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Resonances of quantum systems are associated with poles of the Green's function which occur at

complex energies. The wave functions corresponding to such poles increase exponentially at large

distances and so are very badly divergent. Nevertheless, these resonance wave functions have useful

properties which can be exploited in cases where only their behavior at small distances is relevant. In
this paper we construct and study such resonance wave functions for several illustrative quantum

systems of theoretical interest. It is shown that the wave functions may be considered renormalized in a
sense analogous to that of quantum field theory. However, the renormalization which occurs here is

entirely automatic and the theory has neither ad hoc procedures nor infinite quantities. In addition to
other results, we obtain a representation of the Green's function in terms of the resonance wave

functions; this representation appears likely to be useful because it has an energy dependence that is

especially simple.

I. INTRODUCTION

There is an enormous literature dealing with
resonances of quantum systems, and usually the
resonances are described via continuum (scatter-
ing) theory. However, this description seems to
miss the most striking characteristic of a narrow
resonance. A narrow scattering resonance is al-
ways associated with a long-lived decaying state,
a state which physically resembles a true discrete
eigenstate. The resemblance is especially strong
when the lifetime is long. Obviously one should
choose a description in which this resemblance is
clearly exhibited a.nd em.phasized. To this end it
appears profitable to introduce and study a set of
resonance wave functions.

With these wave functions (one for each reso-
nance) we can see the general physical similarity
of resonance states and bound states, and also the
specific technical differences. The resonance
wave functions will necessarily have some abnor-
mal or anomalous properties which reflect the
time dependence of the decaying state.

In this paper we have constructed and studied
resonance wave functions for several illustrative
models of theoretical interest. The definition of
these wave functions was suggested by a perturba-
tion theory of decaying states. ' 4 The most stub-
born abnormality is their refusal to be normalized
or mutually orthogonal. In fact we shall find that
the resonance wave functions are rergoymalized in
a sense described below. However, this renor-
malization is entirely automatic (there is no ad hoc
step in the mathematics) and the theory has no in-
finite quantities. Actually, both renormalized and
also nonrenormalized perturbation theories exist
and are correct; they differ because they ealeulate
differ ent quantities. The situation is thus much
simpler than the renormalization of quantum field
theories.

The main object of this paper is then to identify
and interpret the anomalous normalization proper-
ties of the resonance wave functions, The nor-
malization is not at all. arbitra, ry, but proves to
have a definite physical significance. This inter-
pretation is given in Sec. II.
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Sections III and IV contain detailed discussions
of two specific cases. The model of Sec. III is a
two-level system which can decay into a continuum.
Section IV deals with potential scattering reso-
nances, which occur when the potential has a high
barrier, so that a particle trapped inside can
slowly tunnel out (e.g. , the Gamow theory of o

decay). The models warn us about certain special
phenomena and give some substance to the general
operator theory. The models are also used as ex-
amples to suggest typical analytic properties of
resonance systems.

These model systems are both one-particle sys-
tems. The particle can be in either of two "chan-
nels, " an Ougey channel with a continuous density of
states (e.g. , a free particle) and an inner channel,
which originally had discrete states (the discrete
states have become resonances because of the
coupling between channels). In the two-level model
of Sec. III, the inner channel is a two-component
space based on the two original states. In the case
of potential scattering, the inner channel is the in-
terior of a fixed sphere.

The resonance wave functions of this paper are
defined in terms of the res+'mes of a Green's func-
tion G(E) at its complex poles E„. This choice of
resonance parameters follows the resonance theo-
ry of Siegert, of Humblet and Rosenfeld, and
others. 7 In Sec. II, we show the simple connec-
tion between these resonance wave functions and
the eigevfunctions 4,(E) of the Green's function.
For the potential scattering case, the latter func-
tions correspond to the alternative resonance theo-
ry of Kapur and Peierls s, s

The resonance energies E„are defined as the
exact complex poles of an appropriate Green's
function G(E). This Green's function is the pro-
jection of the total Green's function onto ihe inner
channel; for the systems considered here it is a
single-valued function of k = E' . The resonance
poles E„normally occur on a second sheet of the
energy plane (i. e. , in the lower-half k plane); we
denote them by E„=K„.

The resonance wave functions will be defined in
terms of the residues of G(k) at its poles:

[It will be shown that the residue factors in Sec.
II. In Eq. (1.1), IP„) is the nth resonance wave
function, and (Q„l is a related dual function (it
is not simply the complex conjugate of i Q„)). De-
tailed relations between i Q„) and (P„ I are given
below].

The reader will note that a specific normaliza-
tion is already fixed by this equation, i.e. ,

(1.2)

Now the surprising point is that this formula is
correct as written, M)i' the anomalous normaliza-
tion of Eq. (1.2). The perturbation formula col-
lects together changes in the line center and line-
width into a single expression. It shows the true
significance of Q„, for it shows that P„determines
the dynamical response of the resonance state to
an external perturbation. A complete perturbation
theory of this type, containing the terms higher
order in V, was constructed by More4; the first-
order theory of Eq. (l. 3) had been established
earlier by Humblet' and Zel'dovich~ for the case
of potential scattering.

Often it is possible to write the Green's function
in terms of its residues by virtue of the Mittag-
Leffler expansion theorem. This gives an explicit
representation of G(k):

G(k)=+ 2'(k-Z„) . (1.4)

When this representation is valid, it is very use-
ful; for example, the higher-order perturbation
theory is based on this representation. 4 Thus the
convergence of this representation is a crucial
question. We discuss the situation carefully for
two specific cases in Secs. III and IV, and con-
clude that Eq. (1.4) may well converge in favor-
able specific cases.

A special feature of the representation (1.4) is
that its energy dependence is very simple (recall
that k=E'~~). For this reason, it is especially
easy to Fourier transform the representation (1.4)
and thereby obtain the time-evolution operator
tr(t)=e '"' in the form

(1.5)

where the normalization factor Z„ is determined by
Eq. (1.1) and is not necessarily unity (or even
real). The inner product of Eq. (1.2) is taken
over the inner channel (if it ran over the outer
channel too, we should have 8„=~). The fixed
value of g„represents the most immediate anoma-
lous property associated with i Q„). In Sec. II it
is shown that the value of Z„ is determined by the
energy dependence of an effective Hamiltonian
H,«(E) which governs the inner channel. The nor-
malization of Eq. (1.2) is not at all arbitrary but
has a definite physical significance.

When the system is perturbed, its complex ener-
gy eigenvalue changes from the original value E„.
In general, both the real and imaginary parts of
E„change. Let us assume that the perturbation
operator V acts only in the inner channel; in that
case the perturbed complex energy will be seen to
be
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where u„(t) is a simple definite integral. With this
diagonalization of U(t) we can study various time-
dependent phenomena, including the precise limi-
tations on the validity of an exponential decay law.
Such limitations (e.g. , a t ~' power law for
large times t) have been studied by many authors,
mainly for the case of a single isolated reso-
nance. 8 The resonance wave-function formalism
enables us to give a general discussion of the ease
of many resonances, That discussion will appear
in a future paper.

We conclude this introduction with a survey of
the literature. There are very many papers on
resonances and decaying states, and no suitable re-
cent review article exists. Our survey is doubt-
less incomplete, but it will point out the main fields
being cultivated in the literature.

Resonance states were discussed in the context
of nonrelativistic potential scattering by Siegert,
Humblet, Humblet and Rosenfeld, Newton, ' and

Goldberger and Watson7'"; these authors work
from the analytic properties of the 9 matrix in the
partial-wave representation. The Kapur-Peierls
resonance theory is reviewed in modern textbooks
of nuclear physics, for example, by McCarthy' and
Jones." Properties of the Kapur-Peierls functions
are discussed by many authors. "" Other defi-
nitions of resonance parameters occur in theoreti-
cal nuclear physics, 6 but these definitions seem to
aim at special needs of nuclear theory.

