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Radiative corrections to the Bohm-Pines dispersion equation and the Pines-Schrieffer-Drummond

coupled pair of quasilinear equations are examined in the light of the Weisskopf-Wigner theory of line

broadening. The principal results are the natural broadening and the Lamb shift of the particle-wave

resonance condition. The dimensionless width of the nonresonant or adiabatic interaction is of the order
of a(c/y) for electron-plasmon interaction and a(v/c) for electron-photon interaction, where a is the
fine-structure constant. The Lamb shift of the resonance condition ~—k v =0 is of the order of
q'co'/n p, v' for electron-plasmon interaction and q'co'/mp, c'v for electron-photon interaction, Here co

and k are the frequency and wave vector, respectively, of the photon or the plasmon and q, p, and v

are the charge, mass, and velocity of the electron, respectively.

I. INTRODUCTION

In this paper we are interested in examining the
radiative corrections to the linear and quasilinear
theories of a spinless electron gas. In particular,
it is our aim to investigate the radiative correc-
tions to the Bohm-Pines dispersion equation'~
and the Pines-Sehrieffer-Drummond coupled pair
of quasilinear equations. ' We shall use the solu-
tions for the particle orbits as the basis of our dis-
cussion and obtain the radiative corrections with
the help of the Weisskopf-Wigner theory of the
broadening. '0 '3

The Weisskopf-Wigner theory only takes account
of the natural broadening due to radiation damp-
ing. However, there are other physical processes
that can give rise to a broadening of the current
J'(k, a) that is responsible for the emission and
absorption, i.e. , that can give rise to abroaden-
ing of the particle-wave resonance condition

—k ~ v=0. Some of these processes are (a) dis-
persion broadening (i.e. , broadening due to the
finite lifetime of a photon or a plasmon in a grow-
ing or decaying plasma wave), (b) velocity-space-
diffusion broadening (i.e. , broadening due to the
perturbations in the particle orbits caused by the
quasilinear velocity-space diffusion), (c) broaden
ing due to particle trapping (i.e. , stochastic Stark
broadening due to the finite amplitude of the photon
or the plasmon field), and (d) conventional colli-
sional broadening. We will examine processes
(a)—(d) briefly in the Appendix. Our primary con-
cern in this paper, however, will be with the
natural broadening of lines in the spectrum of
waves in a plasma and for this purpose we will
adapt the Weisskopf-Wigner theory to describe
V'

Cerenkov transitions in a plasma.
Let us first consider an electron of charge q

and mass p, moving with a velocity v in a medium
of dielectric coefficient Do. It is well known that
such an electron will emit and absorb transverse

photons as well as the longitudinal polarization or
Bohr waves. If it emits or absorbs a photon or
a quantum of the Bohr waves of energy h and
momentum hk, then its final velocity v'= v —I'k/p,
for emission and v' = v+ Kk/p, for absorption, since
the linear momentum must be conserved. Hence
the mean velocity of the electron during the emis-
sion or the absorption process is 2(v+v') = v

vhk/2p, . Thus the mean current J(r, f) that is
responsible for emission or absorption is propor-
tional to 5(r —(vvhk/2p, )t). The transition proba-
bility j for the emission or the absorption is pro-
portional to'~ '8 IJ'(k, &o) I, where J(k, &o) is the
space-time Fourier transform of J(r, f). Hence
for emission or absorption the transition prob-
ability j~5(&u —k ~ (vugh'k/2p)). This, as we shall
see later, is the result in the Golden Rule approxi-
mation. ' In this result we have neglected the
effects of radiation damping.

However, because of the emission and absorption
processes, the electron cannot stay indefinitely
in any quantum state I Pv. In emission it jumps
down to a lower state and in absorption it jumps
up to a higher state. If we now consider all the
transitions between two given quantum states I v)
and I v'), by Kirchhoff's law'0'" the transition
probability for absorption is exactly equal to the
transition probability for induced or stimulated
emission. Thus, there is no net depletion of the
quantum states Iv) or Iv') due to the combined ef-
fect of absorption and induced emission. However,
the energetically higher state is being depleted by
the spontaneous emission process. Hence the
radiative lifetime 1/y; of the quantum state I v),
say, is determined only by the total spontaneous
emission probability from this state I v), and does
not depend on the induced emission and absorption
processes. Thus the lifetime of any quantum state
does not depend on the intensity of the radiation
field. This result is quite different from that sug-
gested by the correspondence principle since clas-
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sically one might conclude that the radiation damp-
ing would be proportional to the intensity of the
radiation field. Because of the Heisenberg uncer-
tainty principle this is, however, not true in the
quantum theory.

Thus, if one takes account of the radiation damp-
ing, the current J'(r, t) that is responsible for the
emission and absorption is proportional to
5(r —(vv Sk/2p, )t) exp[ —z (y.„+y,",„pt,)t]. Hence
the transition probabilities j for emission or
absorption should be proportional to

(r;+ r; „gt.)/2~

[(u —k (v+5k/2p, )]'+ [(y;+y;, „pg„)/2]z

This, as we shall see later, is the essential. re-
sult of the Weisskopf-Wigner theory of line broad-.
ening. However, in the Weisskopf-Wigner the-
ory' ' there is a small additional correction to
this result arising from the radiative self-energy
of the quantum states I v) and Ivvhk/tz&.

We will begin with a brief review of the basic
concepts and the general results of the time-de-
pendent perturbation theory. We will then derive
the retarded f requency and wave-vector-dependent
linear dielectric coefficient appropriate for the
description of the collective behavior of the elec-
tron gas under consideration. It will be seen that
the dielectric coefficient can be obtained from a
knowledge of the quantum-mechanical transition
probabilities for the emission and absorption of
the photons or the plasmons (that is, from a knowl-
edge of the Einstein A and 8 coefficients).
Throughout this paper we will treat the emission
and the absorption of both the transverse photons
and the longitudinal plasmons on a somewhat
similar footing. That is to say that the method of
analysis presented in this paper is applicable
equally well both for the transverse photons and
the longitudinal plasmons. Furthermore, the
method of analysis presented in this paper dictates
how one should apply the radiative corrections.

