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We develop the generalization of the Heisenberg near-neighbor-exchange Hamiltonian necessary to
incorporate the effects of multiple-exchange processes. Many-body expressions for the multiple-exchange

constants (pair exchange, triple exchange, and quadruple exchange) are derived. The physics that enters

these exchange constants is discussed. For the most important of the pair and triple cases, these

expressions are carefully evaluated using a Monte Carlo integration scheme. We show that the exchange
Hamiltonian for solid He is rapidly convergent, and that the near-neighbor pair, next-near-neighbor

pair, and triple-exchange processes (involving two near neighbors and a next-near neighbor) are likely to
be the only important exchange processes to the low-temperature thermodynamics of bcc 'He. The
magnitude of the triple-exchange process is such that the "effective" next-near-neighbor pair-exchange

interaction in bcc 'He is ferromagnetic. This result provides qualitative and quantitative support to the

explanation of the data of Kirk and Adams made by Zane.

I. INTRODUCTION

A quantum crystal is a crystal in which the zero-
point displacement of a particle, g(u~), is a sub-
stantial fraction of the near-neighbor distance A.
Quite surprisingly, there are many macroscopic
properties of the best-known quantum crystals
(solid sHe and solid 4He) which appear relatively
unaffected by this large zero-point motion. Simple
thermostatic measurements, e. g. , specific heat,
thermal conductivity, etc. , yield evidence for
properties that are much like those of similar non-
quantum crystals. The truly unique experimental
properties of the quantum crystals, however, are a
consequence of the large zero-point motion, as
manifested in ihe tunneling motions of the constitu-
ent particles. The wide variety of motionally
narrowed nuclear magnetic resonance (NMR)
phenomena in solid 'He provide ample evidence for
the presence of these tunneling motions. 3 The
dominant motion that leads to this narrowing is the
cooperative tunneling of a pair of near-neighbor
He atoms past one another, the exchange process.

In crystals with vacancies, the tunneling of He
particles into vacant lattice sites leads to vacancy
waves. In crystals containing isotopic impurities
the cooperative tunneling of an impurity atom and
a neighboring host atom leads to "impuritons" or
"mass-fluctuation waves" (for dilute 'He in He)."

A discussion of the excitations that are a con-
sequence of tunneling or a discussion of systems
containing these excitations proceeds on two levels.
EA st a qualitative description of the physics can

proceed from an assumed form for a model Hamil-
tonian or an assumed form for the dispersion
relation. The work of Andreev and Lifshitz, on
"defectons" and "impuritons", Guyer and Zane on
"mass-fluctuation waves" and Guyer, Richardson,
and Zane in explanation of NMR phenomena are
in terms of systems of excitations whose quantita-
tive parameters are assumed known. For example,
the behavior of solid He at low temperatures is
taken to be that of a nea, r-neighbor Heisenberg
antiferromagnet with the value of J being deter-
mined by experiment. Second, the model Hamil-
tonians employed in qualitative descriptions must
be formally justified and a rigorous determination
of the parameters that enter them must be imple-
mented. These parameters depend strongly on
the wave function of the system so that their deter-
mination constitutes an important test of the solu-
tion of the wave-function problem.

The near-neighbor pair-exchange Heisenberg
Hamiltonian has in the past proved quite adequate
in theoretical analyses of the thermodynamic '
and NMR properties2' of solid He. An extensive
literature 7 exists which reports calculations of
the corresponding exchange parameter 4, and
adequate agreement with experiment has generally
been obtained. We briefly review some of the
recent progress reported in this literature later
in this section. Recently, however, the excess
pressure of solid He in strong external magnetic
fields has been measured by Kirk and Adams, "
and found to be in disagreement with the predictions
of the usual near-nei ghbox pair-exchange Heisen-
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berg Hamiltonian. Zane has suggested that this
discrepancy is due to the significant presence of
triple exchange in solid He. He analyzed the ex-
perimental results in terms of an exchange Hamil-
tonian incorporating near- and next-near-neighbor
pair-exchange processes and the most important
triple-exchange process. He found the results of
this analysis to be consistent with estimates of the
size of the various exchange parameters involved,
i.e. , the Kirk and Adams experiment can be ex-
plained by assuming the presence of a triple-ex-
change process of reasonable magnitude.

The purpose of this paper is to present a thor-
ough and rigorous treatment of a system in which
pair and triple exchange occur. The exchange
Hamiltonian used by Zane is formally justified, and
calculations of exact expressions for the various
frequencies involved are reported. An analysis
of the relevant thermodynamics is given, with a
view towards assessing which experimental mea-
surements are best suited for detecting the pres-
ence of higher-order. exchange processes in solid
3He.

The organization and content of the paper is as
follows: In Sec. II we exhibit the Hamiltonian
describing the most important of the pair- and
triple-exchange processes. It can be put in the
form of a Heisenberg Hamiltonian with near-neigh-
bor- and next-near-neighbor pair-exchange in-
teractions, where the effect of the triple-exchange
process has been to "renormalize" the two pair-
exchange parameters (bcc structure). The most
interesting aspect of this effect of triple exchange
is that it may cause this renormalized next-near-
neighbor pair-exchange interaction to be ferro-
magnetic. The thermodynamics of the Hamiltonian
are presented in order to assess which physical
properties are sensitive to the renormalized next-
near-neighbo r pair-exchange inte raction. The
experimental evidence is discussed in light of the
possibility of discerning the presence of this pro-
cess in the data. In Sec. III, the exchange Hamil-
tonian used to do the thermodynamics is formally
justified. First-principles arguments are used to
develop the exchange Hamiltonian containing all
higher-order processes. General many-body ex-
pressions for the frequencies are given. In Sec.
IV, these expressions are analyzed in detail to
point out the effects which determine the size of
the various exchange frequencies. It is shown that
the only exchange processes which are likely to
be important in solid He are the near- and next-
near-neighbor pair-exchange processes and the
largest of the triple-exchange processes. Results
of Monte Carlo calculations of the many-body sur-
face integral expressions for these frequencies
are presented. The Monte Carlo technique used
is described in Appendix B. In Sec. V, we sum-

marize our findings and discuss the degree to
which existing data or reasonable extensions of it
can provide evidence for multiple-exchange pro-
cesses. We conclude the present section with the
discussion of the present status of the theory of
near-neighbor exchange in solid He. A number
of details necessary to support the arguments
presented in this discussion are given in Appendix
A.

Near-Neighbor Pair-Exchange Problem

Since a substantial part of the new work reported
in this paper will deal with numerical calculations
of the parameters that characterize the pair- and
triple-exchange processes it is appropriate for us
to review the recent progress made in understand-
ing the theory of calculations of this kind, and to
make a statement about the justification for the
particular computational procedure we employ.

