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Slow Electrons Ejected from He by Fast Charged Particles
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(Received 25 September 1972)

An accurate differential ionization cross section for the ejection of zero-kinetic-energy electrons from
He by fast charged particles is deduced by extrapolating the Born cross sections for discrete excitations,
in the spirit of the quantum-defect theory. Recent electron-impact data by Grissom et a/. for secondary
electrons of almost zero kinetic energy are in excellent agreement with the theory. The electron-impact
data by Peterson et al. for slow secondary electrons show trends consistent with the theory also. The
proton-impact data by Rudd et al. are in better agreement with the theory than those by Stolterfoht.

INTRODUCTION

Recently, a number of experiments on the sec-
ondary electrons from the ionization of He by fast
electrons and protons have been reported in the
literature. ' ' These experiments provide the
ionization cross-section differential in the kinetic
energy of the secondary electrons. (When the
incident particle is an electron, the slower of the
two electrons that emerges after the collision is
referred to as the secondary electron by conven-
tion. )

For slow (& 50 eV) secondary electrons, experi-
mental uncertainty is serious when conventional
energy analyzers are used. For instance, a dis-
crepancy of a factor of 2 exists between the set of
experimental data on He by Rudd et al. ' and that
by Stolterfoht for slow electrons ejected by 300-
keV protons (see Fig. 1). Grissom et af. ' applied
a trapped-electron method to detect only very-low-
energy (& l eV) secondary electrons. The result-
ing cross section agrees well with theory as will
be shown below.

According to the quantum-defect theory, cross
sections for discrete excitations must connect
smoothly into the corresponding continuum cross
sections at the ionization thresholds, provided
that the cross sections are normalized to the same
energy scale. ' The continuity of cross sections
through thresholds has been utilized for the analy-
sis of photoabsorption processes. " The same
philosophy can be used also to analyze inelastic
collisions of fast charged particles with atoms.
In this paper we shall illustrate our point by using
helium as an example. However, the method pre-
sented below can be extended, in principle, to
any atom if sufficient data on discrete excitations
are available. (See discussions concerning Eqs.
(4. 23) and (4. 24) on pp. 327-328 of Ref. 9. The
right-hand side of Eq. (4. 23) should read
I(5 'iE). . .4-,l

The asymptotic (for large incident-particle ve-
locity) Born cross sections for discrete excita-

tions of He from its ground state are well known. ' '"
Therefore, one can obtain an accurate differential
ionization cross section do'/dE at the ionization
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FIG. 1. The ratio of the differential ionization cross
section dg/dE of He to the Rutherford cross section as a
function of the energy t"ansfer E. For other mathemati-
cal symbols, see the text. The uncertainties in the ex-
perimental data quoted are 20 to 30% (a) Ionization by
electrons. The open circles, triangles, and inverted
triangles represent experimental data by Peterson et al.
(Ref. 3) with 2000-, 1000-, and 500-eV incident energy,
respectively. The open square and diamond at the thresh-
old stand for the experimental data with 500-eV incident
energy by Grissom et al. (Ref. 4) and by Oda et al. (Ref.
5), respectively. The solid circle, triangle, and in-
verted triangle represent the Born cross section for 2000-,
1000-, and 500-eV incident energy, respectively. (b)
Ionization by protons. The open squares and circles
stand for the experimental data with 300-keV incident
energy by Stolterfoht (Ref. 2) and by Rudd et al. (Ref. 1),
respectively. The solid circle represents the Born cross
section for the same incident energy.
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threshold, where E is the energy transferred to
the target, by extrapolating the discrete cross
sections. The threshold value of do/dE 'thus ob-
tained can be compared directly with the experi-
ment by Grissom, Compton, and Garrett, and

also serves as a guide to judge the consistency of
do'/dE measured by Peterson, Beaty, and Opal,
by Rudd, Sautter, and Bailey, ' and also by
Stolterfoht for slow secondary electrons.

THEORY

4maoz yn"= .i" "".i.) (2)

for a forbidden transition, where ao is the Bohr
radius; S is the Rydberg energy; T = ~me, I
being the electron mass (regardless of the type of
incident particle); f„is the optical oscillator
strength; E„is the excitation energy; and b„,c„,
and y„are constants evaluated from the wave func-
tions of the traget. The initial state is taken here
to be the ground state, though the theory is appli-
cable to any initial state.

The corresponding formula for the excitation to
a continuum state is [Eq. (4. 22) of Ref. 9]

do 4va20z 8 df 4cz T dy (R

dE T/(R E dE (R dE T i
(3)

where E, df/dE, cz, and dy/dE are the continuum
quantities which correspond to E„,f„,c„,and y„,
respectively. For a continuum state specified by
E only, both optically allowed and forbidden transi-
tions take place and c~ contains both contributions.

