "0

+ik,.ksT-,'(1 f/g')(P,"(s-=0)P', ) J, (58)

lim ( [p„'„.p'„.](s = 0)p"„)k' (y, —s"„";)t
n-0

= lim [ik~.ksT (P» (s = 0)P"»)], (59)
A 0

Iim &[P,*,'„,P",, ](s = 0)P'»
u-0

&&[k' (y„+y~ —2s".„".)+ksT/mgP» ]

P*P'+p'P"= 2cosp sing(p" p" —p' p' )

+ (cos'p —sin &5)(p"'p"'+p"p"'), (57)

where Q is the angle between k and k '. We may
combine Eqs. (56) and (57), and calculate the cor-
relation functions involving the primed bilinear
momenta via the transformed Eqs. (51). The
transformed Eqs. (51) are greatly simplified by
the condition k„'. = 0.

For k, s-0, the solution of the transformed
equations is very simple. We set s=0, we let
k+k -k for all k, but we keep the linear factors
of k which, when multiplied by the factor of k al-
ready present in the bilinear viscosity term in Eq.
(56), will yield the k factor in the damping coeffi-
cient, k q(k, s). A little algebra now gives

lim ([p„"„.p",.](s = 0)p'„)k (y„—s„" „" )
A "0

lim sing cosP ( [P,",„.P"» —P»+»~P'»t](s = 0)P»)
a-0

ikk~T . g 2 1 1=lim»~ sin (t) cos P
0~0 'V)l &rx

x (P"(s = 0)P.;), (61)

lim (cos g —sin"p)([p»"„.p', . + p», „.p"'„.J (s = 0) p"»)

= lim ikks T(c os'g —sin g)»
0

1
X I g ~xk' (y„+ y, —2s„",") + k, T/mg P, ('

)
(P,'(s = 0)P'») .

Equations (61), (62), (57), and (56) may now be
combined to complete the k', s - 0 calculation. The
sum P~ in Eq. (56) is replaced by

)ffs e 0

y 2ff etc

(2 )2 dP k'dk' .
"0 ~0'

We now see that the k' integral in Eq. (56) posses-
es a logarithmic infinity due to the contribution
to the integrand of the x'x' and y'y' terms in Eq.
(61), whereas the contribution of the x'y' and Y'x'
terms in Eq. (62) isfinite, andtherefore negligible.
Since k'=4+k' is parallel to x', P" P" may be
thought of as a pair of longitudinal fluetMations,
P' P' as a pair of transverse fluctuatioas, and
P"P' or P" P as a transverse fluctuation plus k
longitudinal fluctuation. Thus, we have obtained
the well known result that the major Qilinea, r con-
tributions to the transport coefficients (neglecting
heat modes) come from pairs of transverse and
pairs of longitudinal (sound) modes. This compari-
son of our results with simpler versions of the
mode-mode theory is made possiMe by the trans-
formation to the (x', y') frame. Our final equa-
tions are

= lim [ik„.k T(P,"'(s = 0)P' ) lim (P„'(s = 0)P', ) &P,'P",) ' = k'u, +

+ik, ,ksT(P," (s = 0)P",)], (60)

where the subscripts II and I. refer to the longitudi-
nal and transverse components, respectively, of
the bare viscosities n, P, and y. The subscripts
and superscripts on & refer only to the indices for
the stress tensor at time zero and time t, respec-
tively, in Eq. (50); we have ignored the momentum
indices. The next step is to perform the inverse
transformations, expressing p', p", k„., and k„.
in terms of P", p', and k. When we substitute the
inverse-transformed Eqs. (58)-(60) into Eq. (56),
we find that the P' correlation functions are multi-
plied by angular functions which will vanish in the
sum over k; thus, we now drop those terms. The
inverse-transformed Eqs. (58)- (60) yield

I' 1 ~ dk'

( y, ~

—e„„y~—e„, „k'
0

(63a)

q(k=O, s=O) = o.'i+ s „„+k, T 1

16&p y~i - ~xx y~- +m)

~ 2k'
(63'b)

i. e. , g(k= 0, s = 0)=~. It is actually ince»»sistest
to retain o» in Eqs. (63), as we have discarded W.-
linear contributions of possibly comyaapab4e m:ag-
nitude. We retain terms like u„a@4 IhIILll coe-
tinue to do so, for illustration.