Nuclei have many resonances (thousands per
MeV), many channels for reaction scattering, and
correspondingly many reaction thresholds and un-
physical sheets. We believe that a Mittag-Leffler
representation of this type (l. 4) can be justified only
if the complete analytic configuration of G(F) is
known, i.e. , if it is possible to analytically con-
tinue G(E) onto all of its unphysical sheets. s For
this reason the methods of this paper are of little
interest for many-channel systems, except as ap-
proximations.

Nuclear energy levels also have a certain im-
perturbability. For example, an external static
magnetic field would have almost no effect on the
width of a nuclear resonance (although certain ex-
tremely small effects of this category actually do
exist, e.g. , pressure dependence of K capture).
Thus a perturbation theory of nuclear resonances
has been termed unnecessary or uninteresting.

Physical conditions are very different in atomic
or solid-state physics; it is easy to imagine inter-
esting problems which involve only a few resonance
states, with only a few channels, and atomic or
ionic energy levels are eminently subject to exter-
nal perturbations which may move one resonance
to within a linewidth of another.

There exists a considerable literature on reso-
nances from a high-energy viewpoint, mainly con-

cerned with the Lee model or with Ko-meson de-
cay. '7' The time dependence of resonances was
studied by Jacob and Sachs, ' Schwinger, ' Newton, a

Goldberger and Watson, Bosenfeld, ' and
others. ' ' Most of these works aim at understand-
ing the t power law, which dominates the decay
from a single isolated resonance at long times.
The papers listed work from scattering theory;
Rosenfeld and Newton give particularly interesting
discussions of the dependence of decay character-
istics on the form of the incident wave packet.

Linewidth effects in perturbation theory have
been studied many times: the classical work of
Weisskopf and Wigner or Heitler is based on a
special truncation of the exact quantum equations
of motion. Lane 4 had discussed the implications
(for nuclear isospin conservation) of the removal
of degeneracy of nearby energy levels by lifetime
effects; his discussion is based on the R-matrix
resonance theory. There are probably many dis-
cussions of the phenomenon in the context of specif-
ic applications. ' Although the approach of our pa-
per is limited to a simpler category of quantum
systems at present, we believe that the approach
is considerably more satisfactory, because so
many of the results emerge as exact statements.

II. EIGENFUNCTIONS OF GREEN'S FUNCTION

The resonance wave functions Q„were defined
above in terms of the ~ggidgges of the Green's func-
tion G(k) at its complex poles k= Jf'„. It is useful
to relate these functions Q„ to another family of
functions 4,(k) which are defined here as eigen-
functions of the Green's function G(k) for arbitrary
fixed k. This definition of the functions C, is
equivalent (for potential scattering) to the special
boundary condition of Kapur and Peierls as we
show explicitly in Sec. IV, below. The relation be-
tween the resonance functions Q„and the Kapur-
Peierls functions C, (k) is very simple, but is
worth spelling out explicitly, because doing so
clarifies the role of the anomalous normalization
factor Z„.

Recently Walker and Sternheim have constructed
a decaying state perturbation theory for the discus-
sion of "exotic" atoms containing an unstable
meson. ~4 In their theory, the meson decay is de-
scribed by a non-Hermitian part of the Hamilto-
nian, which is chosen to be a constant, independent
of meson energy. In that case, the resonance wave
functions Q„and the Kapur-Peierls functions C,
become entirely identical, a circumstance very
convenient for further mathematical manipulation
(see also Fonda et al. ' ).

However, in general, the decay-producing part
of a Hamiltonian is energy dependent; indeed such
energy dependence is probably required by causal-
ity. Certainly if the decay occurs by tunneling
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through a potential barrier, the decay rate shows
a strong (exponential) dependence upon energy. In
this more general case, the families Q„and 4, are
not identical; we consider the relation between
them.

First it is necessary to give a more explicit de-
scription of the quantum system in question. We
imagine there are two channels. In one channel,
the "outer" channel, the particle has a continuous
spectrum beginning at E=0. In the other channel
(the "inner" channel) there are discrete states
(bound states) whi. ch decay owing to the coupling
to the outer channel.

The true complete Hamiltonian H is a fixed
Hermitian operator, independent of particle ener-
gy. By using projection operators for the inner
and outer channels, we may write H as an opera-
tor sum of four parts, as

+ H~0+ H0] + HOO ~

In this equation the term H, 0, for example, con-
sists of all matrix elements of H which would
transfer the particle from a continuum (outer)
state into an inner-channel state.

The resolvent operator R(z) = (x —H) ~ also may
be divided into four corresponding parts, and of
these four the part corresponding to inner-channel
matrix elements will be termed the Green's func-
tion G(k); i.e. , we set

This equation defines what we call Kapur-Peierls
states 4„. The terminology is motivated by the
fact that this definition is equivalent to that of
Kapur and Peierls for the case which they studied
(potential scattering). The reader will note that
the energy k is not the eigenvalue in the equation
above; in fact the Kapur-Peierls eigenvalue 8„(k)
has no immediate physical significance.

Eigenfunctions of H,«(k) are also eigenfunctions
of the Green's function itself. We distinguish be-
tween left and right eigenfunctions, although they
are very closely related:

G(k) I 4,(k) &
= [k'-;(k)] 'I C, (k) ),

(4'.(k)I G(k)=[k c (k)] (C'. (k)I .
(2. I)

(2. Ia)

Detailed relations between these functions are dis-
cussed in the Appendix; they originate in the fact
that the Green's function is a yegl operator func-
tion of jap. In the Appendix it is shown that

the inner channel. Such an effective Hamiltonian
is often referred to as an optical-model Hamilto-
nian (the term self-energy refers to a very similar
concept).

Because the effective Hamiltonian depends
parametrically on the energy k2, its eigenfunctions
also depend on k:

H.„(k)Ic„(k)&=8„(k)Ic„(k)&.

G(k) = R„(k') . e, (k) = e, (k) =
I e,(- k*)]* (2.2)

This Green's function is the projection of the re-
solvent operator onto the set of states of the inner
channel.

For example, in the case of potential barrier
scattering we can choose a fixed radius g, contain-
ing all of the potential; the inner channel then con-
sists of the region inside this sphere and the outer
channel consists of the exterior region. The
Green's function G(x, x'; k) is the usual Green's
function, but with both x and x' restricted to be
within the sphere. This Green's function includes
both direct effects of the potential and also indi-
rect effects associated with the loss of particles
out through the sphere.

The Green's function G(k) may be regarded as the
resolvent of an effective Harniltonian H,«(k) which
operates in the inner channel only. The effective
Hamiltonian contains the inner channel part H«of
the true Hamiltonian, but also imitates the effects
of loss of particles into the outer channel. H,«(k)
is usually an energy-dependent operator and is of
course non-Hermitian. It may be defined by the
operator equation

k'- H.„(k)= [G(k)] ',
and is single valued as a function of k. We should
emphasize that H,« is defined to operate only in

(c„(k)Ic,(k) &=ii„, . (2.4)

Also, the functions C,(k) are usually a complete
set. ' At the risk of a slight oversimplification,
we can say that the reason the functions 4, form a
complete orthonormal set is that they are eigen-
functions of a fixed operator G(k) or H,«(k). How-
ever, they depend parametrically upon k in a com-

and

(xI O, (k) ) = (xI C', (k) )*= (O, (k) I x) = (xI 4,(- k ) & .
(2. 3)

Now consider the quantity (C, (k) I G(k) I C„(k)&. It
may be evaluated in two ways, letting G(k) operate
to the left and right; equating the results it follows
that

(C,(k) I C„(k) ) =O for e„~ e, ,

which shows that the Kapur-Peierls eigenfunctions
I 4„& can be chosen to belong to a biorthogonal
family of vectors and dual vectors (the product in
this equation, and in all the following equations,
runs Only over the state space of the inner chan-
nel).

