'E. W. Thomas, G. D. Bent, and J. L. Edwards, Phys. Rev. 165, 32 (1968).

 ${}^{2}D$. A. Dahlberg, D. K. Anderson, and I. E. Dayton, Phys. Rev. 164, 20 (1967).

 3 J. L. Philpot and R. H. Hughes, Phys. Rev. 133 , A107 (1964).

⁴M. Dufay, J. Desesquelles, M. Druetta, and M. Eidelsberg, Ann. Geophys. 22, 614 (1966).

'J. M. Robinson and H. B. Gilbody, Proc. Phys. Soc. (London) 92, 589 (1967).

 6H . A. B. Gardiner, W. R. Pendleton, Jr., J. J.

Merrill, and D. J. Baker, Phys. Rev. 188, ²⁵⁷ (1969). 7 F. J. DeHeer and J. F. M. Aarts, Physica $48,620$ (1970).

 W . F. Sheridan, O. Oldenberg, and N. P. Carleton, J. Geophys. Res. 76 , 2429 (1971).
⁹D. J. Burns, F. R. Simpson, and J. W. McConkey,

J. Phys. B 2, 52 (1969) (also contains references to

other measurements.)

 10 W. E. Lamb, Jr. and R. C. Retherford, Phys. Rev. 79, 549 (1950).

 ${}^{71}R.$ E. Miers, A. S. Schlachter, and L. W. Anderson, Phys. Rev. 183, 213 (1969). ISee also H. B. Gilbody,

R. Browning, G. Levy, A. I. McIntosh, and K. F. Dunn, J. Phys. B 1, 863 (1968).]

 12 J. M. Hoffman, G. J. Lockwood, and G. H. Miller, Sandia Laboratories Report No. SC-RR-70-695, 1970 (unpublished) .

 13 D. K. Anderson (private communication).

PHYSICAL REVIEW A VOLUME 7, NUMBER 1

JANUARY 1973

Total Cross Sections for Charge Transfer and Stripping of Al, Cr, and Er Ions in He and N_2 [†]

Grant J. Lockwood

Sandia Laboratories, Albuquerque, New Mexico 87115

(Received 19 June 1972)

Absolute measurements are reported of the total cross sections for charge transfer and stripping of Er^{+} , $Er²⁺$, Al⁺, and Cr⁺ ions incident on He and N₂ in the energy range from 15 to 100 keV. These measurements include σ_{10} , σ_{12} , and σ_{21} . The σ_{12} cross sections are greater than those of the σ_{10} at the same velocity for all ions except Cr^+ . Charge-transfer cross sections σ_{10} have a velocity dependence which is not predicted by the simple adiabatic criterion.

I. INTRODUCTION

Cross sections for charge transfer and stripping of various ions in noble and atmospheric gases have been the subject of much research. However, most of the work has been carried out with ions of the noble and atmospheric gases and the alkali metals. Recently, this work has been expanded to ions of various metals. This report furthers this work in that it examines in detail the unexpected energy dependence, as reported by Layton $et al.$ ¹ of the total cross section for charge transfer σ_{10} for Al * in N_2 below 100 keV. In addition, it presents total cross sections involving ions of Al, Cr, and Er not previously reported. Cross sections which have been measured are listed in Table I.

These cross sections were measured as a function of energy from 15 to 100 keV with the exception of Er' which was limited to ⁷⁰ keV by the accelerator analyzing magnet.

II. APPARATUS AND EXPERIMENTAL PROCEDURES

The Sandia Laboratories 100-kV ion accelerator was used in this study. The Al' and Cr' ions were obtained from thermionic sources. The Al source was made by flame spraying Al_2O_3 onto a tantalum filament; the Cr source was made by coating a tungsten filament with Cr_2O_3 which had been mixed with distilled water. When the filaments were heated in a vacuum, singly charged ions of the metal were emitted. This type of source gives ions in the ground state only. The Er^* and Er^{2*} ions were from a modified electron impact source in which a second filament containing Er metal was used. A discharge was maintained with Ar gas and the Er-coated filament heated to supply Er vapor. Since this source was energetic enough to supply both Er^* and Er^{2*} , the ion beams could have contained long-lived excited states as well as groundstate ions, provided that such states exist and have lifetimes greater than 10^{-5} sec. This time is based on time of flight of the ions from source to experimental chamber at maximum energy. The accelerator delivers a beam of magnetically analyzed ions having small energy spread to the experimental chamber. Figure 1 shows the magnetically analyzed, singly ionized outputs of these

TABLE I. Measured cross sections.

