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Snperradiant Level Shift and Its Possible Detection in a Transient Optical Experiment

H. Morawitz
IBM Research Laboratory, San Jose, California 95114

(Received 27 September 1972)

The superradiant level shift of a system of X two-level molecules, interacting with the radiation field,
is calculated for pencil-like geometry. Introducing the self-energy Z&~~(E) of the molecular systems due to
its radiative interaction, we first discuss the trivial (N =1) and familiar (N =2) cases in more detail.
The analytic properties of the self-energy X ~ (E) are used to derive dispersion relations for its real and
imaginary parts 5 (E), I (E). We then generalize to the case of Ã&& l, employing a self-consistency
argument advanced by Arecchi and Courtens. The modified Qicke expression for the cooperative
spontaneous decay rate is then used in the dispersion relation for the shift 6( and a value of 6 '

MHz calculated corresponding to typical molecular-gas parameters. The physical measurability of the
shift is discussed and a Brewer —Shoemaker experiment in a molecular gas is proposed for the
observation of the shift.

I. INTRODUCTION

A considerable number of papers' "have ap-
peared on various aspects of superradiance since
the introduction of the concept by Dicke. ' Coop-
erative effects between different atoms due to their
common interaction with the radiation field are of
considerable interest for the correct description
of highly excited states of matter and their return
to equilibrium. The correlations implicit in the
common interaction with the radiation field can be
conveniently described quantum mechanically by
treating the assembly of atoms as a single-quan-
tum system. ' Alternatively, some of the results
on radiation damping and coherence can be treated
in semielassieal fashion by relating the time evolu-
tion of the superradiant states I rm) to Bloch-like
equations. "

Experimental consequences of the many-body
correlations implicit in superradiance are the op-
tical analogs of the earlier magnetic coherence
phenomena, due to coherent spin motions such as
NMR, spin echoes, transient nutation, free-induc-
tion decay, and others. Although all of these have
been observed in the last ten years' and a very
dramatic consequence of the coherent resonant
atom-field interaction was discovered in the phe-
nomenon of self-induced transparency, ' most
of the experimental demonstrations of cooperative
effects have been hampered by the difficulty of pre-
paring suitably well-defined optical pulses and
matching their frequencies to absorption frequen-
cies in the system under study. The discreteness
of available laser frequencies therefore forces the
experimentalist to a search for accidental spectral
coincidence of pulse source (laser) and absorber
unless these are identical, as in the early photon-
eeho experiments in ruby. Needless to say, the
development of continuously tunable lasers (e.g. ,
dye lasers) should eliminate this undesirable limi-

tation on experiments. The technique recently in-
troduced by Brewer and Shoemaker for the study of
molecular coherence circumvents the difficulties
implicit in optical pulse preparation. The central

. idea is to use an external field (electric or mag-
netic) to shift the states under study in and out of
resonance with a continuously applied laser field.
As the control of the external field is easily at-
tainable by electronic circuitry and not via the
complicated dynamics of lasing action in a cavity,
the preparation of —,'m, m, nm pulses is no longer
problematic.

It is the ease of the control of the temporal evo-
lution of the molecular system in the presence
(absence ) of a resonant strong radiation field which
leads to the proposed experimental observation of
the effect discussed in this paper.

This effect is the appearance of a shift of the
emitted radiation as a consequence of the different
virtual radiative effects on the energy levels of the
X coupled molecules. In its origin, it is analo-
gous to the Lamb shift, which describes the differ-
ence of the radiative corrections of s or p electrons
in the Coulomb field of the nucleus compared to
free electrons. The role of the Coulomb field of
the nucleus is played in the superradiant case by
the effect of the field of the N 1 excited (u—nexcited)
molecules on the .Vth one. Although radiative
shifts of single-particle states are, in general, al-
ready included in the physical (renormalized) en-
ergy of the particular state under consideration,
in the case of superradiance the shift becomes ob-
servable as a frequency shift of the emitted photons
from the single-molecule transition frequency.
Equivalently, one can say that the assumption of
equal spacing between the N- molecule eigenstates
is incorrect, as radiative corrections shift differ-
ent eigenstates differently and consequently the
emitted photons at different stages of the transi-
tion of the entire N-molecule system to the ground
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state have different frequencies.
These effects are most conveniently studied by

the use of the self-energy concept and renormaliza-
tion, which systematically includes the effect of
interaction on the eigenvalues of a given system.
For graphic illustration, Feynman diagrams and
the standard ways of summing infinite subsets of
important diagrams by use of the Dyson equation
are occasionally employed.

An outline of the results presented in this paper
is now given. Section II considers the trivial case
of N= 1 to define the notation and terminology. The
real part b, '"(E) of the (lowest-order) self-energy
Z'" is not experimentally accessible, as the in-
teraction with the spontaneous radiation field is
always present, and consequently only the renor-
malized eigenvalue of the excited state is rgea-
sured in an experiment as the frequency of the
emitted photon. '"' The imaginary part 1""', how-

ever, can be measured and accounts for the finite
lifetime of the excited state (~= n/I'"). This is
no longer so for N= 2, the next case considered,
as the presence of the second molecule provides
an additional field (the dipole field of the transition
dipole plays the role of the nuclear Coulomb po-
tential in the Lamb shift), which renormalizes the
superradiant system of two molecules-one excited,
the other unexcited —considered earlier by a num-
ber of authors ' ' in a qualitatively new and dif-
ferent way. Apart from the usual single-particle
self-energy terms Z' ' inserted in the excited-
state propagator, there are energy-transfer terms
(see Fig. 2), which lead to a distance-dependent
self-energy containing both a physically measur-
able shift b, ' '(E) as well as a width I'@(E). In