As demonstrated by Peierls for the case of po-
tential scattering, for all but a few exceptional k
values one may choose the functions to be members
of a biorthonormal family:
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plicated way, and the functions & C„(k) l are not
generally orthogonal to the functions 14,(k') ) asso-
ciated with a different wave vector k'.

Using the completeness of the Kapur-Peierls
functions, we may expand the Green's function
G(k) in terms of the set l4„(k)), and doing so gives

+ i 4„(k)& &4„(k)i
k' —e„(k)

However, this formula is of very limited utility.
For example, the time-evolution operator U(f),
which is a Fourier transform of G(k), cannot be
found from this formula, because the functions
14,(k)) and e,(k) are far too complicated. They
are too complicated even in "simple" cases (e. g. ,
Sec. III).

However, the singularities of G(k) may easily be
extracted from Eq. (2. 5), and doing so connects
the Kapur-Peierls functions to the resonance wave
functions Q„. G(k) will have a pole whenever k
= K„obeys the equation

2.= &e„le„&=(1-..'(K.)j ' (2. iO)

and this shows that the normalization constant g„
is explicitly determined by the energy dependence
of the effective Hamiltonian, since

e.(k) = «.(k) IH:.(k)
l
4.(k) &

for the resonance wave functions defined by Eq.
(2. 6).

Can we alter the normalization of the resonance
wave functions? The only freedom to do so, with-
out altering Eq. (l. 1), consists of the possibility
of multiplying ~ Q„) by some number F, and then
dividing &Q„l by the same number. Such an altera-
tion would spoil the symmetry evinced in Eq.
(2.9), and is therefore evidently undesirable. In

this sense, the theory assigns a fixed normaliza-
tion to the resonance wave functions, and not even
the phase is arbitrary. But the normalization con-
stant is not unity.

Instead we have

K„'= e, (K„) (2. 6)
and therefore

for some s= s(n). This equation relates a Siegert
resonance energy E„=K„(for which there is a pole
of the Green's function or S matrix) to the Kapur-
Peierls eigenvalue e,(k).

Two technical points may be mentioned here.
First, there may be more than one solution of
(2. 6) for fixed s,' i.e. , the correspondence between
Kapur-Peierls eigenvalues and Siegert energies
is not in general one-to-one. An example occurs
in Sec. III, below. Second, there exists the unlike-

ly possibility of a degeneracy of Kapur-Peierls
eigenvalues. In that (exceptional) case, other dif-
ficulties would have already occurred in the com-
pleteness relation, so we assume that the Kapur-
Peierls eigenvalues are nondegenerate at the in-
teresting va. lues of k.

When k approaches K„, the residue of G(k) in

the energy plane is then

li (k —K )G(k) =
1 —e,'(K„)

where e,'(K„) is the energy derivative

8,'(x„)-=2 („')

(2.7)

This equation connects the Kapur-Peierls functions
and the resonance wave functions P„, and gives an

explicit formula for the normalization factor Z„.
Comparing Eq. (2. 7) with our definition (1.1) of

Q„, we see that we may choose

le. &=~I- .'(K.H "'I4.(K.)) (2. 6)

Because of relations (2. 3) we further see that

(2.9)

(2. ii)

[Eq. (2. 11) is proven by using the fact that Eq.
(2. 4) is true for each k). This equation shows why

the anomalous normalization does not arise in the
approximate method of Walker and Sternheim' or
Fonda et al. ,

"for in those theories the operator
H,« is assumed to be independent of energy.

To slightly anticipate the argument, formula
(2. 10) already begins to exhibit a suggestive simi-
larity to formulas of field theory or many-body
theory, where a quasiparticle renormalization con-
stant is expressed in terms of the energy deriva-
tive of the self-energy operator. This "renorma, l-
ization" interpretation is further discussed after
Eq. (2. iS).

Because of the relation e*, (k) = e,(- k*), it is
clear that if K„solves Eq. (2. 6), then so also does

Thus the resonance poles occur in pairs,
reflected with respect to the axis of imaginary k.
Wherever possible we label the poles so that

(2. i2)

We can easily use this labeling if there is no more
than one pole on the imaginary P axis, i.e. , no

more than one bound state or virtual state. If
there we.e more than one such state, we could in-
tr oduce alpha, betical symbols to label them, and

thereby preserve Eq. (2. 12) for the true resonance
poles. With this understood, we also have

(2. 13)

as a consequence of Eqs. (2. 2) and (2.3).
To recapitulate, the resonance functions Q„are

special values of the Kapur-Peierls functions 4,(k)
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for those values of k corresponding to the reso-
nance poles. The anomalous normalization factor
Z„ is determined by the energy dependence of the
effective Hamiltonian; Z„will differ from unity if
the decay rate is strongly energy dependent. The
resonance wave functions are not (usually) orthogo-
nal, because

(y„I y„&=(z„z„)"'&c„(K„)I c,(K.) &

and the right-hand side is not (usually) zero.
If we use the Kapur-Peierls functions we have

the advantages of their orthonormality; for work
at a single fixed energy this is an important ad-
vantage. For other purposes the resonance func-
tions ((t)„will prove more useful. A suggestion of
this utility is contained in the following discussion
of the first-order perturbation theories.

Imagine that the system discussed above is per-
turbed by a weak perturbation V, which operates
only in the inner channel (V= V„). We introduce
a superscript zero to identify the unperturbed
quantities.

Just to make sure this situation is clear, we
should point out that we are &got treating the decay-
producing Hamiltonian II~ as a perturbation; our
intention is always to treat it (formally) exactly.
Instead the perturbation is the slight change V' in

0«, this perturbation induces slight changes in the
resonance energies and widths.

It is easy to show that the Kapur-Peierls ei.gen-
values change to

e.(k) = e'(k)+ &4,'(k)
I vI +!(k)&+ o(v') (2. 14)

in the presence of the perturbation V. This formu-
la is proven in the usual manner of textbook per-
turbation theory, using the orthonormality of the
Kapur-Peierls functions. However, while this
equation tells the change of the Kapur-Peierls
eigenvalue e„(k), it does not tell the change of the
true pole position F,„. That must be found by solv-
ing the equation

K„=e„(K„)= e„(K„)+(C„(K„)IVI e„(K„))+ ~

This equation should be solved cogsjsf;entry to first
order in V. Setting K„=Ko+ K„")+ ~ ~ we see
that the right-hand side contains two terms which
are first order in V, i.e. ,

(K„')'+ 2K„'K„"'+~ ~

=e,'(sc'„)+@~'(„',+ (e', (z„')()'~ e'„(z„'))+ ~ .
d& n=z„'

and so

(» &C„'(K'„)I VIC'(Ko))
2K„' —(de„'/dk) ro

This implies Eq. (1.3) which we repeat here for
convenience:

z„=z„+((I)„IvI(I)„&+o(v ) .

This is the first-order decaying-state perturba-
tion theory.

It is clearly essential to this result that the reso-
nance wave function &j&„not be normalized to unity.
The normalization of (Im)„can actually be most
clearly understood as containing a "feedback" ef-
fect. Suppose we apply a perturbation P in an ef-
fort to change the energy of the resonance state. We
may imagine that the perturbation V itself immedi-
ately produces a direct energy shift 4' '

=(4„(K„)l Vl C„(K„)& equal to the original expecta-
tion value of V (taken with wave functions normal-
ized to unity).