The continuity at the ionization threshold (E =B)
requires that [see Eqs. (11) and (12) of Ref. 10]

(n*)'f„(R (R' df
2E~ E dE (4)

1im — " 1 c„Z(n ) b„)
W OO

(7( d, , )
where g' (n*) b„here stands for the sum over all
different angular momenta except for the I' channel,
and

The asymptotic form of the Born cross section
for the excitation of an atom to a discrete state n
by a (structureless) particle of charge ze and

speed v is given by [Eqs. (4. 18) and (4. 20) of Ref.
9]

4zaoz f„4c„Ty„
T/8 E„/$(R. T/(R

for an (optically) allowed transition, and

lim —Z(n~) y„=(R
n"~

(6)

where, in this case, the sum includes all angular
mome nta.

The values of f„(R/E„,(Rf„(inc„)/E„,and various
b„for large n as functions of n* (= n+ quantum de-
fect) are given in Table I of Ref. 10 for the excita-
tions of He. From Ref. 10 we have

lim (n*) f„(R/2E„=0. 506

in excellent agreement with the continuum results
extrapolated from the calculation of Jacobs~~; and

lim 2 Z (n*)'y„"=—0. 175
fl ~ ()O

(9)

and

lim —,
' Z(n*)3y(")=+0. 283 .

tf ~ ce

(10)

The values in Eqs. (9) and (10) actually include con-
tributions from transitions to the 'I', 'S, and D
states only. Transitions to the 'I', 'G, and higher
angular-momentum states have vanishing y„be-
cause of selection rules that are apparent from
Eqs. (3. 14) and (4. 19) of Ref. 9.

For incident electrons, additional corrections
must be made for the exchange effect. We use the
exchange correction based on the Mott formula
[as given in Eq. (55) of Ref. 11]

d+ exch

dE
4ma', S'N 1 1

T (T —W)' E(T —W)) '

(11)
where the number of atomic electrons N= 2 for He,
and 8" is the kinetic energy of the secondary elec-
tron.

With Eqs. (4)-(11), Eq. (3) becomes

iim — "1nc„+Z (n*) b„)=—0. 769.
'W 00

(8)

[Actually, the above value incorporates a slight
improvement upon the data of Ref. 10. On the
basis of the calculation by Vanderpoorten, we
now estimate b„sz+ b„&a+~ ~ ~ —(0. 134n —1.33n )
&&10 . For the more important transitions (i. e. ,
to the 'P, '8, and 'D states), the data of Ref. 10
remain intact. ]

The values of y„for allowed transitions depend
on the mass of the incident particle. We use the
notation y" for electron or positron, and y

"' for
heavy particles such as mesons, protons, and n
particles. Then, from Ref. 11 we have
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4r e=0. 506ln ——O. V69+ —x —0. 1V5 —2+ ——— for e8 T 8 T

for heavy particles .

For He, 8 = 24. 58 eV= 1.807 8 and some numeri-
cal results from Eq. (12) are given in Table L

Differential ionization cross sections of He have
been calculated by Bell and Kingston, and more
recently by Omidvar, Kyle, and Sullivan. Both
calculations explicitly use ground-state and con-
tinuum wave functions. The cross section at the
threshold calculated by Bell and Kingston for 300-
keV px'otons Rgrees with our VRlue wlthlQ R few pex'-

cent, while those by Omidvar et aE. for fast pro-
tons and electrons are 10 to 15% lower than our
VRlues.

COMPARISON WITH EXPERIMENT

Our theory gives the Born cross section for
single ionization of He leaving the ion. in its ground
state. None of the experiments mentioned in this
paper, except for that by Oda et a/. ,

' monitoxs
the energy loss of the incident particle, and the
measured cross section is the sum of the cross
sect1ons leav1ng the He 1on 1n var1ous states, 1n-
eluding doubly ionized states. An estimate of the
combined contribution from the excited-ion states
by Oldham and Miller" is - V%, and our estimate
from the accurate optical oscillator strengths in
Refs. 12 and 1V is - 3%, certainly far less than
the uncertainties in the experiments. Therefore,
we shall ignore the effects of the excited-ion states
1n the following discussion.

The experimental data by Grissom, Compton,
and Garrett with 500-eV incident electrons can,

be compared directly to the cross sections given
by Eg. (12). Their value in Table I is in excellent
agreement with the theoretical value [see also
Fig. 1(a)].