The relevant literature begins with the calcula-
tion of Nosanow and Mullin (see also Hetherington,
Mullin, and Nosanow ). Nosanow and Mullin
used a variational ansatz for the many-body wave
function. At the level of the two-body cluster ap-
proximation, they calculated the expectation value
of a pair Hamiltonian (which did not involve the
lattice medium) with properly symmetrized two-
body wave functions, and found J& 0 and of ap-
proximately the correct order of magnitude. They
also found the magnitude and sign of J to have a
sensitive dependence on the detailed features of
the wave function, particularly the short-range
correlation function. Nosanow and Varma ex-
tended this work to incorporate the phonons, and
found substantially these same results. Subse-

i
fluently, Guyer and Zane ' (see also Guyer )
formulated the problem of pair exchange in terms
of a two-body Hamiltonian which included an ap-
proximation to the lattice medium, and was thus
used to shape the two-body wave function. Guyer
and Zane cast the calculation of J in two forms:
in terms of a surface integral that measured the
probability current between configurations and in
terms of a volume integral in which the contribu-
tion of various physical processes could be iden-
tified. They found, in agreement with Nosanow
and Mullin, values of J less than zero and of ap-
proximately the right order of magnitude. In
contrast to the work of Nosanow and Mullin, Guyer
and Zane found the qualitative behavior of J to
depend only upon the gross features of the wave
function. Ebner and Sung' later presented a sim-
ilar calculation, where the two-body Hamiltonian .

was obtained using a Green's-function technique.
These theories, as well as the work of Thouless, '
which did not present numerical results, have been
critically reviewed by McMahan. 7 McMahan has
also developed a rigorous theory for the calculation
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of J based on an extension of the ideas of Herringw
to the solid 'He problem. This theory casts the
calculation of J in the form of a many-body surface
integral (see Thouless ). McMahan showed that
the function to be used in the many-body surface
integral was just the localized wave function, or
home-base function, used in describing the lattice-
dynamical behavior of the solid. Finally, McMahan
calculated J using the many-body surface integral,
a Monte Carlo integration scheme, and the home-
base function generated by the ground-state calcu-
lations of Mullin and Nosanow. He found that
many-body correlations —which are not included in
any of the other present theories —suppress the
calculated values of J at some densities by nearly
an order of magnitude. Recently, as a part of an
extensive field theoretic treatment of the quantum-
crystal problem, Brandow" has cast the calculation
of J in terms of a number of terms in perturba-
tion theory. A few of these terms represent the
contribution to J discussed by Guyer and Zane in
their treatment of J. However, Brandow's very
careful analysis has substantial differences in
important details. Further Brandow finds addi-
tional contributions to J not discussed by Guyer
and Zane that are important. Ostgaard" has im-
plemented numerical calculations of the formulas
due to Brandow. He also finds J& 0 and of the cor-
rect order of magnitude. Further, Ostgaard finds
sensitivity of sign and magnitude of J to essential
features of the wave function. [Unfortunately,
Ostgaard's results are questionable since the
formulas owing to Brandow which he has evaluated
contain a sign error; B. Brandow (private com-
munication). ]

At this point in our discussion, two concrete ob-
servations are possible. (i) All of the calculations
of the magnitude of J in the literature, those of
Nosanow and Mullin, Nosanow and Varma, Guyer
and Zane, Ebner and Sung, and Ostgaard achieve
fortuitous agreement with experiment. The ef-
fects of the many-body correlations neglected in
these calculations are substantial. (ii) The use of
the surface integral formulation of the calculation
of J yields manifest antiferromagnetism (J & 0)
and insensitivity of the magnitude of J to all but
the gross features of the wave function. This is
in contrast to the results obtained using the per-
turbation-theory formulation. Is this owing to the
inequivalence of these alternative formulations,
the relative cumbersomeness of one compared to
the other, or something else?

It is important to understand the relation of the
surface integral formulation to the perturbation-
theory results. Since the perturbation theories
are based on an assumed two-body SchrMinger
equation, or a closely related Bethe-Goldstone
equation, we will consider the appropriate two-

body surface integral in making this comparison.
In principle, the many-body short-range correla-
tion effects mentioned in the first observation can
be incorporated to some extent in such two-body
formulations by taking more realistic choices for
the single-particle potentials than the piecewise
parabolic potentials that are usually taken. With
this in mind, and also that we are now identifying
J as half the singlet-triplet splitting of an appro-
priate two-body equation, our understanding of the
situation is summarized here (these conclusions
are justified in Appendix A):

(a) The surface integral formulation provides an
exact expression for J.

(b) The numerical implementation of a calcula-
tion of J using this expression requires specifica-
tion of the home-base functions. ~' Formally
exact expressions for the home-base functions are
possible in principle. Numerical calculations of
J require the use of approximate home-base func-
tions.

(c) The use of the surface integral expression
with a given approximate home-base function gives
the correct value of J to first order in the overlap
integral P. ' That is, corrections to J from
further refinements of the home-base function are
of order 8 J /k~1~. An equivalent statement is
that the surface integral sums all first-order per-
turbation-theory contributions to J. As a con-
sequence of this fact we may comment further
about specific results for J that should be valid in
general.

(d) The sign of J is negative and insensitive to
the details of the home-base wave function, i.e. ,
its quantitative features. If the usual form is
taken, the sign of J is negative independent of both
the Gaussian parameter A and the effective cutoff
distance for the correlation function.

(e) The magnitude of J' depends on the gross
features of the home-base wave function in a
simple and physically understandable way. See
the discussion in Guyer and Zane, "McMahan, '~

and in Sec. IV of this paper.
(f) Aside from the basic necessity of its account-

ing for the hard cores of the atoms, the effects of
the short-range correlation function are only to
weakly modify the magnitude of J. Theories that
show strong sensitivity of the sign and/or the
magnitude of J to the short-range correlation func-
tion are inadequate.

(g) The magnitudes of J calculated using the
presently available collection of home-base wave
functions are generally far too small. A trivial
repair of these wave functions in the tail, at
ir, l

= 2 (&'+o' )'~'=0. 6b., will give excellent
agreement with experiment. This repair is in the
direction called for by physics and the calculations
of Nosanow. The numerical determination of the
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single-particle function by Nosanow ' is very
nearly Gaussian, but clearly exhibits a larger
tail.

II. THERMODYNAMICS WITH TRIPLE EXCHANGE

In this section we work out the thermodynamic
properties of a spin-& system in the presence of
pair and triple exchange. Our purpose is to try
and identify those properties of the system that
are sensitive to higher-order exchange processes
and to examine the large body of existing data to
attempt to determine whether the presence of such
processes has gone unnoticed in the data. The
recent experiment of Kirk and Adams" is an ex-
ception in that it directly probes a quantity that is
very sensitive to the triple-exchange process.
We use the Kirk-Adams experiment to make an
estimate of the rate of triple exchange. It is the
estimate from this experiment against which we
will test the theory of the magnitude of the triple-
exchange process discussed in Sec. IV.

We begin by presenting the form of the exchange
Hamiltonian with pair and triple exchange present.
It is shown in Sec. III, that solid He may be de-
scribed by an effective Hamiltonian H,«,

&e« = &s+ &x

Hx= —2 Z g&&(4+1& I&)
f&j

'+
+2 Z g (»(4+I; I)+IJ 'Iq+Iq Ig)

f&j&k

+ (four-particle exchange) + ~ ~ ~, (1)

where I& is the nuclear spin operator for atom i.
The motion of the atoms in the vicinity of their
"own" lattice sites is described by the "lattice"
Hamiltonian Hz. It thus describes the phononlike
excitations of the solid. The more drastic motions
of the atoms in which two or more switch places
in the lattice is described by JJ~, the exchange
Hamiltonian. The first term in the exchange
Hamiltonian describes pair exchanges, in which
the pair of atoms i and j localized near the lattice
sites R& and 8» respectively, make a transition
to the arrangement in which they are localized
near R& and H, „respectively. The second term
describes triple exchanges in which the triple of
atoms i, j, and A localized near R;, R&, and R„,
respectively, make a transition to the arrange-
ment in which they are localized near R&, Rk,
and R„respectively, or to the arrangement in
which they are l.ocalized near Bk, R;, and R&, re-
spectively.