fact, the discussion of just such a system of two
spins provided the point of departure of Dicke' s
classic paper. The treatment given there was con-
fined, however, to the effect of cooperative spon-
taneous decay, i.e. , consideration of the radiation
rate and angular photon correlations of such sys-
tems. It is, of course, well known that a decay
rate calculated by the Fermi golden rule is exactly
equivalent to the imaginary part of the appropriate
self-energy diagram (the energy-conserving 5

function converts the intermediate-state sum di-
rectly into a density of states, while the matrix
element is just the interaction vertex, responsible
for the coupling). To lowest order then, Dicke's
result for the spontaneous decay rate leads to the
much heralded result yg = +N yp.

It is of interest to point out the consequences of
considering the next-higher-order corrections,
summed selectively to infinite order, on the spec-
trum of the superradiant emission. This shift of
the eigenfrequencies was not considered by Dicke,
but has been discussed by a variety of authors,
both for small N(& 10) and large N(» 1). The ap-

proach based on the analytic properties of the self-
energy Z' '(E), which follows from the retarded
nature (causality) of the interaction between the
molecules for N= 2, is illustrated. The use of the
dispersion relation (Hilbert transform)'between the
real and imaginary parts of Z'@(E) leads directly
to the familiar result by employing a suitable con-
tour integration.

In Sec. III the case N» 1 in a needlelike geom-
etry characterized by a small Fresnel number is
considered. The self-consistent argument, re-
cently proposed by Arecchi and Courtens to de-
termine the maximal number N, of molecules radi, -
ating cooperatively with a spectral width y„ is
used. These parameters, called the cooperation
number N, and cooperation time ~, = m/y, (width
of the superradiant pulse) have been also found by
other workers' to be crucial for the characteriza-
tion of the superradiant pulse and the appearance
of self-induced transparency.

This argument is reproduced and is furthered by
equating the imaginary part of the N-molecule self-
energy Z '(E) with y, so derived. The N-molecule
superradiant shift 4' '(E) is then calculated as the
Hilbert transform of the width function y, (E ), i.e. ,
as a principal-value integral over all frequencies.
Physical considerations about the limiting fre-
quencies of the particular problem studied lead
to the introduction of an infrared cutoff &u „=2m c/L
and a high-frequency cutoff &u = 2wc/D (L is the
sample length; D is the molecular diameter).

Section IV considers the possible experimental
observation of the superradiant level shift in a
transient optical experiment of the pe recently
reported by Brewer and Shoemaker. It is argued
that the coherent preparation of the system (a mo-
lecular gas) pumped by a cw laser beam can be
considered to be close to the I rm = 0) state and
that the Stark shifting of the particular velocity
group excited resonantly via the Dopper shift simu-
lates the requirement of spontaneous cooperative
emission necessary for superradiance as the laser
photons are sufficiently off-resonant for the origi-
nally excited velocity group. It is noted that some
care has to be taken in Stark shifting in times short
compared to the inverse calculated shift in order
to prevent a smearing out of the frequency shift.
The shifted superradiant emission is observed by
looking for a beat pattern with the laser in a
square-law detector. Section V contains a sum-
mary of the results and the conclusions concerning
the general applicability and significance of our
approach.

II. RADIATIVE CORRECTIONS FOR% =1 AND%=2;
SIMPLEST SUPERRADIANT SYSTEM REVISITED

This section begins by going over familiar ground
[for an excellent review, see Ref. 29(b)] and dis-
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The time-evolution operator U(t), which is de-
flQed Rs

y(t) = 0(t)C(0),

cRQ be I'ep1686Qted ln the form

U{f)= (I/2m') 1 G,(z)e-*"dz, (6)

and G, (E) is the appropriate Green's function (prop-
agator) of the excited state,

G,(z) =P, (Z —II+ ~~) -'P, ,

Neglected Diagrams ~ etc.

FIG. 1. Lowest-order self-energy Z~ ~(E) for N= 1 and

selective summation by Dyson equation.

cusses a single (N= 1) two-level system interacting
with the radiation fieM in the electric-dipole ap-
proximation described by the Harniltonian
H= Ho+HI,

Ho= ~&oo'g+~ &k~k~k p

k

&r= ~ (&. 'p)(~. o.+&& ~l),

[o„&7,]=+ 2o, ,

t 1
+k~ ~k'3- &kk

(2b)

Natural units 5 = g = 3. are used.
To study SpoQtRQeous emission, this pRpeI' is in-

terested in the time evolution of the state I e)10&
uIldel the Rctlon of HI with lnltlRl condltlon

$(t=0)= Ie& IO& .

where &do is the molecular level spacing E,' ' —E' '
= ~o, o„g,o, are componentsof the 2x2pauli spin
matrices, which represent the density matrix of
the two-level system; and gk, ak are the photon
creation and annihilation operators. The states of
the system are 18&, Ig& for the excited- and ground-
state (two-level) molecule wave function and In~ &

for the number eigenstates for the 4th mode of the
radiation field. They obey the relations

&&. Ig) = —
I g) o. l

e&=
I 8& ' (2a)

&&o
I na &

=(&&+I}'"l»&+I);I..&=(,)'"I., -»;

where the lowest-order self-energy is decomposed
into its real and imaginary parts 6'", I'"',

Z&&&(z&o&) no&

i&g; lu le, te; 0& i'
k {dO —(Ok + g&

(6)

Note that the wave function g, (t) is damped owing
to the emission of a photon and transition to the
ground state and that the spectral distribution of
the emitted photon is I.orentzian, centeIed at
o&, = &oo+ n, & ' [owing to the approximation of replac-
ing Z (E) by Z (Eg )]~ and has a width oI
Clearly the linewidth of the photon, —,'I"' ', is an
observable, as the experiment can be repeated on
a single-excited-atom system and the frequency
distribution of the emitted light determined, while
the shift 6' ' is not accessible to measurement, a.s
only the center frequency ~o+ 4~ ' canbe determined.
This corresponds to the presence of the quantized
electromagnetic field, whose interaction with the
excited atom cannot be turned off.

