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The nonlinear limit of the resistive tearing-mode instability is investigated by a time-dependent solution
of the Fourier-transformed magnetohydrodynamic equations. The calculation is started with the
fastest-growing linear mode and assumes a constant (e.g., turbulent) resistivity. Attainable magnetic
Reynolds numbers are limited by the steep spatial gradients developed and by the propagation of
Alfven waves in the system. At the largest values used, 10% of the background energy is released in
nonthermal forms. The time and energy scales found are consistent with the results of astrophysical
observations and laboratory studies of solar-flare processes.

I. INTRODUCTION AND BASIC EQUATIONS

We have previously investigated the linear re-
sistive instability in a periodic magnetic field con-
figuration. ! The calculated growth rate is consis-
tent with the observed time scales in both astro-
physical and laboratory situations which are
thought to involve a resistive instability. The
‘question remains whether the tearing mode will
continue to release energy rapidly when it devel-
ops to a nonlinear level. There is also a question
of whether this energywill be released in the prop-
er form to account for the observed properties
of, for example, solar flares. Here, we will
follow the development of the tearing mode, from
its known fastest-grvowing linear solution through
its fully nonlinear stage, paying particular atten-
tion to its total time scale and energy release.

The magnetohydrodynamic equations for our
problem are?
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where the customary symbols have been used.

We take the coordinate system of Furth, Killeen,
and Rosenbluth, ? a two-dimensional sheet pinch
with 8/8z=0. The x axis is along, and the y axis
is perpendicular to, a neutral line at which a com-
pounent of B changes sign. Initially, the plasma
contains a sheared force-free field described by!

7

B, = ¥B,sin(my/a) - Z By cos(my /a) (6)

and an equilibrium particle pressure P=nk, T,
which is isotropic. With constant resistivity 7,
the time development of our background model
consists of a slow decay of E, as the energy in the
magnetic field is converted into heat. We have
previously found! linear solutions for tearing per-
turbations, with wave numbers along x, which
grow exponentially much more quickly than the
initial magnetic field decays.

II. METHOD OF SOLUTION AND APPROXIMATIONS

Equations (2)~(5) are a coupled system of eight
equations for the functions B, ¥, T, and p(x, y, £).
In principle, these equations could be solved on a
computer, We could describe the initial perturba-
tions as functions in a two-dimensional space of
discrete points in ¥ and y and then follow the time
development of B, ¥, T, and p. This would re-
quire a great deal of computer storage and time,
and the computer solution of the differential equa-
tions may run into a numerical instability associ-
ated with the Alfven-wave propagation discussed
in Sec. IIC.

We will instead use the results of our previous
linear calculations, ! which involved a spatial Fou-
rier decomposition in the y direction, as a basis
for the nonlinear treatment of this problem. In
particular, we will investigate the later time
development of the fastest-growing small-ampli-
tude excitation,

A. Magnitude of Magnetic Reynolds Number

We have shown! that the Fourier series (in y)
of the perturbation functions converges fairly
rapidly for moderate magnetic Reynolds number
S, where

S=t,/ty= 4nBya/nc?(4mpy)'/? (7

is the ratio of the resistive decay time to the hydro-
dynamic (Alfvén-wave) time.? This rapid conver-
gence occurs because resistivity tends to destroy
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large current densities which produce sharp
spatial gradients in the magnetic field, which, in
turn, are described by large-n terms in the Fou-
rier expansion. As an example, when S=10, the
fourth nonvanishing y Fourier coefficient is less
than 0. 1% of the first. In the explicitly solvable
long-wavelength limit (Appendix D of Ref. 2), the
reconnection width can be approximated by aS™/%
which would indicate that approximately seven
Fourier terms in y should be adequate for S=10°
the worst case that we treat. The x behavior is
even more favorable, since nearly all higher-order
wave numbers are linearly stable. Magnetic
tearing is a long-wavelength instability, ® and for
S<10° the third and higher harmonics have tem-
porally decreasing linear amplitudes.

Consequently, if we restrict our attention to
cases of moderate resistivity (S < 103), we will
need only on the order of 3X8 terms to describe
a double Fourier series in x-y space, as opposed
to/a typical network of 100X 100 points used to
describe the untransformed functions of ¥ and y.

