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Since two recent investigations revealed different structures for the one-electron reduced-
density matrix (one matrix) of the Weiss wave function of the lowest ( P) state of lithium, we

have reanalyzed the Weiss wave functions for both the lowest 8 and P states of the three-elec-
tron ions. Although Weiss employed "S restrictions" in the construction of his P wave func-
tions, their natural spin orbitals are not as spatially symmetry adapted as they are for the 28

states.

&&@*(x'„x„.. . , x„)dx, " dx„, (l)

where N is the number of electrons and x~ denotes
the space and spin coordinates of electron i. In
terms of the X&(x) and v&,

Y4(x2 s 1) Z VJ X2( 1)XJ (xi)
)=1

(2a)

f Y4(xi' 1)XJ(x1)~1 VJ Xg(x 1) &

where

(2b)

The natural analysis' of correlated wave functions
has proved in recent years to be a powerf ul tool for
understanding of the correlation problem and the
comparison of wave functions of apparently dissimi-
lar form. This method involves the determination
of the eigenfunctions X& [naturalspinorbitals (NSO)j
and eigenvalues v& (occupation numbers) of the one-
electron reduced-density matrix (one matrix)
y~(x, , x',). Here y~(x„x', ) is defined by

y~(xi, xi) = N J 0'(xi, x2, . . . , x„)

and the v&'s are ordered such that

0&v)„& v)&l. (2d)

Natural analyses have been performed for a
number of atomic systems of '8 symmetry; in par-
ticular for two-. ,

' four-, six-, and ten-electron
atomic ions. For atomic wave functions of 'S

symmetry, the NSO are eigenfunctions of the one-
electron operators f', l„s2, s„and i (the inver-
sion operator). As a result, the eigenvalue spec-
trum possesses degeneracies of order 2(2l+1)
between all NSO with the same quantum number E. '

In the construction of correlated wave functions
for atomic states which are not of 'S symmetry,
one is faced with the additional problem of describ-
ing properly the orbital (I 40) and spin (SA 0)
polarization effects in addition to the normal cor-
relation problem found in the more symmetric '8
states. This polarization leads to a quite different
structure of the one matrix. In particular, Lars-
son and Smith have analyzed a number of wave
functions for the Li ( S) ground state and demon-
strated the effects of spin polarization, the only
type present for 2S states. Here the NSO eigen-
value spectrum possesses degeneracies of order
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TABLE I. The NSO occupation numbers of the Weiss wave functions for the three-electron ions ( P).