Next con81der the cRse N= 2. The staI'ting Ham-
iltonian is now

P.=0&
I

&& l&0I .
Using the standard Feynman-Dyson approach to
perturbation theory, ' Eq. {6)can be reexpressed
in terms of an integral equation for G, (E}, i. e. ,

G, (Z) = G,"'(Z}+G.'"(Z) Z{Z)G,(Z), (6a)

where Z(E) is the sum of all irreducible self-en-
ergy diagrams and G,'" = P,(E -Ho+&6) 'P, .

In Fig. 1(a) the lowest-order self-energy Z"'(E)
is exhibited, and the Dyson equation automatically
sums its contribution to infinite order [Fig. 1(b)].

One therefore finds for an approximate solution
of Eq. (6), however summed to infinite order
(Es = o &do)~

G,'"{z)= [z -z,"' —z'"(z)] ', (6b)

and substituting in Eq. (4) and using contour inte-
gration,

e-«~,&o&+~ "&&&
e -&r&'&/a&&

I e&
I

0&
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Hp = g (Op ~ 0'» + ~ 40~ Q~ g»Y (it)

2.
Q (&

.p)(&(i) + (i&
) ( ik'Ii t ik-'R

)i

)=1

A large number of workers have considered this
system, '~' ' and jts interesting propertj. es.
an early paper, Hamilton "' used quantum electro-
dynamics (QED) to show that the interaction ener-
gy of two identical atoms, one excited and the other
in its ground state, is causal, i, e. , that the re-
tardation of the interaction potential plays a crucial
role in describing the effect of an excited atom on
an unexcited one in its neighborhood. Interesting
consequences of the retarded nature of the interac-
tion and the description of the field in terms of
@EDwere derived by Casimir and Polder '" and
later by Dzyaloshinskii, who showed that the ef-
fective interaction of two neutral polarizable par-
ticles falls off -1/R (R separation distance) not
as expected, - QR, from the static part of the di-
pole-dipole interaction energy as a consequence of
the retarded nature of virtual photons coupling the
particles.

Again the renormalization point of view and the
complimentary concepts of propagators (Green's
function) and self-energy are used to discuss the

system of two identical two-level systems. In par-
ticular, consider the initial state at t= 0 of one
excitation for the system (i. e. , either molecule
1 or 2 excited, with the other unexcited and no pho-
tons present). Our interest lies in the time evolu-
tion (t& 0) and spectral properties of this system,

In Fig. 2 the lowest-order Feynman diagrams
are shown diagrammatically. The first diagram
[Fig. 2(a)] shows the independent emission of one
photon by either molecule 1 or 2, while the next
diagram [Fig. 2(b)] exhibits the possibility of
transferring the excitation from 1 2 and vice
versa. It is the latter process, when summed to
'all orders [Fig. 2(c)] which leads to an interaction
energy Z's(E) (self-energy of the two-particle sys-
tem), which renormalizes its eigenvalue spectrum.
Note, that other possible diagrams shown in Fig.
2(d) have not been included, but the recipe of in-
cluding resonant diagrams to infinite order has been
followed. The connection of this approximation
to the signer-Weisskopf approach will be dis-
cussed in a separate publication.

As an aside, the reader is reminded that the
same process of resonant energy exchange between
neighboring atoms, ions, or molecules is well
known in solid-state and chemical physics, where
the resultant splitting of degenerate (in the ab-
sence of coupling) energy levels is referred to as

(a)
e

Molecule 1

Molecule 2

(b)

(c).

Molecule 1

Molecule 2

FIG. 2. Lowest-order self-energy
Z~ {E)for K=2 and decay amplitude.
(a) Uncorrelated decay {independerrt
molecule model) for %=2 system; (b)
lowest-order self-energy & '(E) (pho-
ton exchange); (c) decay of renormalized
X=2 system from superradiant state.

Molecule 1

Molecule 2

g e

+ ~ ~ ~
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Davydov splitting. 33 In solid-state physics, the
presence of lattice periodicity leads in addition to
dispersion of the appropriate collective excitation
mode of the atoms, ions, or molecules forming
the crystal. 2'

In Appendix A the details of calculating the con-
tribution of Fig. 2(b) is given and it is found that

I (pi'R)(pa'R)
R K K K

1 i
+ (pi p ) — + -+~

K K

E=ck; x=kR; p&, ,=-e(eq, , Ix ig, , ~); le&, 2), Ig, ,,)
are the excited and ground states of molecules 1
and 2; and R = R, —Ra (IR= I R I ), R, 2 are the posi-
tion vectors of molecules 1 and 2.