In addition to reducing the required computer
storage, a lower value of S increases the size of
the time step which may be used to follow the
development of the perturbation. Let 7, be the
time scale for propagation of a hydromagnetic dis-
turbance, f, the e-folding time for resistive decay
of the initial magnetic field, and 7, the e-folding
time of the linear mode. We are interested in
events on the time scale ¢,, but the computer solu-
tion must follow events at #,, the fastest of the
three time scales. With S=¢,/t, and the normal-
ized growth rate? p=+¢,/t,, our linear solution!
leads to

t,~ 0,35, 8)

as a relation between these time scales. Suppose
that S~10°~% as is the case for solar flares. Then
t,>100¢, and the computer solution must make 100

calculations, at a time step governed by 7, to
follow the exponential development during the
period ¢,. To conserve computer storage and
time, we have been restricted to S<10° as a prac-
tical limit,

B. Spatial Fourier Decomposition

We have expressed all variables as Fourier
series with the following forms:

1 5 . mux nm
Ux(x’ Y, )= Z Z) Ux(m; n, t) sin 1 Ccos —a—y ,
Myn==co
(9
vy(¥, v, 1) =% mzn v,(m, n, t)cos mlﬂx sin n—;—y ,

and so on. In a shorter notation

By, v, ~ sinx cosy ,
B,, v, ~ CcOsx siny ,

_ (10)
v, ~ sinx siny ,

T, p, B, ~ cosx cosy

indicate the symmetries of the dependent variables
of interest.

We will assume constant resistivity 7, due, for
example, to turbulence, * and the condition of in-
compressibility?

V.-V= ﬁll Ux(m, n, t) + _7;_77 vy(m’ n, t)= 0, (11)
which will be justified in Sec. IIE. We can then
substitute our Fourier series into the x and y
components of Eq. (2) and the 2 component of the
curl of Eq. (3) to get
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as a nonlinear-mode-coupling description of the
system.

C. Number of Terms in Fourier Series

If the above Fourier series are truncated too
quickly in the computer solution of Eqs. (12)-(14),
they will not accurately describe the functions we
are investigating. On the other hand, we note that
hydromagnetic propagation can exist in the model
we are studying, so each Fourier coefficient will
tend to oscillate at the frequency

2,2 2,2\1/2

wm, n) = Vok = Va(l”—,-}l- + 1‘,;;’~> (15)
of Alfvén waves. Since this is the fastest time
scale in the problem, the larger values of m and
n will be dominated by Alfvén oscillations rather
than by the tearing-mode instability, We must
terminate the Fourier series at an m and » large
enough so that there is little truncation error, yet
not so large that Alfvén oscillations dominate. A
practical solution to this problem is to first trun-
cate the series at a very small m and # and then
gradually increase m and n until the solution does
not change significantly when the maximum m and
n are changed.

Another important element of this treatment is
the use of the fastest-growing linear perturbation
as a starting point for the calculation., As an ex-
ample, when S=10°% the fastest-growing perturba-
tion has normalized wave number? a=na/I =0, 35,
according to our linear solution, ! In addition,
a>m is known to be linearly stable®’; in verifica-
tion of this, our computer solution finds that the
tearing-mode instability does not cause growth of
the Fourier coefficients with m >3 (i.e., wave
numbers @ greater than three times the fundamen-
tal). Little error is thus caused by truncating the
x Fourier series after m =2 or 3. This strategy,
and that described in Sec. IID, eliminates the prob-
lems encountered by Tsuda, ® who began his cal-
culations with a nonoptimum excitation and found
the form of the nonlinear limit to be dependent on
the level of the initial perturbation,

The convergence behavior of the Fourier coeffi-
cient By(1, 0) is shown in Fig. 1 for truncation of
the series after different upper limits m and zn.

The calculations were stopped when most of the
initial magnetic field energy had been converted
into either heat or the growing perturbation. After
the peaks in Fig. 1, all the curves turned down-
ward as resistivity converted B,(1, 0) into ther-
mal energy.

All the solutions which follow were found by
gradually raising the truncation points of the series
until they had little effect on the solution. We
never considered terms with (m, n) larger than
(4, 10), in the moderate range of S investigated.