Ion	Helium target	Nitrogen target			
Al^*	σ_{10} σ_{12}	σ_{10}			
Cr^*	σ_{10} σ_{12}	σ_{10}			
\mathbf{Er}^*	σ_{10} σ_{12}	σ_{10} σ_{12}			
Er^{2+}	σ_{21}	$\sigma_{2,1}$			

FIG. 1. Magnetically analyzed, singly ion ized outputs of the Al⁺. Cr+, and Er' sources.

sources. In the case of Er, the energy spread cannot be more than 1 eV to provide this sort of resolution. The beam energy is determined to 2% by measuring the terminal potential with a voltage divider and correcting for ion-source potentials.

The experimental apparatus (Fig. 2) used in this study has been described in detail in earlier papers.^{2,3} The only changes to the apparatus were the removal of the monitor, which was located between apertures B and C, and the replacement of the secondary electron detector with a secondary

electron multiplier (SEM). Use of the SEM in this study was necessary because of the low ion output of the sources used. The first dynode of the SEM was maintained at ground potential so that all particles impacted with the accelerator energy only (less any small inelastic energy losses). Thus γ , the number of secondary electrons ejected from the first dynode per incident particle, is, to a good approximation, independent of particle charge for
a fixed particle energy. 4^{-6} This approximation holds for all energies used in the present study.

FIG. 2. Experimental apparatus.

FIG. 3. Total cross sections for charge transfer and stripping of Er', Er^{2*} , Al^{*}, and Cr^{*} on N₂ vs velocity of the incident ions.

The SEM voltage was selected to be within a range of voltages where measurements showed that the ratio of current associated with the final charge state to the current associated with the incident ion beam was constant.

Experimental procedures and data reduction methods described in detail in the earlier studies^{2,3} were followed here. However, for the σ_{12} and σ_{21} cross sections, the SEM was positioned as shown by the dotted lines in Fig. 2. Voltage on the analyzer plates was adjusted to deflect particles of the desired initial and final ionic states to the SEM.

As in the earlier work, small-angle scattering of the ions in the final charge state was of concern here. Because of the small signals, however, only the scattering of Al, Cr , and Er on N_2 could be checked experimentally. In all cases, less than

 1% was found to scatter outside the ± 1 $^{\circ}$ acceptanc angle of the detector at the lowest energy.

The experimental uncertainty in σ_{if} is \pm 9% and was arrived at by considering the sources and estimated uncertainties listed in Table II. Other potential sources of error, i. e. , state of ion beam, residual gas scattering, capture in accelerator tube, and target gas impurities have been reduced to less than 1% by either experimental arrangement or data acquisition and reduction procedures.

III. DATA

Data from the present study are shown in Figs. $3-5$. Data for He and N₂ target gases are listed in Tables III and IV, respectively. For charge transfer between unlike particles, theory and

$Er+$		$Er+$		$Al+$		$Al+$		Cr^*		Cr^*		Er^{2+}	
Velocity	σ_{10}	Velocity	σ_{12}	Velocity	σ_{10}	Velocity	σ_{12}	Velocity	σ_{10}	Velocity	σ_{12}	Velocity	σ_{21}
1.55	0.42	1.54	1.18	3.25	0.30	3.79	0.55	2.34	0.17	3.36	0.43	2.18	3.44
1.72	0.65	1.88	3.57	3.78	0.73	4.62	1.24	2.72	0.38	3.85	0.70	2.66	5.49
1.89	0.85	2.17	5.53	4.24	1.25	5.34	1.95	3.02	0.70	4.32	1.20	3.07	5.92
2.02	1.00	2.42	7.93	4.63	1.40	5.98	2.78	3.32	1.03	4.74	1.93	3.43	6.57
2.17	1.14	2.65	9.64	5.01	1.58	6.58	3.50	3.58	1.44	5.12	2.05		
2.30	1.12	2,86	10.1	5.35	1.58	7.10	3.90	3.84	1.76	5.45	2.94		
2.30	1.09			5.96	1.44	7.58	4.60	4.33	2.58	6.08	4.25		
2.42	1.13			6.57	1.33			4.73	3.40				
2.54	0.97			7.10	1.42			5.09	3.80				
2,65	0.99			7.57	1.41			5.47	4.32				
2,76	1,01			8.03	1.54			6.05	4.58				
2.86	1,03			8.39	1.52								
2.86	0.91												