By making use of the principle of detailed bal-
ance, we then derive the coupled pair of quasilinear
equations, one describing the time evolution of the
photon or the plasmon distribution function and the
other describing the time evolution of the 'electron
distribution function. In the Golden Rule approxi-
mation, the equation for the time rate of change
of the electron distribution function reduces, in the
classical limit, to a Fokker-Planck equation
in which there appear the usual diffusion and
dynamical friction terms. We will show that the
Golden Rule approximation of the coupled pair of
quasilinear equations which deal only with the ef-
fect of waves on resonant electrons conserves both
the energy and momentum, contrary to the state-
ment found in the literature.

We then examine in detail the proper radiative
corrections to the linear and the quasilinear the-
ories of the spinless electron gas. Here we follow
the Weisskopf-Wigner theory of line broadening.
We will show that according to Weisskopf and
Wigner the width of the nonresonant or the adiabatic
interaction is determined by the reciprocal of the
lifetime of the quantum state of the electron. It
will be seen that this Weisskopf-Wigner result for
the width of the nonresonant or the adiabatic in-
teraction is consistent both with the law of
causality and the Heisenberg uncertainty principle.
Furthermore, we will evaluate explicitly the
Lamb shift ' ' of the particle-wave resonance con-
dition (both for the photon and the plasmon emis-
sion and absorption processes). This Lamb shift
arises from the self-energy of the quantum states
of the electron. ' '

II. REVIEW OF BASIC CONCEPTS

The Hamiltonian K of an electron gas and the
radiation field may be written

where

Hl. & =E„l.& (2)

and II„, is the interaction Hamiltonian that is re-
sponsible for the emission and absorption of
photons and plasmons. According to the Golden
Rule of time-dependent perturbation theory, the
transition probability j (f; i) from an initial state
li) of energy E, to a final state I f) of energy Et
is given by'

j(f'z) = (2~/@& I(flHz. zl z&l'5«t -«& (3)

j(f;z) =(»«)l&flTlz&l'5(Et-Ei»
where

(f I
z'I i &

=
& f I

p
l
i &+ g & f 1 Hz, z If')& f' I T I z &

ftgf E) Eft
(5)

where I f') is an intermediate state of energy Et. .
The series solution of the integral equation (5)
may be written

(fl Tl ) = &fly l ) g ( f IH)~zlf')(f'I nHl z)zz
int ~ +

(f IH„, I f')( f'I H„, I f")(f"IH„, I i)
ytgf fttgf (E, —Ef.)(E; —Ef, I )

By making use of Eq (3) and . the principle of de-
tailed balance, we will later derive both the Bohm-
Pines dispersion equation and the Pines-
Schrieffer-Drummond coupled pair of quasilinear
equations. However, the right-hand side of Eq.
(3) is only the first term of the series solution of
the integral equation due to Heitler and Ma. ' Ac-
cording to Heitler and Ma, the transition probability
j(f; i) is given by
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'Yy, g ='Yy+'Yg y

~y, g
= ~]—~y

y„=Z j»(n';n) such that E„.«E„,
n'

(6)

(9)

(1O)

+ ~ ~ ~ (6)

where I f") is another intermediate state of energy
E&i, . The higher-order terms of Eqs. (5) and (6)
will yield all the nonlinear processes (such as the
nonlinear mode coupling, nonlinear I andau damp-
ing, and nonlinear decay interactions) of the theory
of electron gas. However, in this paper we are
concerned only with the linear and the quasilinear
theories of the electron gas. In particular, our
aim is to examine the radiative corrections to
the linear and the quasilineax theories of electron
gas in the light of the Weisskopf-Wigner theory of
line broadening.

According to Weisskopf and Wigner, the transi-
tion probability j (f; i) that takes account of the
radiative corrections is given by

j(f; )=(2./~))&f H...[
))'

by, , ,/2v
(E~ —E, —~~,)'+ (-,

'
hyq, )'

where

jz(v; v') = (X»+ 1)M5;.,;,» „-(,5((o —k ~ (v+ h k/2p))
(12)

j~(vj v ) =N»M6~tt»~) 6(Q7 —k ~ (v @k/2p))

( )
RIll

jz(v"; v) =(N»+1)M5.„",;.„„.), 5((o —k (v —hk/2p)),
(»)

em q
'Ir(8/etd, )(~'a,))
IZ» v I for transverse photons

X
((d/k) for plasmons

Here I.3 is the volume, N~ represents the number
of photons or plasmons, and the Kronecker 5'8
and the Dirac 5 functions indicate the conservation
of linear momentum and energy, respectively.
I et NOF(v) represent the number of electrons per
unit volume which are in the quantum state I v).
By applying the principle of detailed balance for
the transltlon px'obabllltles pex' unit volume of
emission and absorption, we get

d iV [F( ') (. ') F() (' )]

(17)

Here jsz (n'; n) is the transition probability for
spontaneous emission of photons or plasmons from
a state In) to an energetically lower state In' )
and ~„is the self-energy of the state In). It is
important to note that the spontaneous-emission
probability jaz is always greater than or equal to
zero and is independent of the statistical population
of the quantum states. Hence y& &

& 0 always, ir-
respective of whether the statistical population of
the quantum states is normal or inverted. That
is to say, the Weisskopf-Wigner transition prob-
ability of Eq. (7) satisfies the requirements of
the causality principle (which states that the effect
should not precede the cause) and always reduces
to the Fermi Golden-Pule result of Eq. (3) when
one neglects the radiative corrections, regardless
of the statistical population of the quantum states.