In analogy to the N= 1 case, the self-energy
Z' '(E) in Eq. (9) is complex. A significant differ-
ence, however, arises in the interpretation of its
real part, the shift b, ' '(E). To start the discussion
of the difference, assume that the single-molecule
propagators (solid lines in Fig. 2) G",'(i) (i = 1, 2)
for ground and excited states of the individual par-
ticles 1 and 2 are expressed in terms of the renor-
malized diagrams discussed earlier for N= 1.
6'@(E) is therefore the additional shift of the two-
particle system arising from additional energy-
exchange diagrams or the many-body nature of the
state wave function. It is analogous to the Lamb
shift of a 1s electron due to the Coulomb field of
the nucleus, which modifies the purely radiative
self-energy of an electron in the absence of the nu-
cleus. Here it is the retarded-dipole field of the
excited part of the system which modifies the in-
dividual self-interactions of particles 1 and 2.
Equivalently, the two-particle system can be de-
scribed as a sirgle-quantum system, -and for two
identical molecules the photon emitted by the ex-
cited molecule has a finite probability of being
reabsorbed by the same molecule or exchange
ground and excited states by propagating across
the intervening space and exciting the unexcited
molecule. Note, that. the simple static picture of
an instantaneous dipole-dipole interaction is
strongly modified by the consideration of the finite
propagation velocity of the photon, leading to a
retarded interaction. Furthermore, as pointed
out by Stephen, ' it is possible to speak of an inter-
action energy between the two molecules only if the
appropriate state is quasistationary, i.e. , the pho-
ton (=—quantum of excitation energy) is exchanged
many times between the two molecules. This paper
also points out that despite the fact that we talk
about exchanging photons between the two mole-
cules, the interaction energy contains terms which
are not transverse to the propagation vector
k(ll R~z), which implies that the photons exchanged

n= R/R, t= RgX n/Rl ~
(10)

Pi, 2 ~pi, 2 ' ) P1,2 p1, 2 't

for ~" and Z' it is found that

Z '@'(E)= k'p~ p; e '"(I/x+ i/~'+ I/x'),

Z' l"(E) = 2k p'qp2e "(i/x +1/x ) .

(9a)

The subsequent discussion is now specified to a

still have longitudinal parts arising from keeping
the near-field contribution together with the radia-
tion-field (far-field) part of the interaction poten-
tial, The experimental observation of a photon,
emitted from the singly excited two-molecule sys-
tem, corresponds to the absorption of a transverse
(real) photon by some photodetector far from the
radiation source. Nevertheless, the center fre-
quency and spectral distribution of the observed
photon in such an experiment reflect the renormal-
ized eigenvalues of the two-molecule system and,
in particular, the shift - 6'~'(E) from the single-
molecule-center frequency should be directly ob-
servable.

This is partially borne out by the experiments
carried out by Drexhage et al. "' on the angular
distribution and fluorescence decay time of Eu"
chelates depositied at well-controlled distances
d& A,„„from a mirror. The relationship of these
experiments to the two-molecule system has been
discussed in an earlier publication ' and good .

agreement with experiment arrived at, consider-
ing the approximations made. The experimental
data on the dependence of the inverse-fluorescence
decay time on distance from the mirror agreed
with a suitably averaged imaginary part 1' '(E) of
the self-energy Z' '(E). The shift of the fluores-
cence-center frequency was not expected by the
experimentalists and not actually searched for.
The presence of other bands in the vicinity of the
transition studied ('Do- 'F2, A.„„=6130 A) and
the onset of energy transfer to the mirror for the
small distances (& 20 A) required to give an ob-
servable shift may make its experimental detection
difficult.

However, the known theoretical expression3 of
the lowest-order two-particle self-energy Z'@(E)
given in Eq. (6) will be used to explain the ap-
proach based on the analytic properties of Z'@(E)
in the upper half-plane (E =E&+iE&, E, ~ 0). In
order to simplify the discussion, Z' ' is decom-
posed into a longitudinal and transverse part,
Z" and Z', according to the decomposition of the
transition dipoles p1, p2 into components along R
(longitudinal) and at right angles to it (transverse),
anticipating a photon measured with k II H:

Ij ~ J
p1, 2= p1, 2n+P1 2t,
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specific molecular configuration of the transition
dipoles parallel to each other and n, i. e. ,

pl. , a=P&, p ~

of complex z, namely,

Z(2) ( (13)

Suppose that one is given Only the imaginary part
of (9a), i.e. ,

The physical self-energy Z( )(E+ie) is defined
just above the real axis,

—Im Z'""(E)= 3yp I

sing

yp= -'&'
I Pi, 2 ~

(11)

Z'"(E+i~) = ~"'(E) --.'il'"(E),
and the standard identity

1 1 +i~s(z' —z)

(i4)

Here yo is the free-space isolated-molecule de-
cay rate (-=width of spectral distribution of the
emitted quantum). Now, it is proposed that the
analyticity of the self-energy Z' '(E) be used to
calculate the real part of the self-energy from the
given information [ —ImZ(2)" (E)]. Z( ) (E) is the
Fourier transform of the causal self-energy Z( )(&),

Z("(E)=(I/2m) J e"'Z("(i)df, (12)

(,)() Iz"'(~) &Dr t' o

0 for 1&0 . (12a)

Equation (12a) can be shown to hold by considering
the time evolution of the two-molecule system pre-
pared such that at t = 0 there is awe excitation pres-
ent for the system. In fact, if it is assumed that
a particular molecule, say molecule 1, is excited
and molecule 2 is unexcited, Hamilton ' has shown
that the decay proceeds as for the two independent
molecules for times i& R/c, i. e. , until the radia-
tion from molecule 1 has propagated to molecule 2.
It follows from (12) that Z' )(E) is analytic in the
upper-half complex energy plane, and therefore a
Cauchy formula can be written for it as a function

ls used.
The contour C is chosen as along the real axis

—~ ~ E'& ~ and a semicircle at infinity in the up-
per half-plane. As the contribution along the latter
part of the contour vanishes, one finds from (13),
by equating real parts using (14) and (15), that