The quantities P, &
and g,» appearing in Eq. (I,)

are exchange operators, which have matrix ele-
ments between the phononlike state of H~. Their
significance is simply that one must allow for the

possibility that the process of atoms exchanging
places may be effected by the manner in which
these same atoms are already moving according
to their participation in whatever phonon state may
happen to be excited in the system. In spite of
this expectation, however, actual measurements
on the exchange system in solid He seem to be
insensitive to any such operator nature of ex-'
change. Analysis of the experimental results ap-
pears to be well handled by the approximation
(8;&)„„=J,&5 „. We shall, in fact, make this ap-
proximation in the discussion of this section, and
take

Hx= 2 ~ J'yI&'Ig
i&/

+2 Q J,»(f, I, +I, ~ I,+I, ~ I,)
i&j&k

+ (four-particle exchange) + ~ ~ ~, (2)

where the uninteresting constant terms have been
dropped. The relation of the exchange frequencies

J;& and J;» to the corresponding operators will
be discussed later. We shall see in this section,
as Zane' has pointed out, that the form of Eq. (2)
is adequate to explain the Kirk and Adams results.
Unfortunately, theoretical determination of the
exchange frequencies are not sufficiently good to
conclusively settle this matter. It should also
be pointed out that Nosanow has proposed an
alternate interpretation of the Kirk-Adams results
which depends crucially on the operator nature
of exchange, namely that (8', ~) is, in general, not
equal to (8,&) . The meaning of this statement is
clear from an examination of Tables I, II, and III.
To date, a calculation based on this approach has
not been implemented.

We shall see in Sec. IV that the exchange fre-
quencies drop off in size extremely rapidly as
more atoms are involved, or as the atoms involved
are more distant from each other. The notation
used to refer to the various exchange processes
and the corresponding frequencies is indicated in
Fig. 1. The pair-exchange frequency J,&

is the
same for all near- (next-nea, r-) neighbor pairs i
and j, and we designate this number by J, (J2).
The triple-exchange frequency J,» for any triplet
i, j, and k, in which the triangle contains two
near-neighbor sides and one next-near-neighbor
side is denoted by J»2, and so on. There is no
(111) triangle in the bcc lattice. In Sec. IV it is
seen that the only exchange processes in bcc He
which are likely to be important are the (1) and

(2) pair, and the (112) triple processes. We shall
retain only these in the exchange Hamiltonian
given by Eq. (2). The pair contribution becomes

{nn) {nnn)
—2Jg Q I( I) —2J2 Q I; 'I)

f&j
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2 cl»p Z
f&y&a

(restricted)

(I) 'Iq+I~ I~+I» I,)

where nn and nnn signify that the sums are re-
stricted to near-neighbor and next-near-neighbor
pairs, respectively. Retaining only the (112)
triple process, the triple-exchange Hamiltonian
becomes

changes the sign of the exchange parameter. It
is this effective ferromagnetic next-near-neighbor
pair-exchange interaction in bcc He which appears
to explain the results of Kirk and Adams, as will
be discussed below.

We now treat the thermodynamics of the spin
system in solid 3He taking the exchange Hamil-
toriian in the form

( nn) ( nnn)

=2Jgiq 6 Z I)'Ii+4 Z Ig I) (4)
(nn) (nnn)

R (V, H) = —2A (V) Z I& I& —2A (V) Z I, 'I&

where we have assumed a bcc geometry in arriving
at this form. In terms of Eqs. (3) and (4), the
exchange Hamiltonian is then

(nn)

H»= —2(Jt —6Zgt2) Z I( ~ fj —2(Jp —44»2) Z I& I)

+ (higher-order pair and triple)

+ (four-particle exchange) + ~ ~ ~ . (5)

We note that in the bcc phase, the primary effect
of triple exchange is to renormalize" both the near-
neighbor pair-exchange parameter and the next-
near-neighbor pair-exchange parameter. From
Sec. Bt we have I J2 t —

I J~~2 t « I J~ t and J, , J2, and Jj,2
glE negative. Thus, in the case of the next-near-
neighbor pair exchange, this renormalization

—yHQ I(, (6)

Z=Tre ~ x,
PIl = —inZ

(&)

(6)

where A, (V) =(J, —6 J»~), Aa(V) =(Jz —4J»2). We
have added a Zeeman term p, ~ 5 for each spin and
used the relation p, =yI(y=2. 04x10 rad/Gsec),
p, = 2 yp. In Eq. (6) we have explicitly displayed
the volume dependence of J„J2, and J,» in writing
A, (V) and Aa(V). The magnetic pressure of the
spin system is a consequence of the volume depen-
dence of the spin energy manifested in A, (V) and

A2(V). The thermodynamic properties of the spin
system follow from the equations

Pair Triple (10)

d
Ci

(cyclic)

Quadruple

abed

{double pair)

Jcbc

a, b

82+
X /+2

We will write out I", P, S, and y in the high-tem-
perature limit.

The high-temperature limit is achieved by ex-
panding e+"» in a power series in pK». We have

PF = —N ln2 —in[1+ (Pa/2! )(R„)—(Ps/3! )(Rs) + ~ ~ ~ )

(12)
where (A) = Tr, (A)/Tr, (1) and (R„)= 0. Thus, we
have the power-series expansions of S, E, C, P,
and y shown in Table I. The formulas in Table I
exhibit the temperature dependence of each of
these quantities as a power series in P. The coef-
ficients of the various powers of p depend upon
moments of the spin Hamiltonian or on V and II
derivatives of these moments. We write 3Cx in
the form

FIG. 1. Notation for the exchange constants. The
various multiple excharge constants are labelled accord-
ing to the sides of the figure traced out by the atoms in
the course of their exchange. Thus J~ (J'2) is the exchange
constant for near-neighbor (next-near neighbor) pair ex-
change. Similarly, the triple-exchange frequency for a
triangle containing two near-neighbor sides and one next-
near-neighbor side is denoted by J$f2.

R» = —2Ag(V)Sg —2Am(V)S2 —yHSS (13)

and obtain the values for (R» ), (R» ), (R» )»,
(R»2)zz, and (3C»3)Hz shown in Table II. The quan-
tities y, and yz (not to be confused with y defined
above) are the magnetic Gruneisen constants defined
by
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TABLE I. Thermodynamic quantities. Power series in
P for S, E, C, I', and X.

2 (~2) + 1p3 (~3) + p(p4).
NkB

= -P (~2)+2 ' (~')+p(P');

s s P2 (~ 2) 3 (~3)+ P(P4).
B B

I'(T, v, H) =kBT =-,'N{P/v) ~(Q )v ~P (&~ )v+P(P')],

where

g( ~ ~ e)

TABLE III. Thermodynamic quantities as a function of
P and pH.

