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The propagation of a strong coherent "pump" wave traveling through a resonant medium is discussed.
The medium is assumed to consist of identical stationary atoms, and the pump-wave frequency is assumed

to coincide exactly with the resonance frequency for transitions between a particular pair of atomic states. A
previously developed theory of the response of a strongly driven atom to a weak nearly resonant signal"

field is used to deduce the existence of a coupling between any two waves travelling parallel to the pump
wave whose (nearly equal) frequencies sum to twice the pump-wave frequency. In the limit of very intense

(highly saturating) pump fields, the coupling between the two waves of nearby frequencies leads to
amplification of both waves if their frequencies lie within an interval about the pump-wave frequency equal
to the Rabi frequency of population inversion. The basic process, which is roughly described by
travelling-wave parametric-amplifier equations of motion, consists of the absorption of two pump-field

photons followed by their emission at different nearby frequencies, and thus implies a frequency instability

of the initially coherent pump wave.

The propagation of a light wave through a homo-
geneous medium leads to a number of interesting
effects when the wave i.s intense enough and near
enough in frequency to a particular atomic transi-
tion frequency to cause an appreciable modulation
in the populations of the coupled atomic states. In
many of the more commonly studied effects, e. g.,
in the cases of photon echo and of self-induced
transparency, ' the incident light ls assumed to
consist of a pulse of duration short compared to the
atomic lifetime, so that decay processes are of
minor importance during the brief interval within
which the atom interacts with the incident field. In
this paper we treat the opposi. te limit, that of in-
finite pulse dux'ation, ln which the lneldent field
may be assumed, in lowest order, to oscillate
harmonically with constant amplitude throughout
the interval in question. In particular, we study
the frequency stability of the process by assuming
that in addition to the (strong) incident "pump"
wave, a weak perturbing or "signal" wave of near-
by frequency is initially present, and then evaluat-
ing the propagation characteristics of the signal
wave.

The effect of a weak signal field on an atom driv-
en by a strong pump field has been found. When,
as i.n the present case, both fields oscillate at fre-
quencies neax' the resonance frequency for transi-
tions between a particular pair of states, it was
found that the signal field induces two components
of comparable magnitude in the atomic dipole mo-
ment, one oscillating at the signal-field frequency
v, and the other at a frequency symmetrically dis-
placed relative to the pump frequency (d, i.e., at
the frequency &u —(v —~). The first component de-
termines the average rate of absorption of energy
from the signal field, which was found for certain
values of the signal-field frequency to be repre-

sented by a negative number, corresponding to am-
plification rather than to absorption per Se. The
second, symmetrically placed frequency compo-
nent in the induced dipole moment has no average
effect, in general, in a medium consisting of many
similar atoms, since the signal and pump phases
are uncorrelated, in an average sense, throughout
the medium.

An exception to this rule occurs, however, when
the signal and pump fields travel in the same direc-
tion. 3 Inthat case, as we shall show, the signalfield
becomes parametrically coupled to a complemen-
tary field oscillating at the symmetrically placed
frequency, and both fields become amplified be-
cause of their mutual interaction as well as the
single-field amplification effect discussed previ-
ously. It is clear that the coupling between the
two fields, which has the same general form as
that which occurs in the parametric amp]ifier,
must lead to an amplification of the zero-point or
spontaneous-emission field of the pumped atoms.
(This occurs within a frequency interval roughly
comparable to the Rabi frequency of population
oscillation caused by the pump field. } Pairs of pho-
tons are in effect transferred from the pump field
to two fields traveling parallel to the pump field,
with frequencies whi. ch sum to twice the pump fre-
quency. Our results thus demonstrate a frequency-
instability in strong coherent light waves traveling
in resonant media.

I et us consider an infinite homogeneous medium
consisting of identical two-level atoms, each with
a ground state I Q) and a single excited state [ l).
%'e assume that a strong coherent "pump" wave is
tx'avellDg through the medium in the g directioD

ling-ical gg Ns+4rut-

with electx'ic polarization in the g direction. %e
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take the field to be exactly on resonance, o) = (E,
—Eo)/5; and assume its propagation to be essen-
tially unaffected by the medium, k = o)/c.