82' ps+

Po~ P~ PP

d 2Q, ~ d~Q

d2P, . .. dgP

0. 999 8345
0. 0006462
0. 000 040 8
0. 000 0073,
0„0000006
0. 000 0001

O. 9966203
0. 001455 0
0. 000 0842
0„000016 5
0. 000 0007
0. 000 0001

0. 9966560
0„001375 7
0. 000 0294
0. 000 0046
0. 0000006
0. 000 0001

0. 000609 7
0. 000033 0
0, 000 0069
0. 0000006

0. 000573 0
0. 000 0202
0. 0000018
0. 000 0001

0. 000 562 9
0. 000019 8
0. 000 001.7
0. 000 0001

0. 000 0163
0, 0000016
0. 000 0002

0. 0000163
0. 0000016
0. 000 0002

0.g99 761 6
0. 0004287
0. 000 0396
0, 000 0044
0, 0000005

0. 998 0g3 7
0. 000 8472
0. 0000831
0. 000 008 8
0. 000 0004
0. 000 0001

0.9981309
O. 0007169
0. 0000208
0. 0000048
0. QQQ 000 3
0. 000 0001

0. 000375 1
0. 000 034 0
0. 0000051
O. OQOOOO6

0.0003223
0. 000 0118
0. 000 0010
0. 000 0001

0.000302 6
0.000011 0
0. 000001.0
0. 000 0001

0. 0000097
O. 000 0009
Q. 000 000 1

0. 0000097
Q. 0000009
0. 000 0001

0. 999 8131
Q. 000 289 6
0. 0000239
0. 000 002 7
Q. 000 0004

0.998 796 2

0. 000543 8
0. 000 056 0
Q. 000 005 3
0. 000 0002

O. 998 8143
O. 000 4406
O. 0000151
O. 000 003 3
0. 000 0002

0. 000250 0
O. 000 024 0
0. 000 003 6
0. 000 0004

0.000205 7
0, 0000077
0. 000 0007

Q. 0001861
0. 000 006 9
0.000 0006

0. 000 0064
0. 000 0006
O. 0000001

0. 0000064
0. 000 000 6
0. 000 0001

Q. 999 863 2
O. 000203 2

0. 0000145
Q. 000001 7
0. 000 0003

0, 9991772
0, 000373 0
0. 000 037 6
0. 000 003 6
0. 000 0001

0, gg91848
0. 000 298 1

0. 000 01.0 8
0. 0000022
0. 000 0001

0. 000176 6
O. OOO O164
0. 0000027
0. 000 0003

0. 000 142 5
0. 000 0054
O. QQQ 0005

O. 000125 4
0. 000 0047
0. 000 0004

0. 000 0046
0. 000 000 4

0.000 0046
0. 000 0004

0. 999 9003
D. 000 147 6
0. 000 009 2
0, 000001 2
Q. 000 0002

O. 9994044
0. 000 2691
O. 0000259
0. 0000025
0. 000 0001

0, 9994069
0.0002145
0. 000 0078
0. 000 0016
O. 000 0001

Q. 000130 8
O. 000 011 5
0.0000020
Q. 000 000 3

0. 000 104 7
O. 000 0040
O. 000 0003

0. 000 0903
Q. 0000034
Q. 000 0003

Q. 000 003 4
0, 0000003

0. 000 0084
O. 000 0003

0.999 934 0
0, 0000995
0. 000 005 4
0.000 000 7
0, 0000002

0, 999 6076
0.0001692
0. 000 013 2
O. 000 002 9
0, 0000001

0.999 6072
0. 000128 6
0. 000 0062
0.000 001 1
0. 000 0001

0. 000 0916
0. 000 007 6
O. 000 001 5
0. 000 000 2

0.000 073 0
0.000002 8

O. 000000 2

0. 000 062 0
0.000 002 4
Q. 0000002

0, 000 002 4
0. 0000002

0.0000024
D. 000 0002

f~3& y ~ ~ ~ y f+3P

g~4+ y ~ ~ ~ y gap

0. 000 0015
0, 0000002

0. 000 000 2

0. 0000009
0. 000 0001

0, 000 0001

0. 0000006
0. 000 0001

Q. 0000001

0. 000 0004

0. 000 0001

0.0000003 0.000 0002

(2l+ 1) between all ISO of the same l and I, quan-
tum number.

For I' states, all such degeneracies should dis-
appear in general and the NSO are eigenfunctions
of only l„s, s„and i due to the polarization by
the unfilled shells. This behavior was demon-

strated by the natural analysis by Brown and
Smith' (BS) of some B ('P) wave functions due to
Schaeffer, Klemm, and Harris. ~

In their analysis of the gneiss 45-term wave
tunction for the Li ( P) state, ' ' ' BS observed that
the gneiss one matrix does not show much of the

TABLE D. First three NSO occupation numbers of the Weiss wave functions for the three-electron ions ( 8).

TS pe

SQ

sP

Ll

Q. 999 5642
0. 996 643 2
0. 9964950

Q. 999 6144
0. 9981824
0. 9980195

0.999 706 2
0.998 864 1
0.998 730 6

0. 999 773 0
0. 999222 7
0.9991146

0. 999 823 7
0.999437 6
0.999 852 1

Q. 999 859 2
0.999 5743
O. 999 5047
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TABLE III. NSO occupation numbers of the Weiss
0 '

( S) wave function.
TABLE IV. Comparison of leading NSO occupation

numbers (multiplied by 2l+1) for Li ( S).

0. 999 8592
0. 9995743
0. 000 145 1
0. 000 0045
0. 000 0005

p+Q, poQ, p Q

O. 0000924
0. 000 035 5
0. 000 003 3
O. 0000005

f~+Q j ~ i ~ j f
0. 0000002

0. 999 504 7
0.000143 2
0. 000 0042
O. 000 000 3

d++P j ~ ~ ~ j

0. 000003 0
0, 000 0005
O. 000 0001

g++++Q j ~ ~ ' j g
0. 0000000

p4 ppp p P

0. 000 0994
O. OOO OO84

0. 000 001 2
0. 000 0002

d+qQ j . ~ . , d Q

0.000 002 7
0.000 000 9
0, 000 0002

Number Type

1 sQ
2

3 sP
4 pP
5 PQ
6 sQ
7 sP
8 pQ
9 pp

10 dP
11 dQ

12 PQ
13 sP
14 sQ
15 pP

Weiss

0. 999 564
0. 996 643
0.996 495
0. 001 878
0. 001 844
0. 001 325
0. 001 325
0. 000 388
0. 000132
0. 000 086
0. 000 083
0. 000 075
0. 000 027i
O. 000 027)
0. 000 023

Larsson
25 term

0. 999 504
0. 996 679
0. 996 479
0. 001 871
0, 001 816
O. 001 327
0. 001 319
0. 000408
0. 000 143
0. 000 100
0. 000 100
0. 000 081
0. 000 033
0. 000 031
0. 000 012

