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dropped in (6). The choice of y which eliminates
the first-order contribution will also eliminate the
first contribution. The second-order potentials
will enter identically in the 3-3 and 4-4 equations

by virtue of condition (16) and so the process of
forming (15) from (14) will cancel this contribu-
tion. Therefore the expansion in (15) will be ac-
curate up to third-order terms.
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Some results recently discussed by Chiu for interatomic coherence transfer are shown to have a simple

physical interpretation, to be independent of collision model assumed, and to be applicable also to
intra-atomic coherence transfer. A derivation using density matrices is presented which takes both

depolarizing collisions and backtransfer of coherence into account.

I. INTRODUCTION

In a recent article Chiu' has detailed a calcula-
tion of nonresonant coherence transfer between
atoms in a magnetic field. The calculation is in-
tended to explain the type of experiment performed
by Gough~ in which a mixture of Hg and Cd atoms
is irradiated with polarized resonance radiation of
Hg, and the resulting sensitized fluorescence of Cd
is then observed by means of a "sensitized Hanle
experiment" to be partially polarized. In Chiu's
calculation a pure dipole-dipole interaction is as-
sumed and applied in a perturbation treatment to
first order both in the electronic transition and in
the internuclear motion; depolarizing collisions
and backtransfer of coherence are neglected [start-
ing in his fundamental equation (1.29)].

lt is pointed out here tlat (i) a very simple in-
terpretation exists for many of Chiu's results, (ii)
these results are independent of the collision mod-
el, and (iii) they are even applicable to coherence
transfer between states of the same atom (intra
atomic coherence transfer). A general derivation
is presented which also includes collisional de-
polarization and coherence backtransfer.

Gough's experiments were first explained by
Cheron and Barrat, who based their density-ma-
trix calculation on a collisional "selection rule"
proposed by Franzen. Intra-atomic coherence
transfer was considered by Elbel, Niewitecka, and
Krause, who reported transfer of orientation from
the Pg/3 to the P3~z state of alkali-metal atoms

in collision with various foreign gases. They ob-
served a Hanle signal in the sensitized fluorescence
and proposed a simple model to explain their re-
sults.

II. SIMPLE PHYSICAL PICTURE

In an early paper, Hanle gave a simple classical
explanation of what has since become known as the
Hanle effect: Linearly polarized light excites an
electric dipole to oscillate in the direction of po-
larization, and a constant magnetic field (say in the
s direction) by means of the Lorentz force causes
the dipole to rotate in the xy plane at the Larmor
frequency . Since the radiation pattern for an
oscillating dipole varies as sin~y in a direction y
from the diploe axis, and since the total intensity
radiated by the dipole at time t is proportional to
e ', the intensity observed in the xy plane at an
angle y from the direction of initial polarization
radiated by an ensemble of continuously excited
oscillators is proportional to

sin2y —cos2yK'
I cp e ~' sin y + ggt = 1+

1+p

where p = 2'/I'. Consequently, the intensity ob-
served as a function of magnetic field when y is a
multiple of ~g is a Lorentz curve, the half-width
of which can be used to determine the mean life-
time of the oscillators, 1/I'. Although directly
applicable only in atomic transitions between a J= 0
ground state and a J= 1 excited state, the simple
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physical picture provided by Hanle's original mod-
el has made this model very popular.

%hen observed in sensitized fluorescence, the
Hanle effect involves two excited states, say
[1) and [2), each with a set of nearly degenerate
sublevels and with possibly distinct lifetimes
(F,' and I'2') and precession frequencies (+, and

ada). The states may be associated either with the
same atom or with different atoms. Let the optical
excitation be to state [1), whereas radiation is to
be observed from [2). Excitation transfer occurs
at time t2=0, a time t, after the initial excitation,
and it is assumed that the coherence is not all lost
during the transfer. The dipole of state [1)will
have rotated an angle (d,t, by the time of excitation
transfer, and by the time emitted radiation is ob-
served (ta), dipole [ 2) will have rotated anadditional
angle &2t2. The field-dependent part of the sensi-
tized radiation is thus proportional to

21,I'8 j dt, e "1j diae 2'asin (~,t, +&data+y)

= 1+[(P&P2—1) cos2y+ (P, +Pa)»n2y]

x[(1+pl) (1+p', )] ', (2)

where p, =211&,./F, From the special cases &P =0
and —8'&1, Chiu's results (2. 10) and (3.12) for the
magnetic field dependence of the sensitized fluo-
rescence are regained. The backtransfer of co-
herence has not yet been considered, but depolariz-
ing collisions are properly taken into account by
interpreting I' as the lifetime of coherence in
state [i). Equation (2) has been derived for excita-
tion by linearly polarized light and hence for the
"alignment" type of coherence. If, instead, cir-
cularly polarized light is used to excite orientation
(a magnetic dipole instead of an oscillating electric
dipole) in states [1)and [2), the appropriate equa-
tion is obtained from Eq. (2) by replacing &p and &u

by —,'y and —,'&, respectively.