S(T, V, H)/k&N=ln2 —P [2AI+ y A2+ z (Pa) ] —P [4Af(PH) +3A2()MH) ]+'' '

E,(r V a)/N=-P[3A, '+T A', +pa)']-P'[6Af(jtta)'+~A, (PH)']+ ~ ~ ~,

C(T, V, H) /Nkz= p2[3A&+$A22+()tta) ]+ p3[12AI QH) +9A2(jtta)2]+ ~ ~ ~

p(T, v, H) = (p/v) NI. (3yfAf +7 y2A2) +p[2yfAI(pa)'+ ~&2A2(pW']+"

X(7.', V, H) = pp [1+p(4A1 +3A2)+ "'].

S(T& V, H) —S(T, V, 0)

= ——,'(Pp, H)'Il+ 8P(A, +-,'A, )+ ~ ~ ] . (17)

where

k T82l Z ——2P~( . )HH
—aP (& )HH+o(P')),

g2( ~ ~ ~ )(' ")am=

d ln I A, (V) Iyj= dlnV

din I A2(V) I

Y

= (X/V)2(y, A, + ,'ysA2)(PpH) + —~ ~ . (16)

This quantity is sensitive to the magnitude and the
sign of A~. For the field-dependent excess entropy
we have

Combining the results in Tables I and II we have
the power series in P and iJH for S, E, C, P, and

y displayed in Table III. %e may examine these
series to look for their sensitivity to the magnitude
and sign of A~ and A~.

It is apparent that the most direct handle on the
presence of A2 is in the external field dependence
of P(T, V, H). In P(T, V, H) the quantity
P(y~A~+ —,y2A~) is the coefficient of the quadratic
external field dependence; i.e. ,

P(T, V, H) —P(T& V, 0)

R= —2JQ I; ~ I) (18)

The coefficient of the leading field dependence con-
tains essentially the same dependence on A, and
A~ as the field-dependent excess pressure. But in
this case the dependence on A& and A3 appear rela-
tive to 1. Thus, the presence of A2 is less easily
established by the analysis of entropy data (i.e. ,
melting-curve data). These conclusions remain
valid as the temperature is lowered toward T„.
Although, then, more terms in the high-tempera-
ture series must be retained.

There is no question that a relatively large value
of A3 could be detected in field-independent experi-
ments provided that A, is known from independent
sources sufficiently accurately or that two quan-
tities sensitive to A& and A~ in different ways could
be measured with sufficient accuracy, e.g. ,
C(T, V, 0) and )f(T, V, 0). In view of the large
body of data on all of the thermodynamic prop-
erties of He it is clear that the failure of the pres-
ence of A~ to have been noticed long ago is ample
evidence for the inadequacy of quantitative tests
for A2 in that data. This point is amplified in the
following discussion.

How do you look for evidence of the presence of
a new effect (a new term in the Hamiltonian)? If
you expected the system to be described by a
Hamiltonian like

TABLE II. Moments of X„. These moments enter in
the calculation of the thermodynamics [see Table I and
Eq. (13)]. The spin sums required are (S~)=43, (S2)

(S3) cf (SfS3) =y, (S2S3) = 8 ~ We will drop te rms
proportional to (S&S2).

{/ ) =4Af {V) {Sf)+4A2{V) {S2)+y H {S3)

($C„2) = —
24Af (V) A2(V) (SfS2)-6Af (V)y H (SfS3)-6A2(V)y H (S2S3),

(X„)v = 8yf Af (V) (Sf ) + 872A2 {V) (S2),
(BC )v= —24(2yf+/2)Af(V) A2(V) (SfS2)-6yfAf(V)p H (SfS3)

-6y,A, (V)q2H2 {S2S,),

(x„)eH=2y (s3),

~2Af(V)y {SiS3) 12A2(V)y (S2S3).

and you knew J very accurately, a single accurate
measurement of one of 8, E, . . . would tell you
whether you have verified the theory of the be-
havior of the system given by Eq. (18) or not. If
the theory were not verified by experiment (and
the experiment not in doubt) you would expect to
have to modify the Hamiltonian to include a new
effect. If you expect the system to be described
by Eq. (18) but you do not know J accurately, a
test of the adequacy of Eq. (18) requires a mea-
surement of two quantities that depend upon J in
different ways. One of these measurements is
used to determine J; the second is used to verify
Eq. (18). For example, in Table I we see that S,
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E, C, and P in zero external field all depend upon
J in exactly the same way, i.e. , through (R»')

3
a=a~

(3C» )„0, etc. Thus measurements of S, E, C,
and P are all equivalent and equally useful in de-
termining J. At finite external field, J enters the
determination of S, E, C, and P in a different
way; different spin moments are involved (see
Table II). Thus, the adequacy of Eq. (18) for de-
scribing the system can be tested by a measure. -
ment of one of S, E, C, and P at II=0 and a mea-
surement of one of S, E, C, and P at H+ 0; for
example, a measurement of P(T, V, 0) to learn J'

and a measurement of P(T, V, H) to test the ade-
quacy of Eq. (18) with this value of J. In the case
we are dealing with here, the Heisenberg Hamil-
tonian required to describe solid He, we do not
know the correct Hamiltonian and we do not know
the magnitude of J. We must proceed to look at
two essentially different measurements. It is
clear that we do not have to look at most of the
available data —for most of it is redundant in the
sense described above and can tell us nothing new.
The large body of NMR data on motionally narrowed
phenomena is too complex in its interpretation to
provide a reliable test. Experiments like the
Kirk-Adams experiment or the high-field melting-
curve experiments of Wheatley and co-workers
are potentially useful. The susceptibility data of
the Brookhaven group and the Cornell group
combined with the P(T, V, 0) data of Adams and
co-workers is also potentially useful. However,
a cursory glance at the uncertainties quoted in
the susceptibility measurements of 8 make it clear
that it will not be possible to use those data to
verify the theory of y that would result from using
Eq. (18) and J from Adams and co-workers (see
Fig. 2). Thus, only the recent experiments by
Kirk and Adams and Wheatley and co-workers can
provide the required test. Of course, it was the
Kirk-Adams experiment that motivated Zane's'
suggestion about triple exchange.

It is clear from this discussion that an ideal ex-
periment to look for the effects of A2 would be one
at finite field that eliminates the trivial field de-
pendence; e.g. , the (pH)~ terms in S and C. For
example experiments involving S/SV do this;

aM. aS
&V eH

To illustrate the power of the "right" experiment
to see an effect, let us combine the prediction of
Eg. (16) for the magnetic pressure in an external
field with the data of Kirk and Adams. Kirk and
Adams expected to see P(T, V, H) suppressed well
below the value of P(T, V, 0) for suitably large
external fields and low temperatures (H= 60 KG,
T=30mK). The important point is that Kirk and
Adams saw at most half of the change in P that they

I.O—

IO

IS

IO

IO

OI'd

expected. Thus we argue from Eq. (16) that
3 1

Y1A1 + 2 Y2A2 ylA1

This implies that A2 is opposite in sign from A»
i.e. , that the effective next-near-neighbor exchange
interaction be ferromagnetic. For y, = y» J2 =J»»
and using the definitions of A, and A2 below Eq.
(6) we have [Essentially the same ratio is found

(—,'6) if the results from Sec. IV are used, i. e. , for
a density V = 24 cm /mole, 6 = 3.73 A, we find
J,= 1.2 J„„y,= 18, and y, = 22. ]

1J112= 15 J1 ~ (20)

Thus, we see that a very small value of J112 will
cause a substantial change in the thermodynamics
and that P(T, V, H) —P(T, V, 0) is very sensitive
to the presence of J»2.