Equations (63) contain no proof of the presence
of t" tails on the flux autocorrelakion function in
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We shall now present the results of the calcula-
tion of (P),(s)P')) ~ (P'„P')) ' for k - 0 (i. e. , we
neglect k with respect to k') but for small finite s.
This calculation is still rather simple, as the
various bilinear momentum products, expressed
in the (x', y') coordinate frame, still correspond
to products of pure longitudinal and transverse
modes; the algebra is correspondingly uncompli-
cated. Proceeding exactly as in Sec. IIIA, we
obtain

and

). T ), „„, (y„—e*,,")),'', s
)

2(y, —a*,„')).~ + s)+ (y, —&~j ln
S

lim R(k, s) = n,
k~O

T ), ,„,.i )((y„—a„**,)k~+a)+
~6 2 ky)t ~gg)

two dimensions. However, the infinite ()(k = 0,
s = 0) seen in Eq. (63b) implies that, for k = 0, the
flux autocorrelation function [inverse Laplace
transform of p(k, s)] must decay as t ', or more
slowly, at long times; the logarithmic infinity in
Eq. (63b) is very suggestive of a t ' tail. One also
sees from Eq. (63b) that it is not permissible to
perform a k expansion on g(k, s). These results
have been obtained self-consistently. We have
not assumed that a k expansion is valid to prove
that it is not; we have assumed that a k, k' expan-
sion is va»d. We have not assumed that q(k, s) is
well behaved for small k and s; we have assumed
this for &, P, and y. The coefficients that appear
in Eqs. (63), n, e(which we expect to be small),
and y, do not appear at all in ordinary hydrody-
namics. Furthermore, y, which involves the flux
autocorrelation function for P)+„.P „.[i.e. , (1—P)
&& (d/dt) P„,),.P ),.], is not trivially related to any defi-
nition of the viscosity in terms of the usual stress
tensor [(1—P)P] correlation function.

8. Calculation of q(o, s)

( e)())) l(I -2)) (y&-a~)(l)

where j is the "flux" for momentum transport.
For long times, and k 0 the projected flux auto-
correlation function decays as t ~. Note that the
decaying exponentials for longitudinal and trans-
verse modes in Eq. (65) have decay coefficients
k, (y„—e"„",) and 2k, (y~ —e„"",), respectively; this is
a manifestation of the fact that the damping coeffi-
cients for longitudinal and transverse momentum
fluctuations are proportional to 2(y)) E)'and

(p,- e"„,'), respectively. Equation (64b) is very
similar to Eq. (59) of Zwanzig's paper (he treats
the case k-0, finite s). '"' The important differ-
ences between the two equations arise because
Zwanzig has considered an imcompressible fluid,
and because his treatment involves a single bare
viscosity v, as opposed to our four bare viscosities
e, o., P, andy.

C. Calculation of q(k, o)

In the above sections, we have obtained results
which are valid for k «k'. We have already
pointed out, however, that one result of a proper
treatment of the bilinea, r effects might be a break-
down of the ordinary small-& expansion for rl(k, &).
Thus, it is of major interest to extend our calcu-
lations to the case of finite k. Furthermore, as
we have discussed, ignoring k with respect to k'
introduces a small error into the zero-k result,
i. e. , into our earlier calculations. Recall that
we are assuming that a k, k' expansion of Eqs.
(51) is valid even if a k expansion is not, and thus
we may obtain, consistently, anexpressionforq(k, s)
which could never be obtained via a k expansion.

The algebra necessary to obtain (p„(s)p, )
(p„p „) from Eqs. (51) is greatly complicated for
finite k. Since 4+k' is no longer parallel to
k'(x'), P„",),. and P)„„.no longer correspond to pure
longitudinal and transverse fluctuations; algebra-
ically, the difficulties arise because (k+k )" +0.
In order to make progress here we shall set y„
= y, = y, and similarly for P. We shall set &= 0.
It should be clear from the results which we have
already obtained that this approximation should not
fundamentally aff ect the validity of what is to follow.

We now consider the case of finite k, and s equal
to zero. Equations (51) yield

Equation (64b) explicitly contains the t ' tail which
we have sought to investigate. An inverse Laplace
transform yields

s"0

kk T 1kQJ+Z(DJ+)D()
P0

(66a)

k~o

ksT (y„—e"„„*)'(1 —8 ' """")
32'lt'p

lim (i(k, s) = n, + —Xr (Dg+ D))),
k~T 1

s 0 Nm 2 Pp

where

(66b)
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y(~'+ k")+ &u/k" [2k' sing cosQ+ k sing]
y(s'+k") [y(a'+ k' ) + ~ z'/k"]

y(z + k'2)+ e(k' /x )+ ur([k cosP+ k'(cos Q —sin Q)] {1/k P ——,'k' [(I/tc )+ (1/k' )] ])
P 2(~ k 2)2 [ (~R k 8)/~2k 2 ~[8k 4 ~4 2 ~2k P] ~P(I k P/~P)P

~ = ksT/mgP,

(67a)

(68)

where A and B are numbers less than and greater
than one, respectively. For the three regions of
integration, we have k' «k, k'= k, and k'» k,
respectively. Upon evaluating the integrations, we
find, for small k,

e f c

Bk

The final result is

Iim &P,'(s) P'„& &PaP'a&-'
s~ 0

(VO)

kBT~I k, 1 1
k Q. + k —ln —'+ ——ln —'

16p y, k 2y„
(Vla)

lim q(k, s)s"0

(71b)
where we have replaced y by the appropriate y))
or y~, as indicated above, and we have noted that,
for small k/kp, ln(k, /Bk) =1n(k~/k).