(2)„( )
—1 ~

" dz'I"""(E')
(13 )

J z-z
which is a. Kramers-Kronig relation (Hilbert trans-
form) between &' '" and I"' ' . Since it has been as-
sumed that the integrand I' '"(E') is to be given
analytically by Eq. (11), one is left with evaluating
the principal-value integral in (13a). Using the
identity

1 1t 1 1+, . (Is)E'-E 2 ~~
E' —E —ie E'-E+i&

and separating terms -e' and-e ' (P=R/c)
in the integrand arising from the sin)a'R and coskR'
parts of I' '"(E'), the following is obtained [see
also Ref. 9, second paper, Eq. (21) for a different
derivation]:

which can be evaluated in a straightforward way
by the residue theorem as the only singularities
occur for E'=E+4 and E'=E'-i& and the contour
can be chosen in the upper half-plane for the terms

- e'~~ and in the lower half-plane for the terms- e ™.The apparent singularities at E' =0 do not
contribute as the integrand is regular at E'= 0.
Using the residue theorem, one obtains

()
2w o )"

2 i(EP)
'

(EP) 2 (EP) (EP)
' ~

K
'

K
(18)

which is, as expected, the real part of Eq. (9b).
In complete analogy, I' ) (E) could be used as

input information and the dispersion relation used

to find L( ' (E). It has been demonstrated, .there-
fore, for the case of the simplest superradiantsys-
tem N= 2, how the knowledge of the imaginary part
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of the self-energy allows one to calculate the shift
' of the eigenfrequencies of the coupled two-

molecule system, which is, in principle, a mea-
surable effect,

III. GENERALIZATION TO N »1 MOLECULE CASE

Dicke has discussed the properties of N»1 two-
level molecules in detail and, in particular, pointed
out the dramatic consequences of cooperative be-
havior for the case of N molecules confined in a
volume V, such that V&A,3, and the case of a cylin-
drical column of small Fresnel number a /XL«1
(a radius of cylinder, L its length). Exploiting the
isomorphism of the density matrix for a two-level
atom and a spin--,' particle, he has constructed
eigenfunctions I r, m) of the pseudo-angular-mo-
mentum operator

(f) (&)f'2 = 0'y ~(f) g(&)
3 8

with eigenvalues x, the cooperation number, and
m, the molecular energy. In terms of these eigen-
states, he finds the radiation rate to be given by

y„'„'"'=(r+m)(r m+1)y-o

=-,'N'y, for ~=-,'N, m =0.
This result was derived by first-order perturba-

tion theory, i. e. , computing the time-evolution of
the fully inverted state (r = m = —,'N) due to the inter-
action operator (in electric dipole approximation):

and Stehle, and in particular by Arecchi, Kim,
and Smith, ~' 8 pointed out the necessity of taking
the different renormalization of the Ir, m) states
into account. The latter authors gave an example
of striking consequences of renormalization for the
fully excited N = 2 system.

Our interest lies in the spectral properties of the
superradiant pulse, specifically its detection as a
shift from the free two-level separation frequency
&0 = E, —E~, which is preserved in the Dicke treat-
ment, in which the effect of the radiation field back
on the N molecules is neglected.

Note that Eq. (19) for sufficiently large N quickly
leads into the realm of science fiction38 ("optical
bomb" ). This is due to the fact that the number N
of molecules contributing to cooperative spontaneous
emission has certain built-in limitations and cannot
simply be taken from Dicke's work, which utilized
first-order perturbation theory and the usual aver-
aging over a few cycles. Instead, Arecchi and
Courtens start from the observation already con-
tained in Hamilton's" work, that cooperative be-
havior in the superradiant system sets in, after the
photon emitted from one of the atoms has reached
the other atom(s). That is, the retarded nature of
the interaction plays a crucial role for the timing
and length of the cooperative behavior.

The two relevant parameters for the pencil-like
geometry are briefly presented, namely, N„ the
cooperation number, and 7,= t(/y„ the cooperation
time. (y, is the modified Dicke cooperative decay
rate per molecule for N, molecules. ) The super-
radiant coherence length f, = c/y, is simply the
linear extent of the sample along the cylinder axis
( il to the propagation direction of the superradiant
emission) over which the N, molecules superradiate.
From Ref. 13,

ISIS ~e

Q g ( r(J)ate (&'Rg s r(J) -g e(f R~)
/=1

y, = —.
'

N,~,(~'/X),

N, =/, Ap,

(2la)

(21b)

= Z g), (P),R s~+ Q), A~ s ), -

with g, =p((dk/Vc)'", s. = e„+is„, r."' = (1/~2)(a„")
(())

E
~(k) Q r(j) et (f 'ry

w
~ + ~ +

/=1

whose matrix elements are the standard angular-
momentum factors (k is considered fixed, corre-
sponding to preparation of the sample by a plane-
wave pulse with k parallel to the cylinder axis)':

ff(»~r, m) =[(r+m)(r m+1)]«'~r, m- 1).
As first-order perturbation theory was used to

calculate the spontaneous-emission rate, the effect
of renormalization of the superradiant states Ir, m)
was not considered. Later work by Fain, Ernst

where yo = 3P A is the free-space single-molecule
decay rate (p = Ip ~l is the maximum value of the
transition dipole), A /A is the element of solid
angle subtended by the superradiant emission (dif-
fraction limited), and p is the molecular density in
the sample. For the case of an inhomogeneously
broadened line, (21b) is modified to l, = cT~*, where
T2 is the inverse inhomogeneous linewidth. For
the homogeneously broadened line it is found by
solving (2la) and (21b) that

y, = —,').(cpy, )'~',

2A pc
(22)