TABLE II. Cross sections for charge transfer and stripping of Er^* , Er^{2*} , Al^{*}, and Cr^{*} on He.^{a-c}

^aUnits of σ_{if} are 10⁻¹⁷ cm². "^bUnits of velocity are 10⁷ cm/sec. "Experimental uncertainty in σ_{if} is 9%.

FIG. 5. Comparison of the present total cross section fox' charge transfer σ_{10} of $\rm Al^*$ in $\rm N_2$ with that published by Layton et al . Qef. 1).

TABLE III. Cross sections for charge transfer and stripping of Er^1 , Er^{2+} , Al⁺, and Cr⁺ on N₂.^{2-c}

$Er*$			Er ⁺		$A1$ ⁺		Cr^*		Er^{2+}	
Velocity	σ_{10}	Velocity	σ_{12}	Velocity	σ_{10}	Velocity	σ_{10}	Velocity	σ_{21}	
1.54	1.31	1.54	12.1	3.24	6.56	2,32	2.81	2.18	19.2	
1.68	1,44	1.69	16.2	3.76	7.77	2.72	4.99	2,38	20.4	
1.88	1,79	1,88	18.8	4.23	8.51	3.02	6.26	2.67	19.5	
2,00	1,73	2.00	21.2	4.67	8.96	3.35	7.20	2,84	20.7	
2.16	1.89	2.17	23.6	4.97	8.99	3.59	7.62	3,07	18.3	
2.17	1.85	2.27	28.7	5.37	8.92	3,85	7.82	3.07	20.1	
2.27	1.80°	2.42	29.9	5.99	8.79	4.31	7.79	3.23	20.1	
2.42	1.94	2,65	36.3	6.57	8.66	4.72	8.31	3.43	18.7	
2.64	2,07	2.75	41.4	7.06	9.02	5.09	8.33			
2.65	2.02	2.87	36.1	7.58	8.63	5.43	8.37			
2.74	1,86	2,87	39.2	8.03	8.87	6.06	8.43			
2,86	1.92			8.40	8.97					
2.86	1.94									
2.86	1.88									
2.87	1.81									

^aUnits of σ_{if} are 10⁻¹⁷ cm²/molecule. ^bUnits of velocity are 10⁷ cm/sec. ^cExperimental uncertainty in σ_{if} is 9%.

Source	Uncertainty $\%$)	Remarks
Target thickness l	$\mathbf{1}$	See discussion, Sec. II of Ref. 2
Incident current reading I,	3	Electrometer limitation
Final current reading I_f	3	Electrometer limitation
γ cancellation in ratio I_f/I_i	5	Based on laboratory studies
Pressure P	$\mathbf{2}$	Maximum estimated error due to scale factor This is conservative. based on manufacturer's specifications
Small angle scattering	5	Based on laboratory measurements

TABLE IV. Sources and estimated uncertainties.²

Symbols used here are from discussion of experimental procedure, Sec. II of Ref. 2.