III. EXCHANGE HAMILTONIAN

In this section we generalize the discussion of
the pair-exchange Hamiltonian for solid He pre-
sented elsewhere, '~ and develop an exchange
Hamiltonian that includes higher-order exchange
processes. Pair-, triple-, and quadruple-exchange
processes are considered. Further, we derive
the many-body volume, and where possible, the
equivalent many-body surface integral expressions
for the exchange frequencies that enter this Hamil-
tonian.

The exchange Hamiltonian is developed by a gen-

I I I I I I I I I

IS l7 18 I9 20 Rl R2 25 24 Ri

V (cm/mole)

FIG. 2. Experimental information about J. A wide
variety of NMR and thermodynamic data have been com-
bined to yield the "best" value of J for each molar volume
(the solid line). The direct measure of J from suscepti-
bility data is shown with the error bars quoted in the ex-
periments.
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eralization of the well-known method of Dirac, 6

Hej.senberg, ~ and Van Vleek. The true Hamil-
tonian H acting on the space of properly antisym-
metrized coordinate-spin functions is replaced by
an effective Hamiltonian H,«acting on a space of
unsymmetrized coordinate-spin functions. The
effective Hamiltonian is separable into two parts,
one independent of spin and another dependent on
spin, H,«=III, +Hx. The first part H~ describes
the highly correlated motion of a fictitious system
of distinguishable atoms moving in the vicinity of
their "own" lattice sites. It is identified as the
lattice Hamiltonian, and describes the phononlike
excitations of the solid. The second spin-depen-
dent part Hx describes the exchanges of these
"distinguishable" atoms. It is identified as the
exchange Hamiltonian. The coefficients of the spin
operators in H~ are coordinate operators which
may couple the states of H» and are taken to be
the exchange operators. The necessity of exchange
operators in the solid He problem has been em-
phasized elsewhere. ' ' Since the phononlike
modes of HI. are more closely spaced in energy
than the size of the exchange energy, the exchange
process should be capable of creating and destroy-
ing phonons. This is the physical significance of
the off-diagonal elements of these operators. The
diagonal elements are essentially exchange fre-
quencies corresponding to particular phonon states
of the system. The physically meaningful exchange
frequencies can be identified with thermal aver-
ages of the exchange operators, using the density
matrix for H~.

We shall assume the true Hamiltonian of the
system, H, to be spin independent. We are free
to do this in solid He since the contribution to the
energy from the nuclear spin magnetic dipole-
dipole inte raction is more than three orders of
magnitude smaller than that from near-neighbor
pair exchange. 3' Our formal analysis of the higher-
order exchanges will thus only be strictly correct
for such processes which are also rr. ore important
than this dipole-dipole interaction.

A crucial role is played in our development of
the effective Hamiltonian by certain very special
coordinate functions (Q }called "home-base" func-
tions by Herring. A discussion of Herring's ideas
as applied to solid 'He appears elsewhere. " Two
important properties of these functions are to be
noted. (i) They are all localized in the same re-
gion of the configuration space of the N atoms in
the sense that they are only large when, e.g. ,
atom i is near lattice site i, for all i (ii) The.
low-lying eigenstates of the system may be spanned
by the set of states (p(Q $,)}, where 6 is the
antisymmetrizer and the g are a complete set of
orthonormal spin functions for the N atoms. The
antisymmetrizer is given as usual in terms of

permutation operators

e=(ll&t) Z ( —1)PP, (21)

where P =P'"'P", and where P'"' and P ' act on
coordinate and spin variables, respectively. The
second property allows one to find the low-lying
physical eigenvalues of the system by diagonalizing
H in the manifold (S($„$ )}. The first property
facilitates use of the expansion equation (21) since
matrix elements (P IHP'"'

I gg and (P IP'"'
I gg

become increasingly smaller as, according to P,
the functions p„and P'"'p„be come farther sepa-
rated from each other in configuration space. It
has also been argued ~ that one may take the home-
base functions such that

(y. lal y„&=a„5„„, (y„I y„&=5„„, (22)

a..~ =~' (- »'&e.&.IPI e.4& . (28)

The prime in Eq. (28) signifies that P cannot be
the identity permutation E. Since the spin sums
run over a complete set of spin states, Eq. (25)
may be put in the form

which is equivalent, to lowest order, to their being
the eigenfunctions of the lattice Hamiltonian HI..
Equation (22) does not imply that the &P are eigen-
functions of H. By virtue of their being localized
in the same region of configuration space, these
functions do not form a complete set. The co-
ordinate eigenfunctions of H are expected to be
nonlocalized in that they must transform irreduc-
ibly under the permutation group. In fact, it is
tempting to view the home-base functions as being
the best-possible localized approximations to the
true eigenfunctions of H.

We now develop the effective Hamiltonian in its
most general form, using a straightforward ex-
tension of existing treatments for the problem of
electronic exchange in insulators (see Herring's '
review, especially pp. 128-135). The physical
eigenvalues are given by

de«Ky-&. le~ I e.4& -«y.&. l
~t

I y.4&]) =0 . (23)

These same eigenvalues may be generated by H, ff
acting on the unsymmetrized space (P„$„},i.e. ,

d t([(y.g. la„,ly„~,&-z5„„5.,])=o, (24)

if one defines

&y.g. la.„ly„g,&=» z (~"')„.,„...
n'13'

~&y- &. I~&ly. & &(I "'). . (25)

where

n, n8 5 5 I 2 rn, ng+ 8 (+ ),n8

(28)
(2'f)
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H.« =H, +Z' (- I)'g,P',
P

(29)

where H& and gP are coordinate operators given, in

general, by

&y„~ 8,
~ y„& = Z Z (G '"),„,,„.

x(@ )HQ "3 ~P ")H "
( $ )(G 1/2), (30)

)Qmysn = ~OZ~mn 2 ~Q mlRn+ o (~ )QmtBn
-1/2

Go, „=—(Q ~Q" H" ~$„)=5o„5 „+Go,„„
(31)
(32)

(Note that G~o„»„is independent of P, and that
G '/3 has the same property. ) H~ is given by Eq.
(30) with P =E. Expanding Eq. (30), the first'
few terms for P„may be written

&y. ~a, ~y„&=&y„~(H 'oE„-2-E„)P~@g

Q

+ &y. II(H lE„-!E„)P-QI, y,&&y,
~
Q '~ y.&)+

(33)
We have omitted the superscript "x" on these per-
mutations, and will do so henceforth when unam-
biguous. The dominant contribution to (P I H~ I P„)
is E„5 „, with second-order corrections given by
Eq. (33) with P=E. We have added and subtra, cted
—', [5»5 „(E +E„)]in Eq. (30) to arrive at Eq. (33).
This constitutes a very helpful partial summation
of the whole series in Eq. (30) as can be seen by
the fact that without this alteration, the second-
order term in Eq. (33) would have contained a
first-order contribution when Q = P