III. THEORY IN GOLDEN RULE APPROXIMATION

We now consider the emission and absorption
processes illustrated ln Figs. 1 and 2. In the
Golden Rule approximation, it is relatively easy
to show that the txansition pxobabilities for absorp-
tion j„and emission j~ of a photon or a plasmon
of momentum Sk, energy A~, and polarization
vector &~ are given by 5 ~~'3~'38

j„(v'; v) =X~5;. v.„g(,6(~ —k ~ (v+ hk/2p, )), (12)

+F(v")j„(v;v") F(v)jz(v"—; v)]

for a nondegenerate electron gas, and

j
dv No(F(v') [1 —F(v)]j z(v; v')

-F(v)[1-F(v')]j&(v'; v)], (19)

=Q Z (F(v')[I -F(v)]jz(v; v")

—F(v)[1-F(v')]j „(v'; v)

+F(v")[1-F(v)]j „(v;v")

—F(v)[1 —F(v")]jz(v"; v)] (20)

for a degenerate electxon gas. These are the
coupled pair of quasilinear equations. In general,
however, it is extremely difficult to solve the
coupled pair of quasilinear equations, since at
any instant of time the xate of change of the photon
or the plasmon distribution function depends on
the instantaneous value of the electxon distribution
function, and the rate of change of the electron
distribution function, in turn, depends on the in-
stantaneous value of the photon or the pI.asmon
distribution function. Nevertheless, one can show
that if the probability function F(v) is normal,
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FIG. 1. Emission and absorption
of a photon or a plasmon by an elec-
tron.

then the absorption will exceed the induced or
stimulated emission and the coupled pair of quasi-
linear equations will always drive the system
towards thermodynamic equilibrium. But if under
certain circumstances the probability function
E(v) exhibits an inverted population of states, then
the induced or stimulated emission will exceed
the absorption and consequently the electron gas
will exhibit maser action for photons or plasmons
(that is, the familiar two-stream instability).
Fox a system that exhibits maser action, if the
photon or the plasmon density is sufficiently low
so that one could neglect the higher-order Heitler-
Ma terms of Eqs. (5) or (6) (that is, if one could
neglect nonlinear mode coupling, nonlinear
Landau damping, nonlinear decay interactions,
etc. ) then t116 coupled pRlr of quaslllnear equa-
tions will drive the system not towards thermo-
dynamic equilibrium but towards the Drummond-
Pines quasilinear steady state. 4'39'30

Although the evolution of the system (for both
growing and damped waves) is always determined
by the coupled pair of quasilinear equations, ' it
is physically instructive to examine the solution
of Eq, (1V) ol' (l9) when E(v) ls vel'y 116R1' Its
steady-state value. If we assume N„=O at t=0,
then the solution of Eq. (1V) 01' (19) ls of 't116 form
N~o-1 —e ~', where

2r»= f dv (I.'II,M)5((o -k (v+1k/2p, ))

&&[&(v) -Z(v+ nk/il) j {aS)

in the Golden Rule approximation. Since the dis-
sipation or the absorption of energy by any system
is represented by the anti-Hermitian part of the

dielectric tensor appropriate for the description
of the system on can easily show'8' that the
imaginary part of the dielectric coefficient
ImD(&o, k) = —(Do/(d)21"». Thus, on making use of
the well-known Kramers-Kronig relations '33 we
get

D((d, k) =Do —Um dv(I ROM)j 0
-0+ geo

F(v) —E(v+ )Ifk/p, )
(() —k ' (v+ Rk/21I) —Ip

Equation (22) can be easily rewritten in the Bohm-
Pines form" 34

(a, )
) „I(I.'z,Mm')

&(v)
X . 2 p» (23)

((d —k ~ v —iy) —(% /2p, )

Since the energy S~ in the electromagnetic wave or
the plasma wave is S„=N„~ and since by Taylor-
series expansion

q(v ~ I) v) = [1~ (rH V )

+» (&v V„){&v v„)+ ~ ~ ](t(v), (24)

one can show that the classical limits (of the
Golden Rule approximation) of the coupled pair of
Eqs. (1V) and (16) become

)

dv(I%tv(v)f)( 5(vt-I v)I .v„) (v)

+vn(tv -I v))'(v)) (mri)

(Nk-l) PHOTONS

OR PLASMONS

j (v;v}
E

Nk PHo ToNS
—+ ~ OR PLASMQNS

j(v;v }
A

FIG. 2. Emission and absorption
of a photon or a plasmon by an elec-
tron.
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and

BS& ~ L Q„fj,g BF(v)
Bt J 2 Bt

(27)

"
~v (Ls~ l v-) (26)

Thus, the Golden Rule approximation of the coupled
pair of quasilinear equations which deal only with
the effects of waves on resonant electrons con-
serves both the energy and momentum, contrary
to the statement found in the literature. ~3 This
result is hardly surprising and is simply a mani-
festation of the conservation laws implied by the
Kronecker 5's and the Dirac 5 functions of Eqs.
(»)-(»).

The elements of the velocity-space diffusion
tensor of Eq. (26) may be written

(29)

Thus we see that in the Golden Rule approximation
one gets only a resonant diffusion of Eq. (29) for
both the damped and growing electromagnetic wave
or the plasma wave. For damped waves this
resonant diffusion is partly responsible for driving
the system towards thermodynamic equilibrium,
while for growing waves it is partly responsible
for driving the system towards the Drummond-
Pines quasilinear steady state.

In Sec. IV we will examine the generalization of
the results of Eq. (29) in the light of Weisskopf-
%igner theory of line broadening.

IV. RADIATIVE CORRECTIONS

Our aim now is to examine the radiative correc-
tions to the linear dielectric coefficient and the
coupled pair of quasilinear equations. Here we
will make use of the Weisskopf-signer improved
solution of the equations of the perturbation theory.

=z E —(
' f v, [()(ra —k v)K v. s'(v)]

P ('d

+~E v„[s((o-k v)s(v)]) . (2())

It is seen that Eq. (26) is a Fokker-Planck equa-
tion whose first and second terms represent a dif-
fusion and dynamical friction, respectively. This
is simply a manifestation of the fact that, owing
to Cerenkov emission and absorption of photons or
plasmons, the electrons must undergo a recoil in
order to conserve both energy and momentum, and
this recoil motion of the electrons is essentially
a Brownian motion in velocity space. From the
point of view of the conservation laws of energy
and momentum the coupled pair of Eqs. (25) and

(26) is self-consistent since

In the Golden Rule approximation, the transition
probability j (f; i) from an initial state I i) of en-
ergy E& to a final state I f) of energy E& is given
by Eq. (3) and this approximation is valid only for
a time t which is small compared with y& „where
y&„. is given by Eqs. (8) and (10). Furthermore,
in the Golden Rule approximation both the energy
and the momentum are strictly conserved and con-
sequently the electron-photon or the electron-
plasmon interaction is resonant. The energy con-
servation is explicitly stated in Eq. (3) by the
Dirac 5 function, while the momentum conserva-
tion is implicit in the matrix element of the inter-
action Hamiltonian.