For k 0, Eqs. (71) differ slightly from our k,
s - 0 results obtained earlier [Eqs. (63)], owing
to the factor of p multiplying the 1/y ln(k, /k)
terms in Eqs. (Vl). This factor arises because,
for k' &k, the third term in the denominator of D~)

must be kept, even though this term vanishes if
k = 0. For finite k, a product of sound modes with

and z'= (4+k' ) . The quantities D„and D, repre-
sent the bilinear effects due to pairs of longitudinal
and transverse modes, respectively. It is easy to
see that, as k- 0 (recall that k' is small), both
D „and D, reduce to 2 sin Q cos P/yk', in agree-
ment with the results already obtained. It seems
clear that y should be set equal to y, for D~„and
to y~ for D~.

The integrals which arise in Eqs. (66), after the
substitution

P 2ii'
C

Z 2 dp dk'k',
p p

are evaluated by first transforming the angular
integral into a contour integral around the unit
circle. We then divide the k' integral into three
parts,

f"= f ~ f".f"' (6

k kB'T s+ 2k,ys+k'n + B ln
soapy s + k~y

kBT & s+ 2kcy
ri(k, s)= n, + s

ln~
Soapy ( s + k~y

(72a)

(72b)

Comparison of Eqs. (72) with Eqs. (64) tends to
confirm our earlier speculation that the effect of
ignoring compressibility (besides eliminating the
difference between y„and y~) is to overcount the
bilinear part of q(k, s) by a factor of 2. In com-

wave vectors k+ k' and —k' possesses an oscilla-
tory part with frequency - Ik t; such oscillatory
time behavior tends to destroy any divergences in
the transport coefficients. This discussion indi-
cates that one must be very careful in taking the
k-0 limit, and that our earlier derivations have
not been rigorously correct.

The most interesting aspect of Eqs. (71) is the
presence of the ln(k, /k) terms in g(k, s). Clearly,
a term of form ln(k, /k) indicates that a k expansion
of the dynamical laws is invalid in two dimensions;
such a term could not be consistently obtained in
any theory which assumes the k expansion. We
have, however, obtained our results completely
consistently via the k, k' expansion.

D. Calculation of q(k, s)

The most interesting calculation which we may
perform, of course, is that for the case of finite,
small k and s. In order to perform this calcula-
tion, in addition to our above assumption. that
y„=y,=y, p„= p, = p, and e=0 we shall make the
less trivial assumption that the fluid is incom-
pressible. This means that we set ~„=0 in Eqs.
(51). The effect of our incompressibility assump-
tion is that we treat the sound (propagating) modes
of the fluid as nonpropagating modes. Thus, we
expect that our results shall overcount the bilinear
contributions to p(k, s) by a factor of 2; the true
bilinear contribution from a sound mode plus a
shear mode, which was negligible in the previous
calculation [see discussion following Eq. (62)],
shall be treated as a pair of shear modes, and will
enter into our result. However, no important
general aspects of the t behavior should depend
upon the compressibility of the fluid, and we ex-
pect our results to be basically correct.

The solution of Eqs. (51) for n, = 0, is easy;

&f l(s)f "-a& '&PaP'-4 '
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paring our finite-+ results with our zero-s results
one should note that setting s to zero introduces a
factor of 2, i. e. , In(s~k2) 21nk.

With Eqs. (72), which are very simple to derive
via our method, we have obtained the full 0 and s
dependence of the bilinear effects. The inverse
Laplace transform of Eq. (72b) yields

0 yt

&ia(&)i-a&" = o'i&(~)+
3
'

SPY (73)
Thus, we see that the t ' tail is present only as

0. The 'protection" of the t tail for finite 0,
which also occurs for the three-dimensional t
tail, will play an important role in any experimen-
tal attempt to observe the long-time tails.