As the Dicks rate [Eq. (19)]for the N-molecule
system corresponds by the same argument as made
in Sec. II to the imaginary part of the N-molecule
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FIG. 3. Schematic N» 1 molecular self-energy ZNN)

for superradiant state ir=yN~m=0).

self-energy g '"'(E), the modification (21) to deter-
mine an effective g'"'(E) is considered We. pro-
pose to use y, (E) as the phenomenological imaginary
part I'~) (E) of a causal N-molecule self-energy
g '"'(E) and use, in analogy to the case N= 2, the
dispersion relation of Eq. (13a) to calculate an ef-
fective shift 2"'(E),

P(N) E I1 ) I (E )dE
(23)E E

From a many-body point of view, the N-molecule
self-energy g '"'(E) is a complicated object, and its
structure is indicated schematically in Fig. 3. The
state, which has the most dramatic manifestations
of cooperative behavior, is Ir= ,'Nm=0—), corre-
sponding to the total system being in an energy su-
perposition state, or equivalently in the semiclassi-
cal model to bein@ rotated by a 2w pulse into the
x-y plane (with orientation along the positive z axis,
corresponding to complete inversion ) r = —2N,
m =-,'N) and along the negative z axis corresponding
to the ground state I r = ,'N, m = —,'N))——

It is in this and close-lying states Ir = ,'N, m-0)—
that the system exhibits a macroscopic dipole mo-
ment and thus radiates coherently. If one uses the
evenness of 1"'"'(E')= I'"'(- E'), which follows
from general arguments, " and calculates 6"(E)
from Eq. (23) using (22), then

i) (N&(E) ~ yc& ) (24)
v E'"0

Before evaluating Eq. (24) several points should

be made concerning the principal-value integral,
its limits, and the behavior of the integrand. By
definition, the value of the principal-value integral
depends on non-energy-conserving values E 'c E of
the integrand I'"'(E'). One should consider the
fact that the physical dimensions of the system con-
sidered limit the contributing frequencies to E „
(E '(E ~ in the following manner: (a) by assump-

(27)

Obviously, the shift obtained crucially depends
on which of these points of view is the correct one„
As the dispersion approach relates the off-resonant
behavior of one quantity (the width) to the resonant
value of the other (the shift), it is felt that the ne-
glect of the frequency dependence of y|)(E') is un-

justified and that Eq. (27) is the correct expression
for the shift of the transition frequency.

For the case of inhomogeneous broadening, the
modified expression

y~ —gcT2 pyoA,

has to be used to account for the smaller [by a
factor - (y /yv) (pg = v/y&), y& Doppler width] num-
ber of molecules available for cooperative behavior
in the superradiant emission. Proceeding as before
by neglecting the frequency dependence of yo, the
shift [Appendix 8, Eq. (810)] is found to be

(E)=-y(E)---(~) 2 I
(2s)

tion the N molecules are nonoverlapping in
space, consequently the highest Fourier component
contributing to the dispersion integral (24) is of
order E ~=2'/D, where D is a typical molecular
diameter; (b) it has been assumed that the cylin-
drical sample has length L, and consequently, the
lowest Fourier component contributing is of order
E „=2vc/L On. e, therefore, replaces the limits
of integration in (24) by the low- and high-frequency
cutoffs E „and E ~, respectively. The resul. "ing
principal-value integral then gives to lowest order
in X/L, D//X«1 [see Appendix 8, Eq. (8'l)],

2 D '
A'"'(E)-- y.(E) h - I+- —

Iz j 2 L]
which disagrees with the earlier estimates of Fain
and Arecchi et a/. ' Note, however, that in using
the expression for the self-consistent superradiant
rate y„ the free-space single-molecule rate yo

appears. Fermi's golden rule gives

y, =2vI p.,I'P, (&) =a p')t',

where

V
I

d'~' „, , (k .p)a ~

&
2

(2v)' I v I" I &(~a-~a) I- ip, i.
I

Ia]l

(26)
is the photon density of states at +~ = E,—E~, p
=e'l(el&l g)1',„ is the square of the maximum value
of the electric- transition-dipole matrix element.
As y, (E') is considered here as a function of E',
the E' dependence of ya =-yo(E') should be kept in the
dispersion integral. This, of course, weights the
cutoff frequencies E „, E ~ differently and we find
[Appendix 8, Eq. (814)]



1156 H. MORA%IT Z

TABLE I. Typical values for the superradiant level shift A +(E) for a molecular gas pumped by the ~=10.6-p CO2

line. The predicted shift for the experiment proposed is 5.8 x 10 sec [case (b), inhomogeneous broadening].