The 8P are the exchange operators, correspond-
ing to the particular exchange processes indicated
by the permutations P. The increasing number of
multiple sums over all permutations occurring in
the definition is a manifestation of the well-known
nonorthogonality catastrophe. 'o Intuitively, one
expects this expansion in powers of the overlap to
be valid, and that all terms exhibiting unphysical
dependence on N to cancel out. Although no general
proof for our case exists, such cancellation has
been proved for special cases, which strengthens
this intuitive feeling. For example, if only a
single coordinate state Po = II,Q, (i) were used in
the derivation, terms involving (Po I (H —Eo)QPI po)
in one order would be largely cancelled by terms
involving —&4o I Q I Ao&&fo I (H Eo)P I &f&o&

—(go IPI po)(gaol (H —Eo)QI &f&o) in the next. Only Q's
which permute groups of atoms such that at least
one is relatively close, with respect to the range
of the two-body potential, to an atom permuted by
P would contribute. These same comments apply
if P itself is factorable, e.g. , a double-pair ex-
change P=P&&P„, and so one expects $&&,»-0 as
the pairs (i, j) and (/'o, I) move apart. One believes

it is these restrictions which leave the expansions
for g~ of order unity and that for H,«of order N.

Assuming we are not troubled by problems of
the dependence on N, it still remains to decide
whether the higher-order terms in Eq. (33) are
important. One might crudely describe their sig-
nificance in the language of Thouless's'0 ¹!cav-
ities. The system is initially in the state P, ac-
cording to which it is predominantly found in the
cavity we shall label by the identity permutation
E. The first term in Eq. (33) corresponds to its
evolving directly from this cavity to the exchanged
cavity P. Since the state Q is not orthogonal to
its permuted counterparts, there is also a small
probability that the system may momentarily occupy
some state Q 'P, which is large not in the cavity
E, but instead, in some nearby cavity Q '. Con-
tributions to the second term in Eq. (33) can then
be loosely associated with the system evolving
from the original to the exchanged cavity by an in-
direct route, in which it passes through some in-
termediate cavity along the way. It is plausible to
expect the relative importance of these two terms
to be given by

(34b)

respectively, where the sum in Eq. (34b) is over
cavities which are near to those designated by E
and P. As a first approximation, we might use

e-A(tg-a() /2

where r& and 8& are the atom and lattice position
vectors, respectively. The matrix element
(Q IPIQ) is then e "~ /4, where d is the distance in
configuration space between the representative
points corresponding to the E and P equilibrium
arrangements of the atoms on the lattice sites.
We shall see in more detail later that 8"~ 4 drops
off extremely rapidly as the permutation P involves
»rger numbers of atoms, or as the atoms involved
are farther separated from each other in the lat-;
tice. Let us consider the (1) pair case, i.e. , P
is a first-neighbor pair permutation. The largest
contributions to Eq. (34b) will come from Q

' and

QP being (1) pair and (112) triple permutations,
respectively, and vice versa. An examination of
the geometry shows there to be six possibilities
for each of these choices. Taking A = 1.30 A 2 and
a density corresponding to a near-neighbor dis-
tance b, =3.V5A, the quantity e ~ ' is 2.4X10 '
for the (112) permutation. Thus the leading con-
tributions to Eq. (34b) yield a value for this ex-
pression a factor of about 3&&10 6 times smaller
than Eq. (34a). This strongly suggests that for



1114 A. K. McMAHAN AND R. A. GUYER

the (1) pair-exchange operators, the second- and
higher-order terms in Eq. (33) are completely
negligible. The same kind of analysis suggests that
any of the processes for whichthe quantity "" ~'

is relatively large, are well represented by the
first term in Eq. (33). In particular, we mention
the (1) and (2) pair, the (112) triple, and the (llll)
quadruple processes, If one considers the effect
of the hard-core repulsion between 'He atoms, the
pair-permutation overlap will be severely reduced;
the triple and cyclic four-particle overlap, much
less so. This further reduces the effect of the
higher-order terms in Eq. (33) for the processes
we have listed above. It also suggests that the
dominant four-particle processes are the cyclic
ones.

For what processes will the higher-order terms
in Eq. (33) be important'? Following the intuitive
ideas just mentioned, one would expect these terms
to be important if there exists an indirect route
between the original and exchanged cavities which
is nearly as important, or more important, than
the direct route. More precisely, they should be
important if there exists a cavity Q such that
dz@+d@z-dz~, where dz@ is the distance between
the cavities labeled E and Q. A typical example
for which this is the case is a triple exchange in
which the triangle has an angle near, or greater
than 90'. Although it should be mentioned, that
the indirect route in this case involves a pair
overlap which will be considerably reduced in size
relative to the triple overlap due to the hard-core
interactions. This will tend to decrease the im-
portance of the higher-order terms here. Finally,
in the case of any exchange described by a fac-
torable permutation, such as the four-particle
double exchange PiJP~„certain of the "second-
order" terms are identical in size to the first
terms, as is clearly necessary in order to have
the cancellation which one expects to cause 8;&»
to vanish if the pairs are too distant.

The spin permutation operators appearing in
Eq. (29) may be expressed in terms of the nuclear
spin operators Ii by using

(35)

and building up the more complex permutations
from this. One uses

(I, I,)(I., I,)=-. I, I,+f-. f, i, xi„
to reduce terms containing more than one spin op-
erator for the same atom. Having done so, one
sees that P"+P ' and P ' —P" contain only
terms with an even number and odd number, re-
spectively, of the spin operators. The usual argu-
ment (Ref. 20, p. 23) of Hermiticity and time-
reversal symmetry does not suffice in our case to
eliminate the terms with an odd number of spin

(3S)

( 4c)
&sat+ &&&to s(gia+ ~&kgt s&ayi)

i&g&n&t

(39)
where

'Si~~, ——4+ Ii ~ I~+ Ii I~+ Ii ' I, + I) I~+ I~ ~ I)+ I„'I)
-4Ii ~ IqI) I)+4Ii ~ I)I„'I,+4I) I~I) 'Ii

The (Hermitian) exchange operators are given by

&e.)s. ) y.) =&y. ((~--'E. 'E„)2 (P—+-P-') ~y„),
(40)

where this approximation should be valid for the
few largest of each of the pair, triple, and cyclic
four-particle processes. Extending an identifica-
tion made for pair exchange, we take the exchange
frequencies

(41)

where p~ is the density matrix for the lattice Ham-
iltonian II&. In calculations of Z~ for near-neigh-
bor pair exchange, it has been found, ' at the low
temperatures for which solid He exists, that the
temperature dependence of Eq. (41) is negligible.
It is thus plausible to approximate Eq. (41) in
general by its T= 0 value,

~~=&40~&J ~4'o)

=Re&@0((H-E )P~ @o)

(42)

(43)

where by taking the real part of the matrix ele-
ment in Eq. (43) we may eliminate the reverse
permutation.