experiment' show the cross section to be small at low velocity, to rise to'a maximum, and to fall as the velocity is increased. It was expected that data from the present study should be consistent with the adiabatic criterion. The velocity at which the maximum occurs is found to be proportional to the internal energy defect ΔE . In the cases studied here, the internal energy defects are 9.6, 8.8, and 9.5 eV for ground-state $-$ to $-$ groundstate transfer of Al', Cr', and Er', respectively, in N_2 . From the adiabatic criterion, ⁷ the cross sections for charge transfer, σ_{10} , should reach a maximum at a velocity of about 1.6×10^8 cm/sec. This is in good agreement with the high-energy data of Layton *et al.*¹ for Al⁺ on N_2 which show a maximum at 1.7×10^8 cm/sec. However, in all three cases in the present study, the charge-transfer cross sections σ_{10} peak at a velocity, or at least remain constant at velocities, low compared to the maxima predicted by the adiabatic criterion. This unexpected velocity dependence in the σ_{10} crosssection data cannot be accounted for by leaving the N_2 ⁺ in an excited state, since this would result in a larger ΔE . Since the Al^t and Cr^+ are created in a larger ΔE . Since the Al' and Cr' are created
the ground state, the $\Delta E'$ s stated above are the minimum values. In the case of Er', there is a possibility that an excited state of Er' could account for the low-velocity peak seen in the σ_{10} cross section. However, this state would have to be metastable and lie at about 8. 2 eV above the ground

~Work supported by the United States Atomic Energy Commission.

state of Er', and this does not seem likely because of the multitude of excited states of Er' below 8. ² eV. The velocity dependence of σ_{10} for Al⁺ on N₂ is shown in Fig. 5 together with the low-velocity data of Layton $et al.$ ¹ The difference in magnitude and shape between these data and those of the present study is not understood. However, the important feature of the present data is the small maximum at about 4.7×10^8 cm/sec (where the data of Layton et al. are constant with velocity) which is well below the adiabatic maximum predicted at about 1.6 \times 10⁷ cm/sec. This same type of velocity dependence in σ_{10} is seen for Al⁺, Cr⁺, and Er⁺ in He, and for these cases the adiabatic maximum is predicted at about 3×10^8 cm/sec.

The cross sections for capture by Er^{2+} , σ_{21} , in both He and N_2 are larger than the corresponding cross sections for capture by Er^* , σ_{10} . This is expected since the energy defect is smaller when expected since the energy defect is smaller when
 $Er²⁺$ is used, and there is less competition from the stripping channel.

The larger cross section for Er^* in He and N_2 is the stripping cross section σ_{12} and is the larger for Al' in He over most of the velocity range. Unlike $Er⁺$ and Al⁺, σ_{12} for Cr⁺ in He is smaller than σ_{10} except at the largest velocity. The stripping cross sections σ_{12} for Al⁺ and Cr⁺ in He are nearly the same, whereas σ_{10} cross sections for Al⁺ and Cr⁺ in He show a large difference in both magnitude and shape.

IV. CONCLUSIONS

General features of the data indicate that, for metal ions incident on He and N_2 , the stripping cross sections σ_{12} are greater than the chargetransfer cross sections \mathfrak{c}_{10} . The exception is for Cr' on He where the two are equal at high velocity. Also, the charge-transfer cross sections σ_{10} have a velocity dependence which is not predicted by the simple adiabatic criterion. However, more work is needed with metal ions before any general empirical conclusions can be drawn.

ACKNOWLEDGMENTS

I am grateful to Dr. Glenn H. Miller for valuable discussions held during this study and to Dr. Frank Bacon for his support. Thanks also go to Laurence Ruggles for his assistance in data gathering.

- A. J. H. Boerbroom, B. L. Schram, W. Kleine, and J.
- Kistermaker, Z. Naturforsch. 21A, 127 (1966).

¹J. K. Layton, R. F. Stebbings, R. T. Brackmann, W. L. Fite, W. R. Ott, A. R. Comeaux, G. D. Magnuson, and P. Mahadevan, Phys. Rev. 161, 73 (1967).

²G. J. Lockwood, Phys. Rev. 187, 161 (1969).

³G. J. Lockwood, Phys. Rev. A 2, 1406 (1970).

V. G. Tel'Kovskii, Proc. Acad. Sci. USSR 108, 44 (1956). 'G. J. Lockwood (unpublished).

⁷J. B. Hasted, *Physics of Atomic Collisions* (Butterworths, London, 1964), Chap. 12.