Homogeneous
broadening

~0 ~D
(sec )

10

P
(cm 3)

108 2x 10+

(cm)

10.6 x 10 4 10 8.5 x 106

g(N) (g)
(sec )

—4, 9 x 10~ 8.5x 10~

Inhomogeneous

broadening

10 10 10' 2x 10~ 10.6 x 10- 10 8.4x 105 5.0 x 10~ 5.8 x 106

essentially diverging linearly with sample size L.
Taking the frequency dependence of yp(E') into ac-
count [note that for the case N=2, Eg. (1V) implied
the necessity for this step],

(N)
D&'~'"(E)=—y, (E) ln —+ — — ——I, (30)

D 2, L

which is used to predict a value of 5. 8 MHz for the
shift for the set of parameters specified in Table I.
Note that the width of the superradiant pulse for in-
homogeneous broadening is of order v, = v/y, =3.7
x10 6 sec, and that assuming the shift slowly vary-
ing over times comparable to 7„a sufficient num-

ber of beats (-20) between the laser field at +~ and
the superradiant emission at ~» =to~+ 5'"'(E)
should occur to be observable.

IV. PROPOSED TRANSIENT OPTICAL EXPERIMENT

FOR DETECTION OF SUPERRADIANT SHIFT g(~)(E)

In Sec. III, it was shown how the self-consistent
superradiant radiation rate can be considered to
define an effective N-molecule self-energy and a
resultant level shift in the superradiant spectrum
was calculated. Although the calculation directly
applies only to the most superradiant state

,'N„m =-0), or—rather its self-consistent modi-
fication, it is argued that similar arguments hold
for the set of states [x = —,'N, ; m «-,'N, ) by analogy.
The photons emitted, while the system evolves
from the superradiant (m«N»1) to the ground
state (m = ——,'N, ) will be shifted by h~'(~p) and
have the frequency

(dy = G)p+ + ((dp)
(N) (31)

and it is proposed that this shift be detected by
heterodyning the superradiant field with a cw laser
field.

The experimental arrangement proposed is based
on the recent development of an elegant transient
optical method by Brewer and Shoemaker for the
observation of nonlinear spectroscopic and inter-
ference effects in samples of molecular gases ex-
cited cw by a CO& laser. The 10.6- p CO3 laser
line resonantly excites a particular velocity sub-
group of a vibrational-rotational transition in the
gas, in which the orbital degeneracy has been re-
moved by application of an external Stark field.

Utilizing a rapidly variable electronic switch, the
Stark field can be suddenly changed at t =0, moving
the originally pumped subgroup of molecules out of
resonance and a new group of molecules into reso-
nance. By a suitable choice of laser operating fre-
quency and Stark field, the hole burned into the
Doppler profile can be shifted from close to line
center (vp=0) to the far wings (vp =104 cm sec '),
corresponding to a small number of molecules.
The originally excited group of molecules will
closely resemble a superradiant system and return
to its ground state by emitting a pulse of superra-
diant light at frequency +„=up+ b, '(+p). The non-
adiabatic nature of the Stark switching leads to a
whole set of interesting transient effects, and the
one proposed here is a new one': the detection of
the superradiant level shift b, '"'(E) as a beat signal
-cosh'N)t with the cw laser field &~ =&0.

A sketch of the proposed experimental setup is
given in Fig. 4. A cw CQ laser prepares the par-
ticular velocity subgroup vo of molecules, in whose
rest frame the laser frequency is Doppler shifted to
line center. At t = 0 the additional Stark pulse shifts
the laser light out of resonance with the velocity
subgroup &0, leaving the molecules in coherent su-
perposition states corresponding to )r = ,'N„m -0). —

These molecules reflect their coherent preparation
by emitting superradiant light with a frequency given

by Etl. (31), where &op = &o~+ b, . It is assumed that
the original transition has been between a lower
state showing a linear Stark effect and an upper
state showing a quadratic Stark effect, where 6,
=zE' ' is the linear Stark shift of the lower state,
&~ the laser frequency, and E' ' the additional
Stark field applied at t= 0. The total shift 6 = L~
+ b, '"'(E), where hz is the Stark shift and b, '"'(E)
the superradiant shift, can be observed directly as
a beat frequency in a heterodyne detector for suffi-
ciently short times (&10 sec).

Typical numbers for a molecular gas for an ex-
periment are given in Table I. A value of y, = 0.84
MHz and a shift of LF- 5. 8 MHz is found. It is
pointed out that it seems crucial to reduce the
present switching time of -30 nsec of the Stark
pulse by about an order of magnitude to avoid
smearing out the effect. Also, the detection of the
beat over not much more than a few cycles (ht
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FIG. 4. Proposed transient optical
experiment.
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-1/5. 8x106=1.7x10 ~ sec) is not a simple task.
Nevertheless we believe that it should be possible
to observe the effect in the proposed configuration.

V. SUMMARY AND CONCLUSIONS

It has been shown how to use renormalized per-
turbation theory to discuss the behavior of N iden-
tical two-level molecules coupled to the radiation
field. In particular, the concentration has been on
the N-particie self-energy g '"'(E), which arises
from the coupling and modifies the eigenfrequencies
and width of the emitted photons. The Kilbert
transform relations between the real and imaginary
parts of g '"'(E), 6'"'(E), and I'~'(E) have been
defined, and these dispersion relations employed
to calculate the shift function for the familiar case
N= 2. Then the self-consistency argument of
Arecchi and Courtens" was used to construct an
effective N-molecule self-energy function from its
imaginary part y, (E) and the resulting shift calcu-
lated. Some interesting consequences of the nature
of the dispersion relation in terms of its dependence
on low- and high-frequency cutoffs, determined by
the physics of the system considered, were brought
out and the functional dependence of the integrand
on the dispersion variable away from resonance
discussed. Finally, a possible transient optical
experiment for the observation of the shift is pro-
posed and representative values for the relevant
parameters are given. The N-molecule shift
6'"'(E}is a dramatic consequence of higher-order
radiative corrections in the particular many-body
context of superradiance and thus confirms the
present understanding and use of quantum electro-
dynamics.