The data by Peterson, Beaty, and Opal with
fast electrons (500-2000 eV) do not cover the ion-
ization threshold. Nevertheless, it is clear from
Fig. 1(a) that the trend observed in their data is

such that Rn extx'RpolRtlon to the lonlzRt1on thresh-
old would yieM cross sections consistent with the
theory within, the experimental uncertainty of
+25%. Figure 1(a) also suggests that the cross
section for the 500-eV incident electron by Peter-
son et al. is too large, while those for l- and
2-keV electrons are too small. This tendency also
explains an. irregular dependence on incident en-
ergy observed in the angular distribution of the
secondary electrons (see Fig. 2 of Ref. 18).
Actually, Peterson et aE. measured the angular
distributions and integrated them to obtain d&/dE.

The ordinate in Fig. 1 is the ratio of d&/dE to
the Rutherford cross section'9

do' 4FQog Q,

dE R.th

Rnd the ratio shouM appx'oach N = 2 asymptotically
(for large energy transfer) for proton-impact data.

%hen the incident particle is an electron, the i.n-
distinguishability of the incident and ejected elec-
tron makes d&/dE (as a function of the kinetic
energy W of the secondary electron) symmetric
with respect to the axis at E = ,'(T+B). One—can
use this symmetry to obtain the value of «/dE
at E=B by measuring the cross section for sec-
ondary electrons of kinetic energy lV= 7.' —B. Such
a measurement was done by Oda et al. with 500-
eV incident electrons, and their result in Table I
is somewhat lower than. the Born cross section. .
The experimental value by Oda et a/. ' is low, prob-
ably because their measurement excludes the
electrons emerging in the extreme forward direc-
tion (& 5 ).

As for the proton-impact experiments, ' the
highest 1ncldent energy used ls 300 keV. The
speed of the incident particle that appears through
T in Eqs. (1) and (2) is an important variable for
the validity of the first Born approximation, and

TABLE I. The differential ionization cross section dg/dE of He for zero-kinetic-energy secondary electrons.

Incident
particle

2000 eV
1000 eV

500 eV 36.8

4.31 && 10-"
7.35&& 10-"

1.21 ~ 10-"

2.61 ~ 10-"

Experiment
do.//dE in cm /eV

1.28x 10 ~8+ 30%
0.90 x 10 + 20%
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a 300-keV proton is not fast enough from this
viewpoint. However, the heavy mass of the pro-
ton makes its trajectory well localized, a condition
favorable for the application of the impact-param-
eter approximation which remains valid at lower
velocities. Furthermore, the experiments in
Refs. 1 and 2 do not measure the zero-kinetic-
energy secondary electrons, and we can only dis-
cuss an apparent trend in their data for slow sec-
ondary electrons.

The asymptotic Born cross section for 300-keV
incident protons agrees better with the experimen-
tal data near the threshold by Rudd, Sautter, and
Bailey' than those by Stolterfoht [Fig. 1(b)]. How-

ever, the ratio («/dE)/(«/dE)„«„derived from
Ref. 1 approaches the threshold with a slope too
large to connect smoothly with corresponding
theoretical data for discrete excitations. At the
ionization threshold, the theoretical ratio has nega-
tive slopes for incident electron energies shown
in Fig. 1(a) and positive slopes for proton energies
shown in Fig. 1(b). The magnitudes of the slope
depend on T, and for the ionization of He a negative
slope is expected at the threshold for large T re-
gardless of the type of the incident particle. Pro-
ton-impact data on the ionization of He by faster
protons (& 1 MeV) are desirable to check the valid-
ity of the Born cross sections with confidence.

Because Eq. (12) is a truncated power series in

1/T, the magnitude of the last term (with (R/T) on

the right-hand side relative to the sum of the pre-
ceding two terms would indicate the importance of
the higher-order terms not included in Eq. (12).
For protons, the last term contributes less than
4% to the differential cross section at T/61= 10.
For high T, say & 50(R, the cross section given by
Eq. (12) should be adequate for normalization of
experimental data. The normalization of electron-
impact data may utilize also the reflection sym-
metry of the differential cross section; in other
words, Eq. (12) could be applied to the cross sec-
tion for the energy loss of 8 = 24. 58 eV from the
Primary electron.

The foregoing treatment is simple because an
overwhelming majority of ionization events results
in the He' ground state. In general, an ion may be
left in one of the alternative states slightly differing
in energy (e. g. , the J= 2 and & states of other
rare-gas ions). In such cases, an adaptation to the
multichannel quantum-defect theory would be
necessary.
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