III. GENERAL FORMULATION OF COHERENCE TRANSFER

A more general derivation including backtransfer
of coherence is easily derived in terms of density
matrices. 8'8 It is assumed that states }1)and 12)
with total angular momenta J, and J2 are sufficient-
ly isolated that off-diagonal elements of the density
matrix connecting them are negligible, and further
that transitions to other excited states can be ne-
glected. The system can then be described by two

density matrices, p "and p ', one for ea,ch ex-
cited state. In the interaction representation the
equations of motion are

P F 1P 8+1[~181P ] + 18P(1) (1) (1) (2)

p(2& F p(2& z [g p(2&]+F p(1&

where the Liouville-space operator I',
&

gives the
rate of collision-induced excitation transfer from
[j)« li), and S represents the light source. We
expand Eq. (3) in irreducible tensor operatorsa:

P ~ Pl ~ P =Tr(PF )
lm

and similarly for S, and use the isotropy of the
collisions to find'

(1) (1) ~ (1) (2)
pl 1, l plm m+1plm + 12, l plm +~lms

d (2) (2) ~ (2) (1)
dt Plm ~2, l Plm ™&2Plm+ ~21, / Plm ~

The steady-state solution of Eq. (4) is readily
found to be

(4)

Q ~(l, m& Za&
Plm

lm

='Q~" "'S
lm

lm

F12, 1 (Fl, 1 F2, 1 F12,1F21,1 m lA& QP )
, l(F»+zmur 1)(Fa 1+zmlda) —F12 lFal 1 I

(6)
In the above formulation 1"&, is the total decay rate,
including collisional depolarization, for the Eth

multipole of state [i) and F,1, is the rate at which
I-multipole coherence is transferred to state [i)
from state [j). Note that by their definition F»
~~~) l ~

We emphasize the generality of Eq. (6): It is
applicable to all collision models. Equation (6)
includes effects of both collisional depolarization
and, through thepresence of ~», the backtransfer
of coherence, and it is applicable to both inter-
atomic and intra-atomic coherence transfer. The
details of the collisions will be contained in the ex-
pressions for the transfer rates I',

& l and for the
relaxation rates F&,. These expressions include
the dependence on interatomic potentials and on
densities, and of course such dependence is dif-
ferent for interatomic and intra-atomic coherence
transf er.

If the nuclear spin is nonzero, transitions may be
important among several hyperfine multiplets,
and, furthermore, in the presence of an external
field a partial decoupling of nuclear and electronic
angular momenta may occur. The above formula-
tion is then inadequate and should be extended to
include several excited states and the hyperfine
interaction.

za& 12I l Slm
(6)

1 1+ +1)( 2 l™2) 12 l 21 1

If, through the detection of polarized radiation, our
monitoring efficiency of the l, am components of
p is ill"'"', "then the detected intensity is
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Since two recent investigations revealed different structures for the one-electron reduced-
density matrix (one matrix) of the Weiss wave function of the lowest ( P) state of lithium, we

have reanalyzed the Weiss wave functions for both the lowest 8 and P states of the three-elec-
tron ions. Although Weiss employed "S restrictions" in the construction of his P wave func-
tions, their natural spin orbitals are not as spatially symmetry adapted as they are for the 28

states.

&&@*(x'„x„.. . , x„)dx, " dx„, (l)

where N is the number of electrons and x~ denotes
the space and spin coordinates of electron i. In
terms of the X&(x) and v&,

Y4(x2 s 1) Z VJ X2( 1)XJ (xi)
)=1

(2a)

f Y4(xi' 1)XJ(x1)~1 VJ Xg(x 1) &

where

(2b)

The natural analysis' of correlated wave functions
has proved in recent years to be a powerf ul tool for
understanding of the correlation problem and the
comparison of wave functions of apparently dissimi-
lar form. This method involves the determination
of the eigenfunctions X& [naturalspinorbitals (NSO)j
and eigenvalues v& (occupation numbers) of the one-
electron reduced-density matrix (one matrix)
y~(x, , x',). Here y~(x„x', ) is defined by

y~(xi, xi) = N J 0'(xi, x2, . . . , x„)

and the v&'s are ordered such that

0&v)„& v)&l. (2d)

Natural analyses have been performed for a
number of atomic systems of '8 symmetry; in par-
ticular for two-. ,

' four-, six-, and ten-electron
atomic ions. For atomic wave functions of 'S

symmetry, the NSO are eigenfunctions of the one-
electron operators f', l„s2, s„and i (the inver-
sion operator). As a result, the eigenvalue spec-
trum possesses degeneracies of order 2(2l+1)
between all NSO with the same quantum number E. '

In the construction of correlated wave functions
for atomic states which are not of 'S symmetry,
one is faced with the additional problem of describ-
ing properly the orbital (I 40) and spin (SA 0)
polarization effects in addition to the normal cor-
relation problem found in the more symmetric '8
states. This polarization leads to a quite different
structure of the one matrix. In particular, Lars-
son and Smith have analyzed a number of wave
functions for the Li ( S) ground state and demon-
strated the effects of spin polarization, the only
type present for 2S states. Here the NSO eigen-
value spectrum possesses degeneracies of order