1
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FIG. 1. Convergence of the nonlinear solution as the

series truncation limit increases (S=100).

D. Region of Linearity

The known linear solution is only valid for very
small perturbations. It would be inefficient to
start with an infinitesimal excitation and find a
solution of the full nonlinear equations for 10-20
linear e-folding times before the perturbation be-
came large enough to show nonlinear effects. We
wish to start with the largest perturbation which
is still a solution of the linearized equations. We
find this largest perturbation by first starting with
the “infinitesimal” (fastest-growing) perturbation
which has B,(1, 0)=~10"2B,(0, 1), where B,(0, 1) de-
scribes the initial magnetic field. This solution,
with S=10°% is plotted in Fig. 2. Initially, B,(0, 1)
decays according to

3By, mpc’m 5 -
ot == 4ﬂ—2— 0=

, (18)

N low

owing to resistive processes. After the perturba-
tion B,(1, 0) exceeds roughly 10-20% of B,(0, 1),
we begin to see nonlinear effects, which increase
the rate of conversion of energy from the initial
magnetic field. We have started all other solu-
tions with a perturbation whose amplitude is rough-
ly B,(1, 0)~0.05B,(0, 1).

Figure 2 confirms and extends our earliér linear
calculation. The nonlinear solution, in which we
permit an arbitrary time dependence, initially
exhibits the same exponential linear growth which
we calculated earlier, as indicated by the dashed
lines in the figure. Consistency in the nonlinear
behavior of the instability is shown by the satura-
tion of the perturbation as it approaches the (de-
caying) equilibrium level,

E. Compressibility

In Eq. (11) we made the assumption V- ¥=0, as
suggested by Furth et al.?® This led to the set of
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FIG. 2. Region of linearity and approach to saturation
when S=10°,

equations (12)-(14), in which we needed to solve
for three of the unknown functions §, v, T, and p.
We now check the validity of this approximation by
comparing our incompressible nonlinear solution
with a solution that does not assume V- ¥=0.

This requires the Fourier transform of all eight
of the compressible equations (2)-(5). The eight
transformed equations have been detailed else-

where. "
We have obtained a nonlinear compressible so-

lution” of the full set of equations for S=100. The
wave number was chosen to be a=0, 44w, which

is the fastest-growing wave number for this Rey-
nolds number, (Another dimensionless parameter
B=8rP/B? is needed to specify all the constants
appearing in the system of eight equations. The
value B~ 10"6, which is believed to be characteris-
tic of the regions where solar flares originate, was
chosen. )

In Fig. 3 we compare portions of the compressi-
ble and analogous incompressible nonlinear solu-
tions for S=100. We find that the assumption
V. ¥=0 has little effect on the linear solution and
causes at worst a 10-20% error in the nonlinear
solution. The assumption of incompressibility re-
duces the computer time by a factor of 4 and the
storage volume by about a factor of 2, In the work
that follows, we have generally assumed V. v=0
and have used Eqs. (12)-(14), except where it was
necessary to solve for functions (such as the tem-
perature T') which are not included in these equa-
tions.

F. Physical Parameters

We have left our Egs. (12)-(14) in cgs units

rather than transform them to a system of dimen-

sionless variables. We have used the typical solar-
flare parameters® B,=10° G, py=10" g/cm?, T,
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FIG. 3. Effect on the magnetic field of assuming
incompressibility, when §=100 and 8=10%,

=10*°K, a¢=10%cm, [=2-3x10%cm, and an arti-
ficial resistivity 7, which was adjusted to get the
value of S desired,

If the reader is interested in applying the results
below to other than the above parameters, we sug-
gest that he first use Eqs. (7) and (16) to obtain
S and £,. The linear e-folding time is then given
by

t,~0,358™%"¢, (1

a restatement of Eq. (8). Finally, the reader will
need to calculate the Alfvén speed V,=B,(4mp)"1/2
and the energy in the initial magnetic field.