Larsson
100 term

0. 999494
0. 996 632
O. 996 447
0. 001 892
0. 001 837
0. 001 335
0. 001 329
0. 000421
0. 000 143
O. 000 087
0. 000 085
0. 000 084
0. 000 029
0. 000 028
0. 000 021

expected structure as was found for the B ('P) wave
functions. In particular, there was no mixing of
the basis orbitals of different symmetry, i. e. ,
s + do+&0 Po+fp d +g etc. In addition, there
were some partial degeneracies among those with
the same / quantum number. Thus the Poo. , P e,
and Pop NSO's were degenerate with the same
radial parts. Similarly, the d-type NSO's were
degenerate with the da, 's all having the same radial
part and the dp's all having the same radial parts,
but different from the dn's. The f-type NSO's
were degenerate with the same radial part for both
the fn's and fP's Asi.milar statement is true
'for the g-type NSO's.

As BS pointed out, theWeiss 'I' wave function was
constructed in a similar manner to the gneiss '8
wave function" "' (i. e. , S-type restrictions") and

hence left out configurations of the form sdp, sdf,
etc. which would allow coupling of the 8, d, andg
orbitals and also of the p and f orbitals in the one
matrix. It is just configurations of this type which
are necessary to properly describe the atomic hy-
perfine structure of the Li ( P) state.

Subsequently, Banyard, Dixon, and Tait (BDT)
analyzed~ the Weiss functions for the ( P) three-
electron isoelectronic series (Li-N '). They re-
ported a structure of the one matrix which dis-
agrees with that of Brown and Smith in that the a

and P P-type NSO's were each (21+ 1)= threefold
degenerate. Because of this disagreement, we
have reanalyzed the one matrices of the Weiss ('P)
wave functions. As presented in Table I, we con-
firm the structure reported by BS for Li ( P) and

have extended the analysis through O". '
For the purpose of comparison, we have analyzed

again the Weiss ( S) functions and report these
eigenvalues for Li-I ' in Table II, which differ
from those reported by BDT. " In Table III, the
entire eigenvalue spectrum for 0 (S) is pre-
sented. In Table IV, the leading NSO for Li (jS)
are compared for the Weiss wave function (E
= —V. 4VV10 a. u. ), the Larsson'6 100-term wave
function '(E= —V. 478025 a.u. ), and the Larsson'j
25-term'"' wave function (E= —V. 471688 a.u. ). By
comparison, the restricted Hartree- Fock energy
ls —7, 4327 a. u.
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This is an addendum to the author's previous paper [Phys. Rev. A 4, 1778 (1971)], where
master equations describing the spontaneous emission from a collection of identical two-level
atoms and oscillators were derived without the use of rotating-wave approximation. How-
ever, the terms corresponding to the frequency shifts were not adequately included. Here
such terms are properly treated and the appropriate master equation is given. Explicit form
of the frequency-shift terms is also given.

In a previous paper, ' which appeared under the
same title as the present one, we considered
spontaneous emission from a collection of identical
two-level atoms and a system of oscillators with-
out the use of rotating-wave approximation (R.W. A. ).
The master equation describing the spontaneous
emission from a system of two-level atoms (which
were assumed to be confined to a region whose lin-
ear dimensions were small compared to the wave-
length of emitted radiation) was found to be

= —Z(OOZ [Si, p]
Bp

of simplicity, only the case of a single two-level
atom.

The Hamiltonian of a single two-level atom in-
teracting with a quantized radiation field can be, in
the dipole approximation, written as

+=&oS +~ ~as&asn'ss+~ [As~as(S +S )+ H c ] g

os As (2)

where the coupling coefficient g» is given by

27TC g/2
s/a

L

—yQ (Simp —S)pS(+SOS)p- SipS(+H. c.), (I)

where co0 is the energy separation between two
atomic levels and y is equal to —,'(natural lifetime) '.
In (1) p is the reduced-density operator correspond
ing to the atomic system alone and S~& are the com-
ponents of the spin-angular-momentum operator
corresponding to spin- —,

' value. In the derivation of
(1), we ignored the freiluency-shift terms. ' The
purpose of this addendum is to include such terms
in the master equation and to give the explicit form
of these terms. %e will also make a few comments
on theuse of R.%.A. %ewillconsider, for the sake

All the symbols have the same meaning as in Ref.
1. The master equation for the reduced-density
operator p, in Born and Markovian approximations,
may be written as

Tr [H(t), [H(f —r), p (O) p(f)]]dr —O

~0
(4)

where all the operators are in the interaction pic-
ture and Tr~ indicates the trace over the radia-
tion-field variables. In (4) ps(0) is the initial vacu-
um state of the radiation field, i. e. ,