However, this direct energy shift alters the energy
at which the resonance system is coupled to the contin-
uum. In the tunneling case, it thereby alters the tun-
neling rate, which is strongly dependent upon energy.
If the continuum coupling had produced a level
shift, that too would be altered by the direct ener-
gy shift. Thus there is an indirect energy shift
which is, to first order in 6' ', given by 6' '

(0e)„'( K). But this first indirect energy shift
likewise induces a second indirect energy shift
6( '=6( 'e„'(K„), and so on. All these indirect
terms are of first order in V. The successive
shifts are given by the expansion of the geometric
seri. es implicit in the normalization of (I)„ in Eq.
(l. 3). Such a geometric series is the usual mathe-
matical representation of a feedback coupling.

Another description of the result (2. 15) is to say
that the matrix elements of V which enter are re-
normalized. They are not computed with the nor-
malized wave functions Co(K~) but rather with re-
normalized wave functions Q„. Off-di. agonal re-
normalized matrix elements & Q„l v~g ) enter into
the higher-order terms of the perturbation theory. 4

There is a striking similarity between this cal-
culation and the general field-theory technique of
renormalization, although our situation is much
simpler. We need introduce no "counterterms"
(extra additive terms in the Hamiltonian) and the
renormalization parameters Z„cannot be factored
out of the Green's function (except very nea. r a
pole). Also, in our case there is no mystery
about finding a complex value of Z„. By comparing
the renormalization interpretation with the "feed-
back" discussion above, we obtain some intuitive
insight into the general meaning of renormaliza-
tion,

In fact, beth the renormalized perturbation the-
ory of Eq. (2. 15) and also the original (nonrenor-
malized) perturbation theory of Eq. (2. 14) are
equally correct. They differ because they compute
different quantities. The renormalized perturba-
tion theory computes the new location of the pole
of the Green's function (or S matrix) whereas the
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We now turn to a special resonance model, a
two-level system which decays into a continuum.
The model is exactly soluble and any property of
the resonances can be examined in as much deta. il
as desired. Certain of the results are surprising
or unexpected; for example, there are five reso-
nance wave functions Q„, corresponding to five
distinct poles of the Green's function. Since these
five fuDctlons occur ln R two-component spRce, it
is quite clear that they could not be orthonormal-
ized by any method. This illustrates the vexy real
differences between the set Q„and the Kapur-
Peierls states C„(k), for there are only two of the
latter (for each k).

The set of five resonance wave functions Q„ is an
overcomplete set, an.d may be used for expanding

a e fu t' s ope t s. The xp sio f the
Green's function G(k) is easily established; in this
case the expansion is merely a finite partial-frac™
tions decomposition. Thus the model of this sec-
tion illustrates the possible behavior of resonance
systems in a case of maximum mathematical sim-
plicity.

We then consider a single electron which can be
in either of two channels. In the inner channel,
the electron can occupy any linear combination of
two basic orbita. ls, ~a) and I », which have real
unperturbed energies e, and g~. The unperturbed
Hamiltonian of the inner channel is

«"'= l~)e. &~l+ I» e~&&l .
The resolvent of V,"' is

(2.2)
In the outer channel, the electron is assumed to be
free to move in one space direction (on the full
open interval —~ & x & ~). The unperturbed outer-
chRnnel HRIDlltoDlRD ls Rccol dlngly tRken to be

2

HQ p
(o&

dx

and its well-known resolvent is

(
I

p&0)
I

i) &ktx-x'I

2ik
(3.2a)

This operator depends (in a single-valued way)

original perturbation theory computed the per-
turbed Kapur-Peierls eigenvalue.

In order to extend the theory to higher-order
terms, even to second order in V, it, is apparently
necessary to prove the representation (l.4) for the
Green's function. Since that representation is
true only by virtue of the detailed analytic proper-
ties of the Green's function, we must now turn to
R few specific example systems.

III. TWO-STATE RESONANCE MODEL

upon jp= z'~3, where z is the complex energy.
The coupling Hamiltonian II, causes transitions

between the channels. It allows an electron in an
inner-channel state to decay into the outer channel.
Alternatively, if a,n electron in the outer channel
approaches the origin (x= 0), the coupling Hamilto-
nian 0, transfers this electron into the inner
channel, whex'e it may remain for some time.

VYe assume that the coupling Hamiltonian re-
moves the electron from the origin of the outer
channel and injects it into a specific (fixed) linear
combination state I g) = o l a) + PI » in the inner
channel (n and P are assumed to be real numbers
in the sequel). Temporarily letting the symbol Q
denote the operator which changes the channel from
outer to inner, the coupling Hamiltonian 0, is

If, =~l() q~(x)+~~(x)j'(~l . (3.2)

The number A. is a, coupling-strength parameter.
If the coupling Hamiltonian II, opex'ates on an arbi-
trary wave function P(x) of the outer channel, the
result is XP(0) times the inner-channel state l g).

The complete Hamiltonian is

II= II,"'+B,"'+II, .
We shall study the resolvent of this operator, for-
mally defined by

Z(~) = l/(z -ff) .
The resolvent is constructed by solving the for-

mal equation

a(z) = ft"'(z)+ It"'(~)e,It(z) .
This equation is easily solved. The matrix ele-
ments of R(z) between outer-channel states are,
for example,

fklv- x'
I galxI

P 8P(k2)
2 k

+
2 k l —(A'/2 k)E(k')

whex'6 lt 18 convenient to define the function

&(k') =
& & I

fl"'I $) = ~'/(k' —e.)+ P'/(k'-8 )
(3.5)

In the sequel we Rx'6 prlmarlly 1Dterested 1D

R«(g), the projection of the resolvent B(g) onto the
inner channel. This will be called G(k) and has
the form

G(k) = ft"'(k')+ ~'ll"'(k') ——-- A"'(k')
2fk —X'Z(k')

(3.6)
or, in greater detail,

n&
k" - (k'- 8 "[2fk-~'Z(k')]
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x ~p
(k'- e.) (k'-e, ) [2ik- ~'F{k')j '

A.
(f)i Gib&=, +(„, ) (

. „, )
. (s.v)

Although these equations constitute a complete
solution for the model, the properties of the reso-
nances are not exhibited explicitly in this repre-
sentation. To learn about the resonances, we ex-
amine the Green's function G(k) for its singulari-
ties. As a function of k, the Green's function G(k)
has only poles, and no other singularities. If the
inner-channel states are not degenerate (e, Neo)
and if both n and P are nonzero, then it i.s easily
verified that there is no singularity of G(k) at the
unperturbed energies e„e,for finite X. The poles
of G(k) occur whenever k=K„obeys

go 2 $2p2
2iz„= x'F(z„)=, +, . (s.8)

n ea n b

The resonance wave functions, defined as in Secs.
I and II, are given by

n la) Pl k&

E„-e, E„—et,

where E„=K„and (in this section only)

~.=(,,
' -~(z.))"'

(s.o)

dE
dE

F'(E) =—. (3.10)

yo 2 g4 2 2 po
+ ~ + ~ ~ 0

2i~e, 4e, 2e, e, —e,

for the complex energy, and

The normalization factor Z„ for the resonance wave
functions is determined in terms of F(E) by

Z„= (Q„ i Q„) = —N„F'(E„)= (1 —F(E„)/2E„F'(E„))
(3.11)

In general, Eq. (3.8) is equivalent to a fifth-order
algebraic equation, and it has five solutions. Thus
there are five poles of G(k) and five corresponding
resonance wave functions. Their significance be-
comes clear in the case of long lifetimes. Thus
we expand all the above quantities in powers of X.