A weak signal field

E(r, t) = $(r) e '"'+ $*(r)e'"' (2)

oscillating at a frequency v = ++ hv close to the
resonance frequency & was shown in Ref. 2 to in-
duce oscillating components'

( +(t) ) ~ e-( (u+4v) t + -((s&-Av) t

in the expectation value of the dipole moment op-
erator for any atom in the medium. The induced
volume density of electric polarization P(r) may be
expressed by means of generalized time- and po-
sition-dependent linear susceptibilities )(o(v) and

)( z(v, z)e""' as

P(r, t) = Xo(v) $ (r) e '"'

fields propagate in the same direction, which is
then the propagation direction for the generated
wave as well. 3'3'

Let us consider, then, only fields that propagate
in the positive z direction, and take all electric po-
larizations to lie in the x direction. Such fields
satisfy the equation (in rationalized units)

8
~ ~

8~

~

t
~~ ~

a ~
t t

8 1 8 1 8

88 c Bt
E(z, t)= —

o o P(z, t),c Bt (8)

which may be approximated for the case of nearly
free propagation as

(
8 1 8 1 8—+ ——E(z, t) = ———P(z, t) .

Bz c Bt ' 2c Bt

The Fourier transform functions

$(z, v) —= (2w) "'f" dte'"'E(z, t) (v&0), (10a)

+ [X o(v, z)c""']*$*(r)s*"'+c c, (4)
(p(z, v)=—(2))) '~'f dt e'"'P(z, t) (v&0)

then obey the equation

(10b)

where the function X,(v, z) has the form

X 3(v z) = X 2(v) s ""' . (5) (
8 iv iv$ (z, v) =- —(p (z, v)88 g 2g

The quantities )(o(v) and X 2(v) are readily found
from the analysis of Ref. 2 to be given by the rela-
tions

at every point in space. Let us separate out the
free propagation of the field by introducing the def-
initions

Xo(v) = (i/@) &t(o( t()o (no

(—it) v+ K) (-it) v+ K )+ z 'LQ t) v/K

(
.

)
' —. , (6a)

$ (z, v) =- e'"'i ' $'(z, v),

(p (z, v) -=e'"' '(p (z, v) .
The primed functions then obey the equation

(12)

2(v) = (2i/tt) Np (o p, (o (no —n()

$o't(io * ( it), v+2K )
lf (

.g )
g (Gb)

where N is the number density of atoms in the me-
dium JLt f0 is the dipole matrix element connecting
the two atomic states 10) and I 1), no and n, are the
corresponding equilibrium occupation numbers in
the presence of the pump field, z and y are the di-
agonal and off-diagonal relaxation rates, respec-
tively, and 0= 21$o p, )o/tt I. The function f is de-
fined in terms of these parameters as

f (s) = (s+K') [(s+K) (s+K')+0 ] .
The susceptibilities evaluated in Eqs. (6) are as-

sumed to be small compared to unity, and the func-
tion $(r) accordingly has the approximate spatial
dependence e'" ', where I

k~
I

= v/c. It is clear then
from Eq. (5) that the second term on the right-hand
side of Eq. (4), which has the time dependence
e "" "", will have the proper spatial dependence
of a freely propagating plane electromagnetic wave
only if k points in the positive z direction. A
complementary wave oscillating at the frequency
w —Av is thus generated if the signal and pump

zv p zh) - I$(z, v)=2 (p (z, v)=2 (p (z, v),

the approximation holding for frequencies v= &+ hv
near the resonance frequency &. The polarization
function defined by Eq. (10b) in that case is given,
according to Eq. (4}, by the relation

(p (z, (u + t).v) = Xo(o) + a v) $ (z, o) + t),v)

and v„= M —Av,

we find the relations

(16)

+)(*,(o) —av, z) &(z, o) —av) . (14)

It follows from Eq. (5) and the relation k = (d/c that
this relation, when expressed in terms of the
primed functions defined by Eqs. (12}, becomes

(p'(z, (d+ ~v)= Xo(o)+ 6v) $'(z, (o+ ~v)

+)(f,(o) —av) $'*(z, (d —av), (15)

the z independence of the coefficients Xo and X*& re-
flecting the phase-matching condition associated
with parallel propagation.