In previous work, ' '" a method due to Herring
has been used to represent the matrix elements
of 8,&

in terms of many-body hypersurface inte-
grals. Herring's method is based on the assump-
tion that the home-base functions may be approxi-
mated by the eigenfunctions of a certain truncated
Hamiltonian. While the surface integral may be
derived in a more rigorous fashion, we shall
briefly review this more intuitively appealing
method here for the general case of Eq. (43). We

operators since their coefficients are now (co-
ordinate) operators. However, it does imply that
these operators must be antisymmetric, and thus
can only contribute to the energy in second-order
perturbation theory. We shall consequently neglect
them. The remaining terms in Eq. (29) are of the
form —,' (lJ +4„,)(P"+P'" '). Since 8p, =9„, this
leads to a sensible redefinition of the exchange
operators as —,'($ p+8~), so that they will be Her-
mitian.

%e now exhibit the exchange Hamiltonians for
pair, triple, and cyclic four-particle exchange.

H»' ' =-2 Z 8;q(4+I) Iq) (37)
i&/

ax'"=2 Z 8 „(4+I, I, +f, f, +I, ~ I,)
i& f&A'
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then indicate the more rigorous approach, and

point out certain cases where Eq. (43) cannot be
represented by an equivalent surface integral.

The truncated Hamiltonian II~ is obtained from
the true Hamiltonian 8 by eliminating the attrac-
tive parts of all but one of the ¹&permutationally
equivalent local potential wells of its many-body
potential. These local wells correspond to the
various equilibrium arrangements of the N atoms
on the N lattice sites. The eigenfunctions of the
truncated Hamiltonian will thus be localized, in
the configuration space of the N atoms, about the
one remaining well. One assumes that these
eigenfunctions and the corresponding eigenvalues
are reasonable approximations to the home-base
functions P„and energies (P

IHIP'

) =E . Since
II~ differs from II only in the vicinity of the other
Nt —1 wells, one may then assume that
(H —E )P =0 except near these other wells.

Given Eq. (43), let Z be the hypersurface in
configuration space separating, and midway be-
tween, the regions where P, and Pgo are large,
the former being on the "near" side; the latter,
the "far" side (see Fig. 3). If there are no other
local wells of the full potential, except the two
under consideration, in the vicinity of the region
where QgPQ, is large, we may take for use in

Eq. (43):
(H Eo)go=0-near side of Z

Configuration Space of the N Atoms

FIG. 3. Schematic representation of the configuration
space of N atoms. The horne-base function P is localized
about the 3N-dimensional point p, which corresponds to
some given arrangement of the atoms on the lattice sites.
The function Pp is obtained from (tl by interchanging a
number of atoms according to the permutation P, and is
locali"ed about the exchanged point p„. The number d~ is
the distance between p and p„, and Z is a (3N-1)-dimen-
sional hypersurface which bisects and is perpendicular to
the line between these two points. The exchange constant
Jp is a measure of the frequency with which the system
evolves from the state ft) to the state Pp and back again.

(H —Eo)PQO = 0 far side of Z (44)

Combining Eqs. (43) and (44) and integrating by
parts one gets

~%+I

~P = R d&' [yf&3EPeo (Peo)&3Nef]
2m

(45)
where d S is the (3N —1)-dimensional surface ele-
ment whose direction is perpendicular to Z and
from the "near" to the "far" side and V» is the
SN-dimensional gradient.

The crucial issue is of course the validity of
Eq. (44). To gain some insight, we turn to the
more formal derivation. An essential feature in
the definition 7' of the home-base functions was
that the set (PP ) exactly spans a particular set
of the coordinate eigenfunctions of H. (These are
coordinate permutations. ) This implies

Hy. = 5 (C,)„„q-'y„
Qgn

where by using Eqs. (31) and (32) one can see that
the (Co) „are closely related to (Qo) „given by
Eq. (33). In fact, to lowest order

(46)

The virtue of Eq. (46) is that it allows one to ac-
tually determine the expressions (H Eo)go and-
(H Eo)PQO in-terms of the constants (C)„„and
the various states q 'P„. One can immediately
see that the error made by using Eq. (44) in Eq.
(43) is essentially of the form of the second- and
higher-order terms in Eq. (33). The numerical
coefficients are slightly different, and some of the
overlap matrix elements are only integrated over
the "near" or "far" half-space. The essential
point, however, is that the same arguments used
previously to judge the importance of these terms
apply here. Two conclusions are evident: (i) It
is precisely when the lowest-order approximation,
Eq. (40), for the exchange operator is valid, that
one may also obtain the surface integral. In
particular, Eq. (45) is equivalent to Eq. (43) for
the (1) and (2) pair, the (112) triple, and the
(1111)four-particle exchange frequencies. (ii)
The surface integral does follow directly from
the volume integral using the properties of the
true home-base functions, and without resorting to
the idea of the truncated Hamiltonian approxima-
tion to the home-base functions.

IV. FREQUENCIES

In this section we investigate the various effects
which determine the size of the T=o exchange
frequencies. The analysis is based on the many-
body surface integral expression given by Eq.
(45), taking the Nosanow-Mullin approximation to
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&= II f(r))),

where r; and R; are the atom and lattice-site posi-
tion vectors, respectively, and f(r, ~) are the
short-range correlation functions. In any such
practical calculation, the extent to which tP ap-
proximates tP3 is not at all clear Howev. er, func-
tions of the form given by Eq. (4V) have proved
quite successful in calculations of the ground-
state energy, and give order-of-magnitude agree-
ment with experiment for first-neighbor pair ex-
change. Whether they are adequate to give closer
agreement in exchange calculations cannot be
settled until the choice of A values and correlation
functions can be agreed upon. The physical sig-
nificance of the factors in Eq. (4V) is clear. The
Gaussian part describes the atoms vibrating about
their lattice sites, and constitutes an Einstein ap-
proximation to the more general correlated Gauss-
ian which would describe the phonons.

The short-range correlations serve to cut the

the home-base function. It is seen that the ex-
change Hamiltonian for solid He is rapidly con-
vergent, and that the only important exchange
processes are the (1) and (2) pair and the (112)
triple processes. Certain inadequacies in Zane's'9
estimates of the size of these frequencies are
pointed out. We report extensive Monte Carlo
evaluations of the full many-body surface integral
expressions for these frequencies. It is seen
that the (112) triple frequency is approximately
equal to the (2) pair frequency except at the higher
densities, where it is somewhat larger. Thus
the effective second-neighbor exchange interaction
in bcc 'He i,s ferromagnetic, as Zane has sug-
gested. A conclusive determination of the ratio
J'»2/J', is hindered by the uncertainty as to what
Gaussian parameters and correlation functions
should be used, as well as the possibility that the
tail of a Gaussian single-particle function may be
inadequate for exchange calculations. We con-
clude with a brief discussion of these difficulties,
which are common to all existing exchange cal-
culations in solid He.