IV. DISCUSSION

We now summarize the major points of the arti-
cle. We have assumed that there exists a set of
coupled transport equations for the correlation
functions of the linear (I «) and bilinear (I,~,I,.L, '„.)
hydrodynamic variables, which possess wave-
vector- and frequency-independent transport co-
efficients. We have assumed that the bilinear
equations may be expanded analytically up to qua-
dratic order in & and 4'. We have also assumed
that we need only consider bilinear variables,
L~„.L';, for k' less than the cutoff wave vector
4'„0, is considered sufficiently small such that
the A, 4' expansion of the dynamical laws may be
consistently terminated at quadratic order. These
assumptions constitute our "model. "

The solution of the bilinear equations for the
transverse momentum density autocor relation
functions yields, by comparison with a formally
exact linear law, the k and s dependent shear vis-
cosity coefficient, q(k, s), of the true linear equa-
tions. We have seen that q(k, s) has an important
frequency dependence, and is nonanalytic in. 0;
these results are completely consistent with our
assumption of well-behaved bilinear equations.
Thus, we feel that we have dealt with the self-
consistency problem of the simpler theories ~"

discussed in the Introduction.
It is our conclusion that, as 4-0, the viscous

flux-autocorrelation function indeed decays as t"'
in two dimensions, in agreement with all the other
theories. One should note that our expressions

for the long-time part of the flux-autocorrelation
function involve the bare transport coefficient y
which does not enter into ordinary hydrodynamics;
this underscores the impossibility of obtaining a
theory of the long-time tails via linear hydrody-
namics. It is also important to note that the long-
time tails exist only as 4'- 0; this consideration
(which also applies to the three-dimensional t s~2

tails) must be taken into account when searching
for experiments to observe the long-time phenomena.

It is of interest to consider the density depen-
dence of q(k, s) [Eq. (72b)]. Recall that we have

always referred to "kinematic viscosities, " so it
is necessary to multiply our q(k, s) by a factor of

p to obtain the ordinary shear viscosity coefficient.
Furthermore, it is easy to see that a and y behave
as p"'no and p yo, respectively, where ao and yo
are independent of p for small p. Thus, we may
write the low density form of Eq. (V2b) as

pq(k, s) = no+ s ln 2~
— . (74)

pk~T ps+ 24~yo

8wyo ps + u2yo

Equation (V4) shows that the bilinear contribution
to the shear viscosity coefficient vanishes as the
density approaches zero, in agreement with the
low-density, kinetic-theory treatments of the
bilinear effects. The bare transport coefficients
are difficult to determine experimentally but could
be obtained in principle if q(k, s) were measured
over a range of k and s values.

Much further work remains to be done on the
nonlinear dynamics of collective modes. The first
problem is to extend the treatment in Sec. III to
three dimensions. We feel that a self-consistent
treatment of triple and higher-order nonlinearities
is of great importance. It is also desirable that
ihe connection between our approach and the kinetic
theories mentioned above be explored. Such an
exploration would illuminate the interrelated roles
of the density, the wave vector, and the order of
nonlinearity as expansion parameters for the col-
lective dynamical laws.

Finally, it is of interest to evaluate the conse-
quences of the nonlinear effects upon the macro-
scopic hydrodynamic equations, the equations
describing the decay to equilibrium of nonequilib-
rium averaged quantities. Work is currently in
progress upon the above-mentioned topics.

*Work supported in part by a grant from the National
Science Foundation.

~National Science Foundation Postdoctoral Fellow.
'B. J. Alder and T. E. Wainwright, Phys. Rev. A 1, 18 (1970).
2(a)M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen,

Phys. Rev. Lett. 25, 1254 (1970); Ark. Fys. 8, {1971);
Y. Pomeau, Phys. Rev. A 5, 2569 (1972). (b) Robert Zwanzig,
Proceedings of the Sixth IUPAC Conference on Statistical
Mechanics, edited by Stuart A. Rice, Karl F. Freed, and John
C. Light (University of Chicago Press, Chicago, 1972).

'K. Kawasaki, Ann. Phys. (N.Y.) 61, 1 (1970).

4L. Landau and G. Placzeck, Phys. Z. Sowjetunion 5, 172 {1934).
H. Mori, Prog. Theor. Phys. 33, 423 (1965).

~B. U. Felderhof and I. Oppenheim, Physica (The Hague)
31, 1441 (1965).

'L. Onsager, Phys. Rev. 37, 405 (1931).
J. H. Irving and J.G. Kirkwood, J.Chem. Phys. 18, 817 (1950).
M. H. Ernst and J. R. Dorfman, Physica (The Hague)

61, 157 (1972); J. R. Dorfman and E. 6. D. Cohen, Phys.
Rev. Lett. 25, 1257 (1970); Y. Pomeau, Phys. Lett. A
27, 601 (1968);James W. Dufty, Phys. Rev. A 5, 2247 (1972);
Gene F. Mazenko, report of work prior to publication.