However, according to the Heisenberg uncer-
tainty relation (BE)(6t)=h. This uncertainty rela-
tion states that the energy of a system is only
known with an accuracy 5E if, for the measure-
ment of the energy, a time 5t is available. In our
case the initial state li) has a lifetime 1/y~ and the
final state I f) has a lifetime 1/y&. Therefore, the
energy of the initial state is only defined with an
uncertainty BE&=By, and that of the final state is
uncertain by 5E&™8y&.Hence the frequency of the
emitted or the absorbed line will have the breadth
5(()f f

= (BE&+BZ,)/5 = y&+ y[ =y&, . This is then the
natural width of the nonresonant or the adiabatic
electron-photon or the electron-plasmon interac-
tion. Furthermore, according to the second-order
perturbation theory, the initial and final states
should have the self-energy corrections ~, and

~&, respectively, due to transitions via, inter-
mediate states. This means a correction 4~& &

= —~&, ,/I= (~& —~,)/I to the frequency (d&, ,
= (Z& —E;)/8' of the emitted or absorbed line. This
is the familiar Lamb shift. Thus, according to
Weisskopf and Wigner the transition probability
j (f; i) that takes account of the radiative correc-
tions is given by Eq. (7) and this improved formula
for j (f; i) is valid not only for times t which are
small compared with 1/y&, , but also for times f
comparable with 1/y&„.

From Eq. (15) we get the following transition
probability for spontaneous emission jss of a photon
or a pla, smon of momentum Sk, energy S~, and
polarization vector &„ by an electron in an initial
state I v):

js z=~ jss(v"; v) =MB((d —k (v —hk/2p, ))
(30)

where M is given by Eq. (16). Hence the recip-
rocal of the radiative lifetime of the state I v) is
given by

y„- =Z Z MB(ur —k (v -Kk/2p)) (31)

and the radiative self-energy of the state Iv) is
given by
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~ZZ
g & —k (v —hk/2g)

k

Here P denotes the principal value and

g v
»

hc c
where

d& 1 —
& 1+Dp 2 + —Dp

(36)

3

2,'[ ]-(—
]

asl' dn[ ],
"0

(33)

where dQ is the element of solid angle. Let 8 be
the angle between the vectors k and v. Then
k ~ v=-kvcos8 and dQ=2msin8d8. From Eqs. (16),
(31), and (33) for plasmons we get

2r

Bpq»
L kB([,] Dp)/B[d k

&&5((o]+hk /2y. ) —kv cos8)

(34)

But for plasmons» is approximately the plasma
frequency pop = (4&Noq /Dpi], )'~' and hence y; of
Eq. (34) is logarithmically divergent both at small
and large k. However, since»=»p=k ~ v=kv cos8,
k ~ o]p/v, and since the plasmon wavelength must
be larger than the plasma Debye length k S &op/vo,

where vp is the statistical average thermal ve-
locity of the electron gas under consideration.
Hence Eq. (34) becomes

(39)
It may be noted that (1/v) (By;/B&) d[o is the Gins-
burg expression for the number of quanta with
angular frequency between & and»+d» sponta-
neously emitted per unit distance by a particle of
charge q and mass p, moving with a speed v

through a dielectric of dielectric coefficient Dp.
It might appear that o] of Eq. (39) is divergent at
large». This apparent divergence is not a phys-
ical reality, of course. Since the velocity of
propagation for high frequencies in a dielectric ap-
proaches its vacuum value, Dp(&o) will become
smaller than c /v for sufficiently large values
of [d, and [o of Eq. (39) is finite. oo

Let us now examine the radiative self-energy of
the quantum state Iv). From Eqs. (16), (32), and

(33) for plasmon emission and absorption we get

~;=— —P
l

dk d cos8

1
cos8 —([d + f8o'/2 p, )/kv

for v&vp x ln c1(&o+hk /2p) —kv l

([o+ hk'/2p)+kv (40)

that ia, for plasmon emission and absorption

yy = o]o(q /hvDo) 1n(v/vo) for v vo

for v&vp (36)

It may be pointed out that by using a somewhat
more rigorous analysis one can show that the im-
proved form of Eq. (36) may be written '

For plasmons & =[do, k ~=&up/vo k g Q)p/v, and
following Bethe it seems permissible to consider
the logarithm as a constant (independent of k) in
the first approximation. Hence Eq. (40) may be
rewritten in the form

'Yv = &o(q /hvDo) I (vo/v)K] (vo/v)Ko(vp/v) j (3V)

for all v, where K,(x) is the modified Bessel func-
tion of order v. For transverse photons

Q ~o„vl'=v'sin'8

and k dk = ([o Doo~ /c ) d[d. Hence for photons from
Eqs. (16), (31), and (33) we get

3 2D3]r'2
y"„= —

! d» i de 2p sin8» p

2m „ c'
2 2

L hB((u Do)/B(u

x 6((&o + hk /2 p) —kv cos8)

where the angular brackets refer to an average
value. That is, for plasmon emission and absorp-
tion, the self-energy of the quantum state i v)
may be written

I (&up+ hk'/2]u) —kv i

(o]o+ hk'/2p) + kv

A rough estimate of the average value of the
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logarithm may be written

(
I ((do+ SP/2p) —Ivlv I z ( ( ) ( )
( IIvk/2 ) y

k [ k-k~(k k-kk)kk]

1 SQ)0

Iff(oo —2pv(')[(v/v, ) —1]l 42)
@& o+2pvo[(v/vo)+1]