S,y(t„ tg) =- T (exp[ —i 1 H~(t ') dt 'Jj .

One finds to second order in H, [Fig. 2(b)],
S&'~= 2~ii( &''- &'~)Z&'~(E),

and Z@'(E) is given by the expression

(A1)

(A2)

~ (1g, 2e; O~IH~ln)(nlH~I le, 2g; O~)
—E„+ig

(A2)
The initial state for the N= 2 superradiant system
is given by I t) = I le, 2g; O~) and the final state by

I f) = I 2e, 1g; O~). For the intermediate state n,
the two states

~n) =
~ Ig, 2g; 1~) with energy E„=—&@0+&u„,

~n ') = ~le, 2e; 1~.) with energy E&o +a0r~

are taken corresponding to the two time-ordered
diagrams [Fig. 2(b)]. In the first one of these,
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APPENDIX A '

Z@'(E) is calculated by using standard time-de-
pendent perturbation theory30 (see also Ref. 3) for
the 8-matrix element

S»=(2e, 1g; O, IS„(~, 0)~2g, le; 0,),
with
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molecule 1 in the excited state emits a photon and
returns to the ground state, while molecule 2 re-
mains in the ground state until it absorbs the emitted
photon and goes to the excited state. In the second
diagram, molecule 2 emits a photon (d~. and goes
to the excited state, while molecule 1 stays in the
excited state until it absorbs the photon &~. and goes
to the ground state. Obviously, photon ~,. is an
unphysical photon (negative frequency), but neces-
sary by crossing symmetry. ' '4

Using Eq. (1a) for the interaction Hamiltonian

H( in (AS), defining the matrix elements

(0,; 2ela, !2g; 1,) =s p,e "'
(A4)

(1&i 1&l+zllei 0») =& 'p(~

writing the intermediate-state sum n. as a three-
dimensional integral over photon momenta k, and

(a)
summing over polarization vectors &), with X= ~g

A.2"', one obtains

t
r ()t) ~ ~()).)

(Oo —~), +fr

(2S) of the text]

2EP!* I' '(E ')dE '
EJ2 E2

"&min
(B1)

is considered utilizing the N-molecule effective
imaginary self-energy for the two cases of homo-
geneous broadening:

(b) y, = e(E', o. = (2/Se') p'.
Case (a)

—(cpyo)'+ (homogeneous ease)EP(&))(E) y (E)
&( c p —~ (inhomogeneous case).3 3 yP

y
(B2)

The principal-value integral will be calculated both
by (a) letting yo = const in the dispersion integral
(B1), and (b) considering the frequency dependence
of yp, i. e. , differentiating between

(a) y, =(const)

Choosing R as the z axis in the k integration and
performing the polarization sum by the standard
identity

'st) ' = 5 ()- f& k()/f& (As)

leads to

~"'(E)=, I&l'dl&l«. (p& p2)- ' ' "a'"—'I
k

k' R e-~~'R
. I. (Av)

!I,~p —(d~+ Zg ep+ CO&
—Zg )

Expansion of e""'"and k p, ,2 in Legendre polyno-
mials by

e'"'" =+ f'(2&+1)j&()()P,(cose, )

Homogeneous Broadening

First write

I'"'(E ') = c,/E '; c, = (((c'py, )V'

and define

I,'"(E)=Pf™~
dx/x(x' E'). -

&mSn

By definition of the Cauchy principal value,
-e ~Em

I,"'(E)=lim( + E, )
@min 8+6

The shift d, ("&(E) is therefore given by

g(Ã) (E)
2E I (a) (E)

(B4)

(B5)

(B5)

and use of their orthogonality leaves only the Ik (

integration to be done. It is easily done by contour
integration after a trivial change of variables
x = c J A ) giving the desired result

(3)( )
3 -(. (p( R)(ps R)

g2 K ~K K3

1 i 1
+ (p p ) ——+~+~ . (AS)

K K K

Inhomogeneous Broadening

%rite

1'"'(E')= c,/E', c, = (&(c)'p(y, /y ). (BS)

This is Eq. (9) of the text, used to describe the
additional self-energy of the N= 2 system.

APPENDIX 8

The principal-value (P) integral for the effective
superradiant level shift 6("'(E) given by [see Eq.

dx 1 I."( )=P! „-(-
)

=@ —„——,( )
~ &min

leading to

2"'(Z) = —' I,"'(Z) =—(E)(———
) . (B,lo)

2c E
I,
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If the frequency dependence of ya(E') is included
in the principal-value integrals, i. e. , considering
the phase-space dependence of the virtual photons
renormalizing the collective eigenstates of the N-
molecule system, the integrals of case (b) have to
be considered.

Case (b): 70 =
a p ~(E' /c )

Homogeneously Broadened Line

Inhomogeneously Broadened Line

Write

I'"'(E')=ca'E', cs= sP'(P» /7'»). (B15)

X "' I'D '"=- y.(E) -+ — -I — . (B14)
2 I.

Finally, this leads to the inhomogeneously broad-
ened line.

Write

P E&(E &)'—c ~(E ~)1/s c ~= (s +2)1 2

Then let
&max gp

I'"(E)
"&&m&s

and the shift is

(B11)

(B12)

(BIS)

Take
~ &max

I (b& (E) x'- E'
&min

1 X D

and the shift is given by

~(&v&(E) & ~l (b&(E)

(B16)

(B17)

~(&v&(E) & 'I (b&(E)
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