By substituting Eq. (15) into Eq. (13) and evaluat-
ing the resulting equation at the two frequencies
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h'(g, v, ) = a(av) 8'(z, v,)+b(b v) 8's'(z, v ),
(1V)

&'{z, v ) =a*(&v) S'(z, v )+b*(av) h'*(z, v,),

The coupled equations (1V) for the two functions
8'(z, v, ) and 8'(z, v ) may be roughly described as
representing traveling-wave parametric amplifi-
cation. The solutions to Egs. (1V) and (12) are

h (& )
e(o+lu+lc)s

x [$(0, v, ) coshbz+ h*(0, v.) sinhbg],

(19)
g( ), (s +ill /c)s

sa

&&[8(0, v ) coshb"z+ 8*(0, v, ) sinhb*z] .
It is clear from these relations that the waves

oscillating at the two frequencies v, and v„will
become amplified as they travel in the positive z
direction if either of the two quantities

ox'
g, (av) -=Re[a{av)+ b(av)]

g (d v) =—Re[a (n v) —b(d v)]

is positive. We find from Eqs. (18), (6), and (V)
that the real part of a (which is proportional to the
negative of the absorption function evaluated in
Ref. 2) is given in the limit of strong pump fields
by the relation

—', ÃkI p, ,el (n() —ng) Q
Re+(~&) =

„—(av)'+ Qa(av)a -21rx",
)

If{-ib, v) I

'

while the real part of 5 is given in the same limit
by the relation

«NkI p, rel {rre-nr)Q
I

AK

where the coefficients a(b, v) and b(hv) are defined
as

~(d v) = a ikXe(v. ) = --a'ikXF(v ),
b(b, v) = - -,'ik X, (v, ) = -,' ik X*a(v.) .

—(b,v) +Qa(b. v) +2Q a.

If ( g )I a {Q~~Kr K ) ' (21b)

It follows directly from these relations that of
the two parameters defined by Eqs. (20), l' is
negative for all values of hv, representing attenu-
ation rather than amplification, while f, is found
with the aid of Eq. (V) to be well approximated by
the relation

—,
' Nk I p, ,e I '(ne- ng) Q'

hx

Q -(hv)a
[(av-Q)'+jr ] [(av+Q)a~ as]

where rr = —a'(a+ lr ). The parameter g, is thus posi-
tive for values of 4v lying within the interval
—Q & hv & 0, and the two components of the field
oscillating at the frequencies &+ hv and & —Av
are consequently amplified in this frequency in-
terval by the coupling between them which is pro-
duced by the pump field.

It is clear that this result implies that the ini-
tially coherent pump field is unstable, acquiring
as it travels through the resonant medium fre-
quency components of ever increasing magnitude
within an interval equal to the Rabi frequency 0
about the central frequency &. An initial excita-
tion within this frequency interval is certainly
present in the form of the spontaneous-emission
field of the strongly pumped atoms. 7 The portion
of this initial fluctuating field that is traveling in
the same direction as the pump field will become
amplified, in much the same way as vacuum fluc-
tuations are amplified in the parametric amplifier.
An explicitly quantum-mechanical analysis of the
spontaneous-emission process (which we do not
present here) confirms the above interpretation
of our semiclassical analysis, showing the in-
elastic components of the field radiated by the co-
herently pumped atoms to be due, in lowest order,
to pairs of photons whose frequencies sum to
twice the frequency of a pump-field photon, and
whose px'opagatlon dix'ectlons ax'6 strongly peaked
in the dix'ection of the pump wave.

'See, for example, L. Matulic and J. H. Eberly, Phys. Rev. A
6, 822 (1972), and references cited therein.

'&. R. Mollow, Phys. Rev. A 5, 2217 (1972).
'The signal and pump fields travel in opposite directions in the

technique of Iaser-saturated absorption. Sce, for example, M. D,
Levenson and A. L. Schawlow, Phys. Rev. A 6, 10 (1972).
Theoretical analyses of this phenomenon are given by E. V.
Baklanov and V. P. Chebotaev {Zh. Eksp. Teor. Fiz. 60, 552
(1971) [Sov. Phys. -JETP 33, 300 11971)1} and by S. Harache
and F. Hartmann, Phys. Rev, A 6, 1280 (1972). No complemen-
tary field is generated in this case, and the basic result for the
absorption of the signal field (before Doppler averaging) is directly

derivable from the single-field absorption rate evaluated in Ref. 2.
3(a) If the signal wave travels at a small angle relative to the

pump wave, then the generated wave mill travel in the comp1emen-
tary direction, thus conserving momentum as well as energy. The
basic process considered here is in a sense the continuous-wave
analog of thc (short-pulse-limit) photon echo effect. It has been
&11ed "light-by-light scattering, "and has been observed by R. L.
Carman, R. Y. Chiao, and P. L. Kelley [Phys. Rev. Letters 17,
1281 (1966)1 in the case in which the nonlinear coupling is due
to the molecular-orientation Kerr effect.