For the emission and absorption of transverse
photons, from Eqs. (16), (32), and (33) one finds,
after a certain amount of algebra, that the radia-
tive self-energy of the quantum state Iv) may be
written

rhE~ = —P d(g p

d(cos8) [1 —coso8]
cos8 —(c/Do "v)[1+(k Do)(K(o/pc')]

where

u.]~II (,', ) I,a,(-".).—,'n, (") I
I (c/D,' 'v) [1+-,' Do(K(o/pc')] —1 I

(c/D'o "v)[1+—,
' Do(K(d/pc')]+ 1

1+ —&0 3 44

and we have used the relation Do = (ck/(d) .
Let us again consider the emission and absorp-

tion processes illustrated in Figs. 1 and 2. In
the Weisskopf-Wigner approximation, that is,
from Eq. (7), we get the following transition prob-
abilities for absorption j„and emission j~ of a
photon or a plasmon of momentum Ak, energy 5~,
and polarization vector &~:

j /((v'I v) = Nkt[/15v, v.k a/ u

[(d —k ' (v+ 5k/2p) bE v/8] + (k y«v «) j

js(v;v') = (Nk+1)M5;v;, kk/„

yvv, v/2([

[« —% (vv II)v/2g) —IvZ;;. /II]'+(-', y;. ;)' ) '

(46)
j „(v; v ') =N~Q",„,k „&

[tv —Iv ~ (v —IIX/2 W) m;-;, /Ir]' -v (] y;...;)' ) '

(4V)

j@(v q v) = (Nk+ 1)M5~~& ~ «q kf/ ~

y;«.-„/2((

[(d -k ~ (v —hk/2p) —bE;" -„/a]'+(-,'y;. , ;)'
(46)

where M is given by Eq. (16). lt should be noted
that the frequency shift in both Eqs. (45) and (46)
is the same both in magnitude and sign. Similarly
the Lamb shift in Eqs. (4V) and (46) is the same
both in magnitude and sign. Thus we see that the
Weisskopf- Wigner approximation is consistent
with the Kirchhoff radiation law.

On making use of Eqs. (45) and (46) in Eqs. (17)
and (19), one sees readily that in the Weisskopf-
Wigner approximation one has to replace the
Dirac 5 function 5((o —k (v+ Rk/2p)} in Eq. (21)
by the factor

y;.x k/. ,,-/2~
[(o —k (v+ h k/2 p) - bE", -„.„-k

&
~/5]'+ (—', y-„,„-„/,-)' '

lt is seen from Eq. (21) that in the Golden Rule
approximation the Landau growth or damping of a
plasmon or a photon is resonant. That is to say,
a plasmon or a photon will have a damping or a
growth only from the resonant electrons whose
velocity v satisfies the condition (o —k ~ (v+ hk/2p)
= 0. However, in the Weisskopf-signer approxi-
mation, there exists a nonresonant or adiabatic
electron-plasmon or electron-photon interaction
due to the finite (but positive definite) value of
y"„„„-~~-, = 2y"„. Hence, there exists a nonresonant
or adiabatic contribution to the growth or damping
of a, plasmon or a photon. This is a direct con-
sequence of the Heisenberg uncertainty principle.
Furthermore, in the limit y-„,„»«„-„-0', the growth
or the damping of a plasmon or a photon is differ-
ent from zero only when (d —k ~ (v+ Sk/2p)
—bE", "„»»/5=0, that is, if the energy, including
any displacements of the energy levels caused by
the interaction with radiation, is conserved. How-
ever, it should be emphasized that one is never
allowed to take the noncausal limit y»„,„«~ - 0,
since y"„„«„,"„»0 always. That is to say if the
statistical population of the quantum states is nor-
mal then the plasmon or the photon is always
damped, while if the population is inverted then
the plasmon or the photon is always growing (in
accordance with the causality principle).

In this Weisskopf-signer approximation, the
retarded-f requency- and wave-vector-dependent
dielectric coefficient may be written

D, I.'N, M[I (v) Z(v+ a /p)]-
([(d [(o —k ~ (v+ Kk/2 p) —bE;,;,k f /, /h] —i(-,' y;.„];/„„-)
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Equation (49) can be rewritten in the form

( ~ D() ~ (L NOM)F(v) Kk bEy~~g/)) + ~~
4 3'& $3

(50)

where

Si -—(() —k v —~)) ~))])')/)/)(I a—i'Y~+)))(./(, ~
—% /2'

(51)
and

a ~ 2ys=z —k v —AE; „f,&„,/ff —,i-y-„„-„]., &
+5k /2p.

(52)
Here we have made use of Eqs. (8) and (9). By
Taylor-series expansion we get

m;,„-„„=[1~(h/q)(k V„)

+-.'(a/i], )'(k V„)(k V„)+" ]~ (53)

y;,„-„,.=[1~(a/q)(k 0„)

+-.'(a/i)'(k V )(k V„)+" ]~;. (54)

On making use of Eqs. (8), (9), (53), and (54), the
approximate form of Eq. (50) may be written

~( k Do d
(I, NOM)F(v)[lk /p, +2m /5+i(K/i))(k' v )y ]

)]sr .'

[(o —k v —(1/]u)(k i )m-„—iy;]' —(m"/2)u)' (55)

Here we have retained only the leading nonzero
term in the Taylor-series expansions of Eqs. (53)
and (54). This approximate result of Eq. (55) is
of the Bohm-Pines form and is to be compared
with the result of Eq. (23). However, the result
of Eq. (49) is much more complete and is the full
result in the Weisskopf-Wigner approximation.
We should perhaps emphasize that y-„,&-„&„,- ~ 0 al-
ways, regardless of the sign of I"~.

Let us now examine the quasilinear theory of the

electron gas. In the Weisskopf-Wigner approxi-
mation, by making use of Eqs. (45)-(48) in Eqs.
(1V) and (18) one gets the coupled pair of quasi-
linear equations for a nondegenerate electron
gas, while the use of Eqs. (45)-(48) in Eqs. (19)
and (20) yields the coupled pair of quasilinear
equations for a degenerate electron gas. Thus,
in the Weisskopf-Wigner approximation the coupled
pair of quasilinear Eqs. (1V) and (18), for ex-
ample, may be written

dvL NoM(( g ( ))&('2 )
'*I~'

y )] ( )s [(M +1) (v+RR)/P) —NP'(v)])

sF(v)
[(N, +1)F(v+ak/I ) -N~(v)]

y, „(„,, 27t —l
N -kk —N lE (5V)

respectively. Similarly one can easily write down
the Weisskopf-Wigner approximation of the
coupled pair of quasilinear Eqs. (19) and (20) ap-
propriate for the degenerate electron gas.