First, consider the two solutions associated
with the unperturbed state I a). These may be de-
noted I Q„& and E„. The expansion with respect
to A. is then

the "Golden Rule" perturbation theory, i.e. ,

E~= e~+ p io), o) =2n'~ M~ p(e, )

where the matrix element M between the inner
state I a) and a continuum state L e' is

ill = ~~/L"'

(L is an arbitrary large quanti. zation length). The
density of states in a range of length L is then

p(e, ) = L/2vV e and thus o) = X n /v e .
The second term in E„proportional to X, is an

energy /encl shift resulting from the coupling to the
continuum and the induced coupling to state I k&.
In more general or realistic models, this energy
shift is not necessarily an order smaller than the
decay rate.

The two states Q„, are linearly independent for
finite X. However, they are closely interconnected
by rela.tions like

(a~ y, &*=(a~y, & .
As becomes clear below (see the discussion of the
time-evolution operator in Sec. V) one of these
two states is the decaying-state wave function and
the other is the wave function of a corresponding
growing state, whose presence guarantees time-
reversal symmetry.

It is interesting to examine the normalization
factor Z„ for the case of long lifetimes (small X).
The expansion is

A.

(s. 14)
A similar result holds whenever the level shift
may be neglected, so that the Kapur-Peierls eigen-
value may be approximately represented by

e, (k) =- eo+ ~xi~, )& ~~ eo

and the resonance energy E„ is approximately

En= eo+ Pifgo

where ~0 is the decay rate evaluated at the unper-
turbed energy eo. If we have

~Q)

dF eo

(this will be the case if the decay rate ~ depends
on the sth power of the energy), then the formula
for Z„ is approximately

n & Pcs+ 2' e 4e 2i~e(e e)—
(3. 13)

for the resonance wave function.
This pair of poles of G(k) originates in the un-

perturbed level e,. The first term of the complex
energy E, is just the decay rate as evaluated in

This gives a general approximate expression for
the normalization factor.

A second pair of solutions of Eq. (3.8) is asso-
ciated with the unperturbed state I k& in exactly
analogous fa,shion.



&pa(z') = ffj)() (~)+ &()() (~ ) &(&')Ro() (~)

whel 6 the g matrix ls given by

(s. 17)

This operator describes the scattering as seen in
the outer channel. It is the T matrix of a one-di-
mensional scattering problem, with an energy-de-
pendent effective potential

~'F(a') tt(x) .
This potential can be uttxaeNve, for small 4, if 8,
and e, are positive (which we have assumed, in or-
der to have decaying states). When the effective
potential is negative (attractive) lt may produce a
bound state in the outer channel.

This bound state is not a resonance, but a, true
(negative-energy) bound state. Its wave function
is largest at the origin, and dies away exponential-
ly from the origin. The outer-channel wave func-
tion may be extracted from E(I. (3. IV) and is

The ffifth solution of E(I. (3.8) has a different
character. Its significance also becomes clear in
the case of small coupling. In that case its wave
vector Ko is very small and has the expansion

g. o( P t(. o t) (6Ko-- ——+— (+—~—+, + 0(1 )) (3. (5)
2

and the corresponding wave function is

l) &-"(—* -')"*(" "") o(")
(s. 16)

In order to interpret this state, it is useful to
reexamine the outer-channel resolvent operator
given in E(l. (3.4). This resolvent corresponds to
free propagation plus scattering at the origin. The
T-matrix opex'Rtox' fox' the scattgrlng may be de-
fined by the operator equation

G(u) =~ 1+ O(V')
1

(3.22)

(the symbol 1 in the first term denotes the unit
matrix). Thus the decomposition of G(It, ) into par-
tial fractions may be carried out, and the result is

G(n}= Z ~y„)(P„~/2I), (f -Z„) .
n= -2

(3.23)

This last equation supplies a further interpreta-
tion, for this sPecial case, of the "renormaliza-
tion" Zo of the state I(t)o). Z() is the probability
that a particle known to be in the bound state mill
be found in the inner channel. This interpretation
is similar to the interpretation of real renormal-
ization constants of quantum field theories, which
describe the renormalization factor as the prob-
ability of finding the physical quasiparticle in a
"bare particle" state.

However, this interpretation is only valid for
bound states. It is by no means correct for reso-
nances. The resonances are not associated with
real renormalization factors g„, and the outer-
channel parts of the resonance wave functions can-
not be normalized at all (except by gd @oc modifi-
cations of the mathematical definitions). It is our
opinion that the only correct interpretation of the
factors Z„ for the resonances is the feedback in-
terpretation given in Sec. II above.

For the model of this section it is entirely trivial
to establish the Mittag-Leffler representation of
the Green's function. The Green's function G(k),
given in E(I. (3.7), is a meromorphic function of
P, with only the five singularities at P = E„. As
mentioned above, there are no singularities at the
unperturbed energies, and no branch cuts (in the
I) plane). For large values of k, it can easily be
shown that

((),(x) = Xoe "o'"),

y, =le, l,

(s. 19)

(s. 20)

By comparing this relation with the asymptotic form
of the GreeQ 8 function fox' 1Rx'ge jp, R number of
relations between the (t)'s can be read off. The
most interesting one is

».Il/~. ~'- F'(- 2)]
The state t(t)0) given by E(I. (3.16) is the part

of this bound state which appears in the inner chan-
nel. Thus the extra. (fifth) pole of G(k) is the in-
ner-channel part of a true bound state; this shows
why the wave vector Ko is purely imaginary, for
the associated energy is real and negative.

The complete wave function for the bound state
is normalized to unity. This is expressed by the
statement, easily proven from E(ls. (3. 11), (3.19),
and (3.20), that

(j.~ y,).f (s.21)

—~ t, e„&(e„/ =1,

which expresses the fact that the resonance wave
fuQctlons fol m RQ over-complete set.

It is possible to constluct the elgenfunctions of
the Green's function G(k) for the model of this sec-
tion, and by explicit construction one may verify

,the statements of Sec. II above. VYe urge the
reader to convince himself that the jp dependence
of these eigenfunctions is (Iuite complicated (it in-
cludes branch cuts). For this reason the represen-
tation of E(I. (3.23) is especially impressive, be-
cause of the simplicity of its 4 dependence.
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IV. POTENTIAL SCATTERING RESONANCES

a)(k; 0) =0,
a)(k; r) = (2/m) ~ sin(kr+ 6) for r& a

(4. I)

for any real energy E= k [here 5(k) is the real s-
wave phase shift).

The functions a)(k; r) form a complete set, a,s-
suming that there are no bound states, and are
thus adequate for any quantum-mechanical calcu-
lation. There is a continuum perturbation theory
for the functions (k; r); this perturbation theory
tells how they change when the potenti. al v(r) is
slightly altered. The continuum wave functions in
principle describe all properties of the resonance
phenomena.

However, when the barrier is high, then the de-

The simplest type of resonance occurs when a
particle moves under the influence of a potential
which has a high (but finite) barrier; if the parti-
cle approaches the barrier it may be trapped for
some time behind the barrier before it escapes
by tunneling. Since the mathematical theory of po-
tential scattering is very highly developed, it is
possible to give a very general discussion and still
the results are exact.

In an earlier paper a resonance perturbation
theory was constructed for potential scattering.
Here that theory is reviewed and recast in the
language of Sec. II, a language more suitable for
comparison with the Kapur-Peierls theory. In
this case, the comparison reveals the unsatisfac-
tory nature of the Kapur-Peierls wave functions
C, (r), for the C, do not always go over smoothly
into bound-state wave functions in the appropriate
limit. On the other hand, the resonance wave
functions (t)„(r) will automatically become real,
orthonormal bound-state wave functions if the bar-
rier becomes very high. In this sense they are
more suitable for use in the limit of long lifetimes.
The present section concludes with a detailed dis-
cussion of the representation of the Green's func-
tion G(k) in terms of the (t)„, for a simple special
case.