III. RESULTS
A. Time Scale
In Fig. 4 we plot v,(x=0, y=3a), the velocity

at which the plasma is moving toward the neutral
line. We find that it generally takes about five
linear e-folding times to go from a thermal-level
perturbation (Bf/ 8m~nk, T) to nonlinear saturation
under the solar-chromosphere conditions described
in Sec. IIF. An extrapolation of Fig. 4 shows that,

Vy(0,0/2)/V

10 E

-

0.l

0.0l

0.00!

time/t,

FIG. 4. Convergence of the speed of the fluid entering
the region of the tearing mode to more than 15% of the
Alfvén speed.



K ENERGY RELEASE BY MAGNETIC TEARING: THE. .. 1351

for large S, the plasma moves toward the neutral
line at more than 15% of the Alfvén speed. For the
above parameters, V,~0.9x10° cm/sec. If the
width of the region in which a solar flare occurs is
10° cm, then all of the plasma would reach the
neutral line in less than 7 sec. This is roughly
the observed time for the flash phase of a flare.

In a laboratory plasma® with an Alfvén speed of
10" cm/sec and a scale length of 1 cm, the non-
linear tearing mode could reach its peak release
of magnetic field energy in less than 1 psec.

B. Energy Release

A unit volume for our periodic configuration is
-3l<x<3l, —3a<y < 3a. We can integrate
products of the Fourier series over this volume
to get the average energy density. For example,

1 1
(zovd) = 5 Iﬂ'g pvid®v
1 00

= 18 § plm, n) v G+m)v.(j+n)  (18)

mn=-o
and similar expressions occur for the other forms
of kinetic, thermal, and magnetic field energy. "
Our computer solutions conserve total energy to
within 0. 1%, a good check on their consistency.
Some forms of the energy density averaged over
the region of the instability are shown in Fig. 5.
The parameters chosen for this solution were taken
from the solar-flare conditions described in Sec.
II'F, with an artificial resistivity #, which was ad-
justed to make S=100, The total normalized en-
ergy at {=0 does not add up to 1, because half of
the energy is initially in the 2 component of the
magnetic field, which we have not included in the
figure. We find that 3 pv? is generally within 20%
of Bﬁ /8, indicating that the plasma leaving the
instability region moves at its Alfvén speed
v,~B,(4mp)™*/2, The temperature quickly rises to
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FIG. 6. Energy in the reconnected magnetic field.
The dashed 7, = line is obtained by artificially stopping
the decay of the background field for $=100.

more than 10° °K for the solution in Fig. 5. Most
of this heating is due to the resistive decay of the
background magnetic field. We suspect that for
much larger S there would still be considerable
heating, but we cannot show this due to computer
limitations. (This point is discussed in Sec. IV.)

In Figs. 6 and 7 we have plotted the magnetic
and kinetic energy as functions of S. Both com-
ponents converge to peaks of more than 4% of the
initial energy at large Reynolds numbers. We
conclude that for S 10° the energy in the initial
magnetic field is converted into at least 4% fluid
kinetic energy and 4% reconnected magnetic field
energy, with less than 92% in heat. We have not
been able to study directly the nonlinear tearing
mode for the large-S values appropriate to astro-
physical applications, but we have set limits on the
large-S solution by noting the behavior at smaller
S.

We have had to use values of S which were small
enough so that the resistive decay of the initial
magnetic field is significant, as in Fig, 5. We
can simulate much larger Reynolds numbers by
ignoring this resistive decay. We simply drop the
decay term, given by Eq. (16), from the right
side of Eq. (12). The dashed line in Fig. 6 is the
result of a calculation in which the parameters
were exactly the same as for the S=100 line, but
large Reynolds number was simulated by dropping
the resistive-decay term. I this method of in-
vestigating S~ « is valid, then the reconnected
magnetic field may have as much as 11% of the
initial energy.

The use of a periodic equilibrium has caused our
solution to be effectively bounded in x and y. The
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FIG. 7. Fluid kinetic energy in the tearing mode.

nonlinear development of the instability tends to
stop when the magnetic pressure B§/81r along the
neutral line (y = 0) is comparable with B2 /87 along
the lines ¥ =+1[, so that the fluid at (x=+, y=0)
is in equilibrium. In a more realistic model of a
solar flare, in which the magnetic field configura-
tion is not periodic in x, the reconnected magnetic
field could escape toward x =+, in contrast to
our closed periodic “bottled-up” configuration.
The plasma flow, in that case, would not develop a
back pressure at saturation, as it now does. It
would be possible then to convert a higher pro-
portion of the initial energy to fluid flow.