It is interesting and physically instructive to
examine the quasiclassical limit of the coupled
pair of quasilinear Eqs. (56) and (5V). By quasi-
classical limit we mean the limit in which h 0
keeping the dimensionless fine-structure constant
n =q /I'c finite. The approximate value of n is

The fine-structure constant e is the electron-
electromagnetic field coupling constant and the
radiative corrections are generally obtained as a
power-series expansion in e. If one blindly takes
the classical limit by letting N-O, then e-and
hence all the radiative corrections will be infinite.

On making use of Eqs. (8), (9), (24), (53), and
(54), we find, after a certain amount of algebra,
that the quasiclassical limits of the coupled pair
of Eqs. (56) and (5V) become
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and

~

rtv t.'NvMk(~ k(rv, k, vIk rr„k(v)

+ rvk(rv, k, v)E(v)):(i!6k)

[(id —k v) —(I/p)(k. V„)m",]'+yf
(58}

Here we have retained only the leading nonzero
term in the Taylor-series expansions of Eqs. (53)
and (54). In this approximation, it is interesting
to note that Eq. (57a) is a Fokker-Planck equation
whose first and second terms represent a diffusion
and dynamical friction, respectively. Here again
one can examine the self-consistency of this
coupled pair of Eqs. (56a) and (57a) for the con-
servation laws of energy and momentum. On mak-
ing use of Eqs. (56a) and (57a), it is relatively
easy to show that Eq. (28) is satisfied, and further

Bh»
i

~ » pv BE(v)
2

(59)
since within the limits allowed by the Heisenberg
uncertainty principle &o -k ~ v —(I/p)(k ~ V„)~;= 0.
To prove these results one simply has to integrate
the right-hand sides of Eqs. (28) and (59) once by
parts and make use of the fact that F(v) vanishes
at v=+~. The left-hand sides of Eqs. (28) and
(59) represent the average rate of gain of the wave
momentum and the wave energy, respectively,
and the right-hand sides of these equations repre-
sent the average rate of loss of the momentum
and the energy (including the self-energy), respec-
tively, of the I. No electrons (both the resonant and
the nonresonant electrons) inside the box of volume
I 3

The elements of the velocity-space diffusion
tensor of Eq. (57a) may be written

-Z Z
~

~ k ~ v„[)f((o,k, v)k ~ v'„F(v ]
s» Rid &0

+ rvk ' V„ lk(rv, k, v)k(v)I), (5 tk)'

respectively, where

for v&vo

for electron-plasmon interaction, and

r,"/~ = a(v/c)

(61)

(62)

for electron-photon interaction. The fine-struc-
ture constant oi=q /Ic=+~. Since

v 8 Q 8k'V„= k
v Bv v ev

from Eqs. (41) and (43), we find that the Lamb
shift of the particle-wave resonance condition is
given by

g (do v2 2

(k ~ v„)~;=— 3 1 —ln—
P 'tl P +pv vo

lo+Sk' 2P, -kv l

((dp+ Ak /2p, ) +kv )
for plasmon emission and absorption and

for photon emission and absorption.
We have seen that y-„ is the total spontaneous

emission probability from the quantum state Iv).
Hence, according to the Heisenberg uncertainty
principle, I/y,"is the lifetime of the quantum state
Iv). However, I/y, is not the radiative slowing-
down time of the particle. Since the total rate of
spontaneous emission of energy from this state is
~y;, we can define a radiative slowing-down time
wk for the particle of velocity v by the relation40

determined by y„. (the reciprocal of the lifetime
of the quantum state Iv)). Additional sources of
line broadening are discussed in the Appendix.
It is also seen from Eq. (60) that the usual par-
ticle-wave resonance condition & -k ~ v=o is
modified by the Lamb shift to yield + —k ' v —(I/p)
x (k ~ V'„)K-„=0.

Let us now examine the order of magnitude of
both the width of the nonresonant or adiabatic elec-
tron-plasmon or electron-photon interaction and
the Lamb shift of the particle-wave resonance
condition. From Eqs. (36) and (38) it is readily
seen that the dimensionless width of the nonreso-
nant interaction is given by

y",/+0= n(c/vDO) in(v/vo) for v & vo

" [(rv-k v) —(titr)(k v)rkk;J'vyr, ) ' (60)

Thus, according to Weisskopf and signer, the
result of Eq. (60) is the proper generalization of
the Golden Rule result of Eq. (29). We see then
that the width of the nonresonant or adiabatic elec-
tron-photon or electron-plasmon interaction is

(65)

hence

I/vv = (W/ p, v')y-

For most cases of practical interest Ku/pv « I
and hence 7,»y;, that is, the radiative slowing-
down time of the particle of velocity v is very
much larger than the radiative lifetime of the



1362 V. ARUNASALAM

quantum state lv) of the particle. This, of course,
is a necessary criterion for the validity of the
entire analysis presented in this paper.

V. THEORETICAL LIMITATIONS AND EXPERIMENTAL
IMPLICATIONS

For plasmons (longitudinal waves, vo «c) the
quantum perturbation theory is meaningful if and

only if (y„-/vo) ~«1; that is, if and only if v,/c
»o, /2. 7, since it can be easily shown from Eq.
(61) that the maximum value (y"„/uo) ~= nc/2. 7vo.
This means that any result of quantum perturba-
tion theory of plasmons (i. e. , the Golden Rule ap-
proximation, the Weisskopf-Wigner approxima-
tion, and the entire Heitler-Ma expansion) is
meaningful if and only if the temperature of the
electron gas is very much greater than 3.7 eV.
However, for photon emission and absorption
(transverse waves, vo = c) it is seen from Eq. (62)
that the results of the quantum perturbation theory
are meaningful for plasmas of any temperature.
This intrinsic difference between the plasmon and
the photon processes in an electron gas [for ex-
ample, the difference in the results of Eqs. (61)
and (62)] can easily be traced back to the corre-
sponding difference in the square of the interaction
matrix element M of Eq. (16). In an approximate
sense, the dimensionless expansion parameter in
quantum electrodynamics is the appropriate fine-
structure constant q /hvar = o,c/vo, and the quantum

perturbation theory is meaningful if and only if
this coupling constant is very much less than 1.