The tunneling model involves a spherically sym-
metric potential v(r) which contains a barrier. It
is convenient to consider only the solutions having
s-wave symmetry (the extension to higher angular
momentum should present no difficulty), and in or-
der that the solutions have the simplest analyti. c
properties, it is convenient to require that the po™
tential v(r) be zero beyond a fixed radius a. It is
assumed that there are no bound states.

The usual solutions of the Schrodinger equation
for such a potential are the real energy continuum
scattering solutions a)(k, r). These are defined
(following Goldberger and Watson~) by the boundary
conditions

caying states trapped behind it have very long life-
times and we expect that the continuum theory
misses the point. The continuum scattering wave
functions M(k; r) are nothing like discrete bound-
state wave functions. It is to be expected that cer-
tain linear combinations of the gg(k; r) are phys-
ically more like bound states trapped behind the
barrier.

The resonance wave functions (t)„(r) are such
linear combinations. In the special case of long-
lived resonances the wave functions (t)„(r) tend to
resemble bound-state wave functions more and
more closely, and hence they are more natural or
appropriate than the functions iv(k; r).

The functions Q„(r) are solutions of the radial
Schrodinger equation with complex eigenvalue K2:

(4.2)

The boundary conditions they satisfy may be writ-
ten

n"=iKQ„, r& adt'

(4.3)

but these statements do not yet specify the nor-
malization of the resonance wave function, and as
asserted several times, the normalization is their
most interesting property. The normalization may
be imposed as in Sec. I, completely defining (t)„(r)
in terms of the residue of the Green's function
G(k) at its complex pole K„, i.e. ,

llm (k —K„)G(r, r ", k) =—y„(r)y„(r') . (4.4)
E~

This gives the same definition of (t)„(r) as was used
in Bef. 4, with two technical provisions. In Bef.
4, the Green's function G(k) was denoted I'(k) and
had its poles at k= —K„, a systematic notational
change from the usage here. The other proviso
concerns the separation into bound and free
channels.

In the analysis of Bef. 4, no channel radius was
introduced; the solutions Q„(r) were considered on
the entire range 0& y& ~. Of course they cannot
be normalized on that range, because their abso-
lute value grows exponentially with y.

Although special mathematical techniques
(Zel'dovich, Gyarmati, 8 and Bergren' ) can be de-
veloped to normalize the functions on the range
(0, ~) these techniques are not perfectly satisfac-
tory. These techniques introduce ways of regu-
larizing the divergent normalization integral of
(t)„(r) either by introducing a cutoff factor e ' or
by deforming the contour of integration to complex

In fact these methods lead to results quite
similar to those of this paper. However, the regu-
larization techniques are slightly unsettling. Con-
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sider for example the regularized integral

e '" e "dr= —I/P .lim
g «p+

In the special case of positive real p, this regu-
larization of the integral gives a negative result,
even though the integrand is always positive.
While this may not be completely incorrect, it is
certainly dangerous.

One entirely avoids such unpleasantness by in-
troducing a channel radius Ap which separates the
inner bound channel" region (0 & r &Ap) from the
outer free channel" region (r &Rp), The normal-
ization integrals are defined to run only from zero
to Ap. Although the channel radius Ap is itself
arbitrary and unphysical, no final physical result
should depend upon Rp. It is always assumed that
Ap &a in this paper (recall that a is the radius be-
yond which the potential is zero).

We now review some formulas from Ref. 4, in
order to set up the comparison with Sec. II.
In Ref. 4, the wave functions C)„(r) were con-
structed in terms of the Jost function f(k; r); in the
extensive list of references given in Ref. 4 one
will find detailed treatments of the analytic prop-
erties of the Jost function for complex k. For any
value of k, f(k; r) is defined to be that solution of
the radial Schrodinger equation (4. 2) which obeys
the special boundary condition

f(k;r)=e ' " for ~&a . (4. 5)

and this equation defines the zeros Q„of the Jost
function. These values are the negatives of the
K„, i.e. , the Green's function G(k) has a pole at
k= K„=—Q„.

The resonance wave function P„(r) is propor
tional to f(Q„; r):

(4.7)

where the proportionality constant N„ is deter-
mined by

There is no boundary condition imposed upon
f(k; 0) =f(k), and so f(k; r) alone does not always
constitute an acceptable solution of the Schrodinger
equation. However, for certain values Q„of 0 we
have

(4. 8)

approximate orthogonality and normalization of the
C)„(r), for it was demonstrated that

f P'„(r)dr= 1 —N'„(e " »/2iQn)

and

J p„(r)&f& (r)Cr= —Np'„[e " "' "' %(Q„+Q )]
(4. 11)

for any choice of Bp &a. Relations (4. 10) and

(4. 11) are exact; we shall demonstrate below the
equivalence of (4. 10) to the normalization factor
Z„of Secs. I and II. It was also shown in Ref. 4
that the normalization of P„(r) is such that it be-
comes real for the case of long lifetimes. Thus
the states C)„(r) become real, normalized, and
orthogonal for long lifetimes; the behavior of the
Kapur-Peierls functions is not necessarily so
pleasant.

In order to construct Kapur-Peierls functions,
we shall seek the eigenfunctions of the Green's
function, for arbitrary fixed A. Let

(4. 10)

(
d2

—
~p ~ v(v) —t.")Gtv, v'; ) )= gatv —v') .

Using this relation, it is easily shown that

—
~~ + vtv)) @.tv)= v. tl )V. tr) (4. 13)

for each r &Rp. Since G(0, r'; k)=0, it is evident
from Eq. (4. 12) that C,(0)=0. The boundary con-
dition at x=Bp is slightly more difficult to extract.
Assume temporarily that Rp is slightly larger than
a, and choose a &x &Ap. The Green's function may
be represented in terms of the Jost function f(- k;
r) and an arbitrary solution g(k; r) which is re-
quired to be zero at the origin. This representa-
tion is

J G(r, r'; k)C, (r') dr' = [k —e, (k)] '4), (r),
(4. 12)

where C, (r) = C, (k; r-). Imagine that C,(r) is a solu-
tion to this equation; let us discover its proper-
ties. First, it obeys the Schrodinger equation with
complex eigenvalue e, (k), throughout the bound
channel (r &Rp). This is demonstrated from the
basic fact that, for both x and x' in the bound chan-
nel,

(4. 8)

In Ref. 4 it was shown that formulas (4. 7) and
(4. 8) determine the same function Q„(r) as does the
residue definition (4.4). It was further shown that

Af(- k; r)g(k; r'), r &r'

Af( k; r')g(k; r), -(4. 14) '

In this representation, A ' is the Wronskian of f
and g:

N „~ImE„, (4. 9) 1/A =g(r)f '(- k; r) g'(r) f( k; r) . —-(4. 15)

and hence that this quantity approaches zero for
states of very long lifetime. This fact implies an

Using this representation, and performing the dif-
ferentiations carefully, we can show that



C"(r) f'( k—; h) fo g(r')4 (r') dr'+g'(r) I„'f( k-; r')C (r')dr'
C (r) f( k;-r) J"g(r')C (r') Cr'+ g(r) f"0f(- k; r')C (r') dr'

The discrete (quantized) value of q is then deter-
mined by the other boundaxy condition:

C, l (R ) g - j»RP feei»RO

C, (R )
'q ~ -i»BO R 4»&0

ol

f(- q)e '"'+f(q)e*"'
)

- (»Bo f( )
()»BO (4. 1V)

The actual values of A and 8 would be determined
by the requirement that

f 4 (h) Ch = 1,
but this condition will not be worked out here.