'I. I. Rabi, Phys. Rev. 51, 652 (1937).
'Equations (3)—(6) of this paper follow directly from Eqs. (3.5a)
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and (3.11) of Ref. 2, when the pump-field amplitude in the latter
relations is multiplied by the phase factor ei '.

A general treatment of time-dependent linear susceptibilities
for systems driven near resonance will be presented by the author
in a subsequent publication.

"B. R. Mollow, Phys. Rev. 188, 1969 (1969); Phys. Rev. A 2, 76

(1970). The analysis of these papers is based on a quantum
regression theorem derived by M. Lax [Phys. Rev. 172, 350
(1968), and references cited therein].

A realistic analysis of the frequency instability we have
described would have to take into account the nonzero angular
width of the pump wave.

PHYSICAL H, EVIEW A VOLUME 7, NUMBER 4 APRIL 1973

Low-Temperature Specific Heats of Adsorbed Helium Monolayers in the Mobile Limit

Michael D. Miller and Chia-%ei %oo~
Department of Physics, northwestern University, Evanston, Illinois 60201

(Received 2 October 1972)

Jackson's model for adsorbed helium monolayers is suitable for studying thermodynamic properties in

the mobile limit. In particular, low-temperature specific heats can be calculated over a range of
areal densities. The dominant contributions come from longitudinal surface phonons. We report here (i) an

extension of Jackson's model to account for surface-phonon-surface-phonon interactions, (ii)
'

computations of low-temperature specific heats to several coverages, and (iii) a comparison of theI

computed results to experiment.

I. ADSORBED HELIUM MONOLAYERS IN MOBILE LIMIT

Consider N helium atoms physically adsorbed on
a smooth surface of a crystalline substx'ate. Let
the adsorbing area be denoted by A. The system
ls th6n characterized by R single pI1yslcRl param. -
eter: n=N/A, the areal density of the adsorbed
layer.

Following our recent wox'k published in Refs. 1
and 2, we make the preliminary approximation that
the substrate serves no other purpose than to px'o-
vide a static "external" field V(r) to each adatom.
The Hamiltonian of the system is then given by

S @3e=Z V, '+Z V(r,.)+ 5 ~(~,),
1 «&.y gr

where r is a three-dimensional vector and v(r)
x 6px esents the Rdatom-Rdatom intel Rctlon poten-
tial. In this work the pairwise, central I ennard-
Jones 6-12 potential is used.

To solve the Schrodinger equation

Jfg(l, 2, . . . , X)=Zq(i, 2, . . . , X)

for the ground state and the low-lying excited
states, we proposed in Ref. 1 the employment of
a set of correlated basis functions:

v&v&, vovo. .., ,vt)(vt)) )Pl) BPo &
' ' i aN PN)

=.(, . , ). n.., -, (., -„)I, (s)
&=1

where I' denotes a symmetrical correlating factor
which accounts for the short-ranged adatom-
adatom correlations and p„„(vp) stands for the
wave functions describing the motion of a single
Rdatom, i.e. , the eigenfunctions of the single-pax—

ticle Hamiltonian;

h(r) = V'+ y(r).2m
(4

The quantum number p, characterizes the bound
states normal to the a.dsorbing surface (the a di-
rection), and the two-component vector v charac-
terizes motion parallel to that surface. For a
realistic crystalline substrate, y must clearly
contain Bloch functions possessing the periodicity
of the surface.

The subspace spanned by a set of basis functions
of the type (3) with just one elementary excitation
is of most importance when one considers low-
temperature properties of the system. %6 take
for this subspace p, , =

jU, and j,=v, and p, =0 and

v, =0 for all j 11. The basis functions of interest
are then given by

~00K g p) /

&o = &oo, oo, ... , oo =II Woo(&& Pr) )
1

and p is a two-component vector in a plane parallel
to the adsorbing surface.

In the special case nf a completely uniform and
homogeneous substrate, the single-particle func-
tions become

y, „-(ap) = )(,(z)e'" ' ", (7)

where v now represents R two-dixnensional wave
vector. Consequently Eq. (5) reduces to

QOS~i ~