We go now to look at the experimental implica-
tions of this analysis. The broadening will affect
the plasma dielectric function, the velocity-space
diffusion, and the wave energy spectrum. We
discuss these in turn.

With respect to the effect of y; on the dielectric
function, we note from Eq. (61) that for the bulk
of plasma electrons (i. e. , volvo) y;=0. This
means that ReD(co, k) is essentially the same both
in the Golden Rule approximation and in the Weiss-
kopf-Wigner approximation. If &E/&v does not

change appreciably in the velocity interval (ur -y-„)j
k ~ v - (&u+ y;)jk, then ImD(a&, k) is also essentially
the same both in the Golden Rule approximation
and in the Weisskopf-Wigner approximation. How-
ever, if BE/sv does change appreciably in this
velocity interval, then the result for ImD(v, k) in
the Weisskopf-Wigner approximation will be dif-
ferent from that in the Golden Rule approximation.
Since the damping or growth rate 1 ~ of the plasma
waves is I'» = —(&o/2Do) ImD(e, k), it appears that
with suitably chosen distributions F(v) one may be
able to experimentally verify the predictions of
the Weisskopf-Wigner theory of line broadening.

We observe here with regard to the choice, in
Eq. (35), of k =AD, that this assumption is quite

reasonable for the problem discussed in this
paper, i.e. , the approach to equilibrium of elec-
trons and the thermally excited plasmons. As the
system approaches thermodynamic equilibrium,
by the equipartition theorem the energy S~ will ap-
proach the value zT= pvo for every k~k =~o/vo.
According to Weisskopf and Wigner the approach
to equilibrium is governed by the coupled pair of
Eqs. (56a) and (57a). However, in a particular
experiment where particle diffusion is important,
the range of k may be more restricted. For ex-
ample, let us now consider a collisionless beam-
plasma system. This system is, of course, ini-
tially unstable, but if the beam-electron density
is sufficiently small, it is a weak instability. The
beam electrons will raise the level of plasma
oscillations (i.e. , the value of 8») for values of k

in the restricted range k „=no/vD k k ~ (oo/

(vD —vB), where vD is the beam velocity and vB is
the velocity spread of the beam. Thus, for the
beam electrons, Eq. (34) yields

yB/&o = (q'/hv DDo) ln(k jk „)
= (q'/hvDDo) ln[vD/(vD vB)l

=(q'/nvDDo)(vB/vD) for vB«vD . (67)

The velocity-space diffusion of t'he beam electrons
depends now on yB, SB-g» ($»yB/v)[(ur —k v)

+yB], and the frequency width of the unstable
wave spectrum due to radiation damping will also
depend on ygq

~&/&o = 'YB/&o

If the initially unstable beam-plasma system is
long enough so that the unstable plasma waves can
undergo a sufficient number of e-foldings, it will
eventually reach the Drummond-Pines quasilinear
steady state. At the quasilinear steady state
&F/av = 0 and 8(&8F/Sv)/av = 0 in the range of
initially unstable phase velocities. That is, in the
quasilinear steady state the initially unstable waves
are now neither growing nor damped and the beam
electrons no longer diffuse in velocity space. Con-
sequently, one would expect the dispersion broad-
ening and the velocity-space diffusion broadening
to vanish in the quasilinear steady state. Further-
more, if, in the quasilinear steady state, S~ „&„
is sufficiently small so that one could neglect the
broadening due to particle trapping, then for a
homogeneous system (a plasma in which the broad-
ening due the spatial variations in the plasma fre-
quency is zero) the frequency width of the wave

spectrum at quasilinear steady state should be
given by Eq. (68). Hence it appears that one
should be able to experimentally verify the Weiss-
kopf-Wigner theory by examining the frequency
spectrum of waves for the quasilinear steady state
of an initially weakly unstable beam-plasma sys-
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tern. For example, for the experimental condi-
tions of Fig. 4 of Arunasalam, Heald, and Sinnis
(Ref. 30), we find that ye/p&p=5. 2%%up. Hence the
expected Weisskopf-Wigner full width is 2ys/p&p
= 10.4%%up. However, the experimentally measured
fractional full width was only 5. 5%%up. We do not
understand this factor-of-2 discrepancy between
the predictions of Weisskopf-Wigner theory of
line broadening and the experimental results of
Arunasalam, Heald, and Sinnis (Ref. 30).
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5)„=(q &p//l DpV )I l

u„„= &„„= (q'lop/2/2'Dpv')[(v'/pl'p)I, —I ,],
where

(Al)

(A2)

for plasmons, and

q &gS~ f c
+e2

p cv ), &ov

gg yy I
dQ) ~ P, g g 1 —

D 22p cv c Dov

for photons. It is interesting to note that for
plasmons n„of Eq. (Al) will agree with the cor-
responding result found in Ref. 8 if we write
I,= h2.„ /„. From Eq. (60), one can show that
the leading term of the contribution h,B&& to S;&
of Eqs. (Al) and (A3) due to the nonresonant elec-
trons (i.e. , the contribution from y;) is given by

0,,&„=b,&„„=b & „=(2y",q /3& AD& )I (A4),

for plasmons [i.e. , for Eqs. (Al)] and

SD2/2 2 2

2(a,u„)=a,5)„„=a,n,„=) d(o 6
15mp, c

(A5}
for photons [i.e. , for Eqs. (A3)]. Similarly, one

can show that the leading term of the Lamb-shift
contribution b2Q, / to the I),/ of Eqs. (Al) and (A3)
is given by

(A6)

APPENDIX

If we choose the 2 axis along the particle velocity
v, one can show from Eq. (29) (after somewhat
lengthy algebra) that, in the Golden Rule approxi-
mation, the nonzero elements of the velocity-space
diffusion tensor are given by