Poles of the Green's function occur whenever
K„=e,(K„), as shown in Sec. 11. This means that
k =q in Eq. (4. 17), i.e. , either

q = —k and f(q) = 0 (case i)

or

Now if x approaches Ao, the second integral in
the numexator and demoninator becomes very
small, and so

C '(Ro) f '(- »' Ro)
(k(RO) f(- k; Ro)

This equation is the desired Kapur-Peierls
boundary condition. The above derivation is slight-
ly informal; a much more formal discussion is
given by McCarthy. ' McCarthy introduces a
boundary-condition operator involving a 5 function
of (r R~); th—is operator is the non-Hermitian addi-
tion to G(k), and serves to enforce the same result
(4. 16). Although this more elaborate treatment
may seem more satisfactory to some, it leads to
no different result. To summarize, it is appro-
priate to refer to the eigenfunctions of G(k) as
Kapur-Peierls functions, for they obey the special
boundary condition of the Kapur-Peierls resonance
theory. Although the eigenvalue in the Schrodinger
equation (4. 13) for C,(k; r) is e, (k), the boundary
condition involves k.

Now it is possible to explicitly construct the
Kapur-Peierls functions. We set q = e, (k) for
arbitrary fixed k, although neither q nor e,(k) is
yet known. The general solution of Eq. (4. 13) may
be written

C, (k; r) =Af(q; r)+ Bf( q; r) . -
The ratio of A and 8 is determined by the condition
C (0) = 0, so that

q=k and f(-q)=0 (case ii),
a set of alternatives which follows from Eq. (4. 1V).
Since Q„was defined by the equation f(Q„)= 0, both
cases (i) and (ii) give a pole of G(k) at k= K„= —Q„.
The solutions of cases (i) and (ii) are actually iden-
tical; thus the Kapur-Peierls condition e,(K„)= K„
is equivalent to the criterion f( K-„)= 0.

We shall now determine the derivative dk/dq at
the points of type (i) where f(q) = 0. This will en-
able us to evaluate the normalization factor Z„of
Secs. I and II, from the Kapur-Peierls point of
view [see Eq. (2. 10)]. That evaluation is then to
be compared to Eq. (4. 10).

Starting with Eq. (4. 17) we may differentiate
each side with respect to q and then set f(q) = 0 to
obtain

dk '(q)
dq f(- q)

——=1+2q e" o with q=@„.

That gives us

, (») t) 4 ( ~QJ'(Q ) s;sea)Z„dk, , f(- g„)
(4. 1a)

for the energy derivative of the Kapur-Peierls
eigenvalue, and hence

Z„= [1 -e,'(Z„)] '=1+ @" — e "'» (4. 19)

for the renormalization factor Z„. The value
(4. 19) should be compa. red with the result in Eq.
(4. 10), which may be rewritten as

&y( q ) e-2fQPo
y'„(r)dr=i-~

The exact agreement is clear.
This gives us an explicit check of the general

theory of Sec. II for the potential scattering case,
and shows how all the quantities are constructed
from the Jost function f(k; r), for an arbitrary po-
tential. Although the quantity Z„does depend ex-
plicitly upon the channel radius, the desired agree-
ment between (4. 10) and (4. 19) holds for any chan-
nel radius. Incidentally, the regularization pro-
cedure of Bergren ~ ancj Qyarmati and Pertse is
equivalent to asserting that

Lim Beg Z„= 1,
gowoo

where I im Reg is the regularized limit. " For
finite values of Ro, the absolute value I Z„l grows
exponentially with Bo, and so this regularized li.m-
it procedure (while consistent) is strange.

%e now consider the Kapur-Peierls functions a
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v(r) = V05(r —b), (4. 20)

where b &Bo. For this potential, the Jost function
f(k) is

f(k) = 1+ (V0/2ik) (1 —e ' ') (4. 21)

and there is an expansion of the E„for the long-
lifetime limit of the form

en m mn n'n2 2

b bV0 bV() bV()
(4.22)

In this case, the limit of long lifetime is simply
the limit Vo- ~. The resonance wave function i.s
exactly given by

little more closely, to show how they behave for
long lifetimes. While a general investigation is un-
doubtedly possible, it is simpler to examine a
special soluble case, already discussed in Ref.
4. This case is the extremely simple barrier po-
tential

Next we examine the solution for the same poten-
tial v(r) = V06(r- b) for the case of finite potential
Vo and large energy 4 . For any z& b, one has

f(k; r) =(1+ V, /2ik)e ""- (V0/2ik)e "'" "' .
(4. 25)

Equation (4. 21) is a special case of this formula.
Defining S(k) =f(k)/f(- k), the Green' s function is
then (for 0 & r '

& r& b)

G(r, r'; k)

= (I/»k) f(- k; r) [f (k; r ) —S(k)f(- k; r')]
(4. 26)

This formula is a consequence of Eqs. (4. 14) and

(4. 15). We shall examine the limiting behavior of
G(k) as k-

If k approaches infinity in the upper half-plane,
with large positive imaginary part, then f (k; r)
and S(k) become finite while f(- k, r) becomes
zero. The dominant exponential behavior of f (k;
r') —S(k)f(-k; r) is then

2 ~ ~2 sing
b [1+ (bV()+2i(I)„b) ]' (4. 23) f (k„r') —S(k)f(- k; r')- —,

and it is easily seen, by inserting the expansion of
(4. 22) into Eq. (4. 23), that for V0- ~ this wave
function becomes the real, normalized box-quan-
tization wave function appropriate to the range
(0, b).

For long lifetimes, the Kapur-Peierls eigen-
values are determined by the limit of Eq. (4. 17),
but this limit must be taken very carefully. First,
if b is not equal to R0, the condition upon e, (k) =q
ls

k . cosq(R0 —b)

q sing(R0 —b)
(4. 24)

This condition is necessary even if it is also true
that qb = ~n, as is seen by carefully applying
l'Hopital's rule to Eq. (4. 17). The eigenvalues q
determined by Eq. (4. 24) still depend upon k, and
are complex. They seem to have no simple physi-
cal interpretation, and in this sense the Kapur-
Peierls theory does not behave in a sensible way
for high barriers.

It is evident from Eq. (4.24) that the Kapur-
Peierls eigenvalues are still dependent upon the
channel radius Bo, even in the limit Vo- ~. This
extremely unsatisfactory feature is not shared by
the Siegert poles E„=E„.

However, a second case arises for the special
choice of channel radius &0= 5. In that case, the
limit of Eq. (4. 17) must be taken differently, and
in that case the ultimate Kapur-Peierls eigenval-
ues approach the correct limiting values q=n)(/b
for large Vo. Thus for this potential there exists
a "correct" choice of channel radius for which the
Kapur-Peierls theory behaves correctly in the
long-lifetime limit.

and therefore

G(
r.r

k)
N(r-r') + 0 (k(b r) B(b -r')-

2ik 1 —V() /2ik

All the exponentials decrease, because we have
assumed y&y', b&y, and 5&y", thus we have
shown that

G(r, r'; k)- 0, as k- ~ in the upper half-plane .
(4. 27)

If k is in the lower half-plane, G(k) may have
resonance poles near the real axis [at these poles
S(k) is infinite]. But if we examine the asymptotic
values for large (negative) values of Im(k), we find

G(r, r'; k)- —(I/2ik) e "'" "'-0-, -

as k- ~ in the lower half-plane (4. 27a)

and thus the Green's function G(k) is bounded by its
values near the real axis under the conditions 0

If y or y' were outside the barrier, the situation
would be quite different; the Green's function would
approach infinity for large values of 4.