It is of some interest to investigate whether the
linear-field topology, or cell structure, persists
into the nonlinear regime. We find that our par-
ticular solutions, starting from the fastesi-grow-
ing perturbation (which would naturally appear
from the ambient noise), retain a single vortex.
The higher-order Fourier coefficients are always
bounded by the lower-order ones. The one Fourier
inversion and field plot made showed one recon-
nected cell for each reversal and fundamental
wavelength, This is an aspect of the work which
we intend to pursue further in the future.

Finally, the above results can be applied to the
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experimental study of magnetic tearing made by
Bratenahl and Yeates.® Typical parameters for
their work are By~ 10 G, p~7Xx107%° g/cm?®, a
(scale width)~1 cm, T~2X10*°K, and an approxi-
mate resistivity 7~2%1071 sec. Our Eq. (7) gives
S~1, Eq. (16) gives t,~7x107 sec, and the Alf-
vén speed is V,~1x10°% cm/sec, giving t,=a/V,
~10" sec. Note that the magnetic Reynolds num-
ber S is about 10® times smaller in this experiment
than for a solar flare. Under these laboratory
conditions, the tearing mode has a linear e-folding
time, from Eq. (8), of more than 0.8x107 sec.
[This is an underestimate of f,, because Eq. (8)

is inaccurate when S<10% !] Five times ¢, would
indicate a time of about 4% 10" sec for the insta-
bility to become fully nonlinear. The observations
of Bratenahl and Yeates indicate a time scale of
1-5 psec for magnetic relaxation,

IV. CONCLUSIONS

We have followed the tearing mode in time from
the linear regime to the large-amplitude limit.

We have not assumed a steady-state solution as in
previous work on the nonlinear “limit” of the
tearing mode. 10

Our nonlinear solutions show a consistency, al-
ways valuable in computer solutions, with the more
directly derived behavior of the linearly growing
perturbation and the decaying equilibrium field.
This initial growth and later saturation (when the
perturbation energy approaches the background
level) are demonstrated in Figs. 2 and 5.

We have shown that the tearing mode can account
for two essential aspects of a solar flare, the time
scale and energy conversion. There is also fair
agreement with some laboratory observations.

In this work we have assumed that the resis-
tivity is constant. The conventional collisional
resistivity is temperature dependent, 11 and would
decrease as the plasma is heated by the tearing
mode. Preliminary results'? indicate that, when
nec T™3/2 the time scale for resistive instability
is not greatly changed. This is partially due to
the development of resistivity gradients, which
then drive the short-wavelength rippling mode. 2

*Work supported in part by the National Science Foundation under
Grant No. GP 28656.

TPresent Address: Physics Department, Grambling College,
Grambling, La. 71245. '

'M. A. Cross and G. Van Hoven, Phys. Rev. A 4, 2347
(1971).

*H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids
6, 459 (1963).

3G. Van Hoven and M. A. Cross, Phys. Fluids 14, 1141
(1971).

“B. Coppi and A. Friedland, Astrophys. J. 169, 379 (1971).

SE. M. Barston, Phys. Fluids 12, 2162 (1969).

®T. Tsuda, Magnetic Field Annihilation with Nonlinear Mode
Coupling (Department of Electronics, Kyoto University, Japan,

1968) (unpublished).

™. A. Cross, Ph.D. dissertation (University of California at
Irvine, 1972), Physics Dept. Report No. 72-47, 1972
(unpublished).

8P. A. Sweet, Annu. Rev. Astron. Astrophys. 7, 149 (1969).

°A. Bratenahl and C. M. Yeates, Phys. Fluids 13, 2696
(1970).

H. E. Petschek, in AAS-NASA Symposium on the Physics of
Solar Flares, edited by W. Hess (U. S. GPO, Washington,
D. C., 1964), p. 245.

L. Spitzer, Physics of Fully Ionized Gases (Interscience, New
York, 1962), p. 136.

2M. A. Cross and G. Van Hoven, Bull. Am. Phys. Soc.
16, 1233 (1971).