Let us now make a rough estimate of the higher-
order Heitler-Ma terms (that is, the terms corre-
sponding to nonlinear mode coupling, nonlinear
Landau damping, etc. }. We shall do this only for
the case of plasmons, and for this purpose we will
assume that the Golden Rule approximation results
are of order unity. The Heitler-Ma expansion
corresponds to the multipole expansion of e' ' '
=e' "j", where r» andv, are the amplitudes of the
position and velocity oscillations of the electron
in the existing wave field. The dipole approxima-
tion e'"'~~"= 1 corresponds to the Golden Rule ap-
proximation. Thus the matrix element of the next
Heitler-Ma term is of order ik . vol and the cor-
responding transition probabilities are of order

haik

~ vJcu I . One can easily show that

L Nopvo

for the case of plasmons, since &=»~ kvo. Since
I2 is of order /2 I l = &upI, /v, we find from Eqs.
(Al) and (A4) that ElS„/X)„ is of order y;/&up.
Hence the radiative corrections will dominate over
the higher-order Heitler-Ma terms if y2/pip & p ~.
However, the ' Golden Rule approximation (and,
indeed, the entire perturbation-expansion proce-
dure) is meaningful if and only if y",/+p & l.

Thus far nothing has been said about the effects
of particle trapping. This is a highly nonlinear
process and does not seem to fall within the frame-
work of the Heitler-Ma formalism. The effect of
particle trapping in the periodic potential of a
single ply, sma wave is to replace the free-particle
wave function by the appropriate Bloch wave func-
tion and, as a consequence, lead to a Stark splitting
of the energy levels of the particle in the box.
For a stochastic distribution of plasma waves this
will lead to a Stark broadening of the energy
levels, and this broadening is of order P'/2. Be-
cause of the Heisenberg uncertainty principle this
will give rise to a broadening of the particle-
wave resonance condition, and this is of order
pl/2

The diffusion-dependent broadening found in
Ref. 20 can to some extent be looked upon as an
iterative solution of the coupled pair of nonlinear
equations for a turbulent plasma. That is, having
first arrived at the coupled pair of quasilinear
equations in the Golden Rule approximation, one
may assume that the "new oscillating test-charge
density" T(k, lp, 'Ll) in a turbulent plasma is the
space-time Fourier transform of the solution of
the equation [(s/Bt)+ v ~ v„-k 'k v„5)k ~ v„]T= 0.
The "new oscillating current density" Z(k, pl, Q)
that is responsible for the emission and absorption
in a turbulent plasma is proportional to T(k, lp, S)).
Thus the "new transition probabilities" j will be
broadened in accordance with the results found in
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Ref. 20, and the principle of detailed balance will
then yield the "new coupled pair of rate equations. "
But, if one examines the solution of the energy
balance equation (i. e. , the equation for SS~/Sf),
one will find that as time progresses the wave
spectrum will be broadened if the waves are
damped and will narrow down if the waves are
growing, since usually I'„ is a peaked function of
0 and (d. This broadening or the narrowing of the
wave spectrum does not affect the oscillating test-
charge density directly, since the coupled pair of
nonlinear equations are the rate equations at any
given instant of time. However, in the sense of
an ensemble average, this type of broadening or
narrowi. g of the wave spectrum (for damped or
growing waves, respectively) can affect the oscil-
lating test-charge density via S, as found in Ref.
20. The oscillating test-charge density deter-
mines the spontaneous emission probability, which
in turn determines the lifetime of the quantum
states.

Finally, we may note that Fukai and Harris '
have examined in detail a broadening that depends
on I'„. The essential result of Fukai and Harris
is the replacement of 5(&o —k v) by the factor
(II'„I/n)[(&u —k v) +I"~] '. This result is of course
consistent with the principle of causality. Stix"
has shown that within the framework of the quasi-
linear approximation the most general result is
obtained by replacing y; in Eq. (58), for example,
by y-„+ I I'~I. This result is physically reasonable
since the most general broadening of the particle-
wave resonance condition must depend on both y-„

(the reciprocal of the lifetime of the particle state
l v)) and l I'~l (the reciprocal of the lifetime of
the wave, i.e. , the reciprocal of the e-folding time
of the wave) and since y", + II'„I is the reciprocal of
the lifetime of the particle-wave state IN», v).

In the resonant approximation of the classical
quasilinear theory one generally treats the case of
real ~ and the resonant diffusion &~ gf, IE~(t) I 5

x(~ —k v). However, if E~(t) =E~e " a"r&", then

E„((o)=(2v) '~' 1 E,e """'rd'e'"'df;
-T

hence

E„*((u)E,((o) = (E',/2v) [((u —(u,)'+ I',] 'e "rar ~

Thus

E„*( )E,( ) =, &IE,(t) I'&II,
I [( —,)"I',] ' .

(A8)
In the nonresonant approximation & =&~+ iI'„, and
E~(~) is a wave packet in & for every k. Thus in
this approximation the diffusion

x 5(v —k v)

=~ &IE.(f) I'& ' [(~.-k v)'+I'l] '.
k 7t'

This derivation, due to Stix, gives essentially the
same result as that of Fukai and Harris. From
Eqs. (58) and (A8) it follows that the diffusion due
to the combined effect of natural broadening and
dispersion broadening is

~„g &IE (f)l &
I

( ~ )2 p2 ( )8

=~ &IEa«) I'& ', " [(~a-~i)'+(r;+ Ii'. I)'] ',
k

(A10)
where &u, =k v+(I/p)(k V„)AE",. In carrying out
the integration over w in Eq. (A10) it is convenient
to decompose the integrand by partial fractions and
thus rewrite this integral as the sum of four in-
tegrals each of which has a simple pole.

In an electron gas of finite density an electron
moving with a velocity v undergoes collisions with
neighboring electrons. The effect of these colli-
sions on the line breadth can be described as fol-
lows: If the number of effective collisions per
second is v.„the lifetime of the state Iv& will be
shortened. The total number of transitions per
second (radiative plus collisions) is now equal to
y", + v„-. According to the Heisenberg uncertainty
relation the breadth of the level I v) will therefore
be 5E; = I'(y.„+v;). The line emitted has the same
intensity distribution as the natural line Eq. (58),
the only ' ' difference being that y»„has to be
replaced by y"„+v;.
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