Now the finite asymptotic values of Eq. (4.27)
implies that G(r, r'; k) will be bounded on a set of
concentric circles which avoid (pass between) the
poles at 4= Q„. Then, according to the Mittag-
Leffler theorem (quoted by Whittaker and Watsonw),
the Green's function may be represented as a sum

G(r, r'; k) =Z b„(r, r')/k —ff„,

where b„(r, r') is the residue at the pole If„. This
representation is of course the desired formula,
expressing G(k) in terms of the decaying-state
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wave functions g„(z). Occasionally it would be
necessary to ensure convergence of the sum by re-
expressing it in the "subtracted" form

G(r, ~'; k) =G(~, r', 0)+Z k„(r, ~') +-
n tl

as the latter form is more strongly convergent
than the ori.ginal form.

To summarize the discussion, it has been shown
in some detail that for the special potential model
of Eq. (4. 20), the Mittag-Leffler representation of
the Green's function exists for bo'h ~ and y

' within
the barrier region.

V. CONCLUSION

In the preceding sections we have compared
resonance wave functions obtained from the Siegert
and Kapur-Peierls definitions of the resonance en-
ergies. The comparison especially clarifies the
meaning of the normalization constant Z„of the
resonance wave functions Q„. The factor Z„con-
tains a geometrical series which represents the
feedback stabilization of the resonance state due to
the coupling to the exterior continuum. In the
model of Sec. III, we encountered a bound-state
wave function which also had an anomalous nor-
malization coefficient go, in that case the real
number Zo represented the probability that a par-
ticle known to be in the bound state would be found
in the inner channel. For a true resonance, Z„
is not real and such a probability interpretation is
not available.

The model of Sec. III was also an example for
which the Siegert and Kapur-Peierls resonances
were not in a one-to-one correspondence. In the
potential scattering model discussed in Sec. IV,
we showed that the Kapur-Peierls resonances do
not necessarily behave properly in the limit of long
lifetimes (unless one has made a specific felicitous
choice of the channel radius). The Siegert reso-
nances behave correctly in the limit whatever the
channel radius, and this is an argument for the
Siegert definition. However, the two resonance the-
ories together seem more powerful than either
would be separately.

In Sec. IV we explicitly constructed the Kapur-
Peierls eigenvalue e„(k) and the normalization fac-
tor g„ in terms of the Jost function for potential
scattering. Finally we examined a specific simple
barrier potential and showed that the analytic prop-
erties of the Green's function were suitable for the
Mittag-Leffler expansion according to Eg. (1.4):

G(k) =Z (1.4)
n

In the remainder of this section we wish to indi-
cate some implications of this expansion formula.
We give only very abbreviated arguments, without

A more detailed derivation of this result appears
in Ref. 4. The equation for $„has essentially the
form of a Brillouin-Wigner perturbation expan-
sion; i.e. , K„and Q„appear on the right-hand
side. Qf course it is possible to expand them in
terms of the unperturbed quantities and thereby
obtain an explicit expression for If„and Q„ to any
given order.

A second interesting application of the represen-
tation (l.4) for G(k) is to study the time dependence
of resonances. Such a study may be based upon the
time-evolution operator U(t) = e '"'. This opera-
tor may be projected onto the state space of the in-
n'er channel, and the projection will also be denoted
U(t). This latter operator can be expressed as a
Fourier transform of the Green's function as fol-
lows:

U(f)=- . ' 2kdkG(k)e "'1"
CO

(if there are bound-state poles, the expression
must be slightly altered). Applying expansion
(1.4) for the Green's function, we can express U(t)
in the form

U(f)=&IO„) U„(f)(i„~l, (5.2)

which contains the function U„(f) defined by

Z„(k-Z„)
Thus, the time-evoluti. on operator U(t) has a very
simple digggggl form in terms of the resonance
wave functions.

However, the simple form (5.2) conceals some

any of the interesting details; our purpose is mere-
ly to underscore the potential utility of. the reso-
nance functions Q„discussed in this paper.

One application is to the development of the com-
plete "renormalized" perturbation theory. This
theory is extracted from the representation (1.4)
in a straightforward manner. We introduce super-
script zeros to distinguish the unperturbed quan-
tities Z and &j&, and again we assume that the
perturbation operator V operates only in the inner
channel. Then the complete (perturbed) Green's
function G is related to the unperturbed Green's
function Go by the usual operator equation

G(k) = Go(k)+ Go(k) VG(k) .
There wi. ll be a pole of G(k) whenever there is a.

solution eigenvector for the formal equation

1= G,(Z„)V,
i.e. , whenever there exists a state Q„obeying

(Q„l Vl'Q„)
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In this appendix we derive various symmetry
relations for the resonance wave functions P„or
Kapur-Peierls functions C, (k) which were men-
tioned in Sec. II. Perhaps the best starting point
is the familiar formula

G'(k) = G(- k*) . (Al)

This formula, which may be verified in detail for
the specific Green's functions of the models of
Secs. D and IV, follows more generally from the
Hermiticity of the total Hamiltonian and the nature
of the inner-channel boundary conditions. A fur-
ther argument tending to confirm the general valid-
ity of (Al) is the fact that the Green's function is
a real operator for negative energies (i.e. , it is
real for real values of ik). By an operator ana-
log of the Schwartz reflection principle, the rela-
tion (Al) then follows for any k.

Our first task is to relate the left and right

complex behavior. We shall mention two aspects
of this behavior, without giving the mathematical
details. First, the function U„(t) in Eq. (5. 3) de-
scribes the nonexponential decay which holds at
large time f. The function U„(t) may be evaluated
by a contour deformation, which represents V„(f)

-fÃ tas the sum of an exponential e '~~' and a contour
integral. The contour integral gives rise to the
well-known E

' power law. 4' ~ Second, and
more interesting, the formula for U(t) describes
the mutual influence of two resonance states. Thus
one can study the detailed dependence of decay
characteristics on the choice of initial state. For
this study, the nonorthogonality of the l Q„) appears
to be an important special feature.

A discussion of the decay properties of such
resonance systems would be quite interesting, but
we do not pursue the topic further in this paper.
However, the possibility of constructing detailed
and exact formulas for the case of several reso-
nances seems to us to provide a suitable justifica-
tion for the further study of resonance wave func-
tions.

APPENDIX: SYMMETRIES IN k PLANE

In this equation, as usual, &C,(k) ~x)*= &~~ C,(k)).
Now, Eq. (A2) i,mpli. es that ~4,(k)) is a right eigen-
function of G(-k*), with the eigenvalue
[k* —e,*(k)] . Assuming the Kapur-Peierls states
are nondegenerate, it thus is possible to label them
in such a way that

l o,(k)) =
l c,(- k*)), (A2)

e,*(k) = e,(- k+) .
Now just as the Green's function can be chosen to
be real for negative real energies, so also can the
eigenvalue and eigenfunction; again using the
Schwartz reflection principle we deduce

e,(-k )=e,*(k),

&xl +,(- k*)) = &xl c,(k))* .
From this it follows that

e, (k) = e,(k),

&~l @.(k) ) =
& ~l c.(k) )*

(A4)

(A5)

The second relation of Eq. (A5) shows the nature
of the inner product:

&c, l~, ) = f '[4,(k;x)]'d~. (A6)

This integral involves the complex square of the
wave function, rather than the absolute square
(here, Ro is the channel radius).

The relations exhibited above differ only in nota-
tion from relations given in the original papers of
Kapur and Peierls and Peierls. However, those
authors advocate a different normalization of the
function 4„.

The symmetry relation (2.9) now follows imme-
diately from Eq. (A4).

Kapur-Peierls functions, which were defined in
Eq. (2.4). We start from

(o.(k)
l
G(k)

l
x) = [k'- e,(k)] '&c,(k)

l ~&

and take the complex conjugate, which is

(xl c'(k)l c,(k)) =[k*'-e+(k)]-'&sic,(k)) . (A2)
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