We suggested earlier that the many-body sur-
face integral, Eq. (45), gives the first- and sec-
ond-neighbor pair and the largest triple-exchange
frequencies exactly to leading order if the true
home-base function ttt3 is used or, one may rea-
sonably expect, if tP3 is approximated by the
ground-state eigenfunction of the truncated Hamil-
tonian. The latter function may be approximated
variationally by minimizing the energy, subject
to the constraint that the variational ansatz be
localized. This is precisely what Nosanow
et gE. , '"Hansen and Levesque, ' and others
have done, taking the ansatz

Q e-A(rg-Rt) /2P (4V)

wave function off when any two atoms get closer
than their hard-core radius, a feature necessitated
by the large zero-point motion in solid He. We
shall base our discussion of the exchange frequen-
cies on the use of Eq. (4V) in Eq. (45), and take
the Nosanow correlation function

f( )
e-EHtt fr) -(tt jr) )18

y (48)
cr =2. 556A, K=o. 1778

in numerical computations. We expect the effect
of the phonons on the first-neighbor pair frequency
to be of somewhat lesser importance than those
we will be describing, as will be pointed out at
the end of this section. However, it is conceivable
that the phonons might lead to interesting direc-
tional effects in some of the higher-order pro-
cesses which our discussion will not include. The
effects of other correlation functions will be men-
tioned.

The general expression for the exchange fre-
quencies using the approximation Eq. (4V) for tP3

in Eq. (45) may be found after some manipulation
to be

5 Ad~ f dr 5(u, )tPPQ
2m fdry2

where dv =dr1. . .drN, and where
/

@1 + ~ri& ra& r3& ~ ~ ~ t rN~

1n= —(p„-p),
P

p (Rlt R2t R3t ' ' ' t Rtr) 9

P„= (PR), PR2, PR3, . . ., PR)t)
')t 1/3

d~ = II p. —pll = 2 (PR, —R, )2
f)

We have used the fact that PI" =I'. Our discussion
can be most clearly made by thinking in terms of
the configuration space of the N atoms, and so the
notation in Eq. (50) has been chosen accordingly.
The 3N-tuplets P and P„are the representative
points of the system in configuration space cor-
responding to the original and exchanged equilib-
rium arrangements of the atoms, respectively.
The function tp is localized about p; PQ about p„
(see Fig. 3). The number dj, is the distance be-
tween p and p„. The 5 function in Eq. (49) spec-
ifies a hypersurface Z midway between P and P„,
and the variable u1 indicates the position of the
representative point of the system along the co-
ordinate axis connecting p and p„.

It should be clearly understood what conventions
we are using in Eq. (49) and throughout this paper.
As relates to the sign of the frequencies, all are
given by Eq. (45), regardless of the parity of the
permutation P describing the process. For our
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approximation to the home-base function, Eq. (45)
reduces to Eq. (49) which yields negative numbers
for aO frequencies. The fact that triple and pair
exchange favor ferro- and antiferromagnetism,
respectively, in solid He, has been explicitly in-
corporated by means of the alternating signs in
front of the exchange Hamiltonians in Eqs. (3V)-
(39). As far as conventions which affect the mag-
nitude of the frequencies, we are using the
"standard" convention for the pair frequencies,
i.e. , 2(e;/ —e//) where s'// and e&/ are appropriately
defined singlet and triplet energies for the pair
(i, j). The corresponding convention is used for
the higher-order frequencies.

It is convenient to divide the effects which de-
termine the size of the exchange frequencies into
three types: (1) The dominant contribution arises
from the Gaussian overlap and depends solely on
the distance in configuration space between the
original and the exchanged configurations. (2} Be-
cause of their hard cores, the exchanging atoms
must maneuver around each other in the exchange
process. This makes the exchange more difficult
and decreases the frequency. (3) The exchange
takes place within the "cage" formed by the hard
cores of the surrounding neighbors, which further
inhibits the process.

The important factor arising from the overlap of
the Gaussian parts of Q and PP may be taken out
of the integral in Eq. (49):

5'A „,a/4 f dr 5(u,}y'„
2m ~ ' f dry'

(51)

e-A(ri-a(") /2F (52)

Rt'= 2(R)+PR))

In fact, if one were to neglect the short-range cor-
relations altogether, Eq. (51) would be

(I //2m) d g3/2 -1/2s-Ad~/4 (53)

Thus no matter how complex a given exchange
process is, the important matter as far as the
Gaussian part of P is concerned, is simply dz,
the distance in configuration space betu/een the
original and the exchanged configurations. The
general nature of this statement must be qualified
somewhat, as the surface integral itself is not a
valid approximation to J„for many exchange pro-
cesses, e. g. , pairs and triplets composed of dis-
tant atoms, and exchanges involving large numbers
of atoms. Even so, since the overlap integral
(Q IPI Q) is s ""&/4 in this approximation, Eq. (53)
is still a useful indication of the size of the fre-
quencies for these more complex exchanges.

We report calculations of Eq. (53} for the largest
exchange frequencies in the fourth column (J/) of
Table Dt, taking A = 1.30 A 2 Bnd the near-neighbor

distance 4 = 3.V5A. The various pair- and triple-
exchange processes are identified according to
the notation introduced in Fig. 1. In specifying
the cyclic quadruple processes, the first four num-
bers in parentheses (the notation in Fig. 1) indi-
cate the sides of the four-sided figure traced out
by the atoms in the course of their exchange. This
information is supplemented by the immediately
following two numbers in parentheses which indi-
cate the remaining two "diagonal" lengths of the
figure. The quantity ZN, where Z is given in the
table, is the number of each kind of process con-
tributing to the total energy of the N-atom solid.
For pair and triple exchange, ZN is just the num-
ber of pairs or triples of atoms of a given kind
which occur in the sums over i &j &. . . in Eqs.
(3V)-(38). For cyclic quadruple exchange, there
are three possible cyclic exchanges for each given
quadruple of atoms, corresponding to the three
terms in Eq. (39). Thus for example, the notation
(llll), (22) and (1212), (11) refers to the same
quadruples. There are 6N of them. Among the
four atoms of any one of these, there is one pos-
sible (1111)cyclic exchange (Z = 6) and two possible
(1212) cyclic exchanges (Z= 12). All of the other
cyclic quadruple processes listed correspond to
different kinds of quadruples, and have only one
cyclic process possible of the kind indicated by the

Process

Pair
(1)
(2)
(3)

Triple
(112)
(113)
(223)

CLp Z

1.42 4 —3.8 x 10 —1.4x 10 —5.2 x 10 5

1.63 3 —2.1x 10-4 -7.6 x 10@ —1.2 x 10+
2.31 6 —1.5 x 10"9

1.83 12 —1.1 x 10-5 -2, 0 x 10+ -9.4x 10-7

2.16 12 —3.0 x 10+
2, 31 12 —1.5 x 10-9

Cyclic
quadrupole
(1111),(22)
(1111),(23)
(1212), (11)
(1212), (14)
(1122) (13)
(2222), (33)

2.00 6
2.00 6
2.16 12
2.16 12
2.16 24
2.31 3

—5.8 x 10-'
—5.8 x 10-'
—3.0 x 10+
—3.0x 10+
—3.0 x 10+
—1.5 x 10"9

TABLE IV. Calculations of the most-important ex-
change frequencies in various approximations. J& is
calculated in each case without short-range correlations,
Jz with just the correlations between exchanging atoms,
and Jz& with all of the correlations. These numbers are
in degrees Kelvin. The exchange processes are identi-
fied according to the notation shown in Fig. 1. The addi-
tional pair of numbers included for each quadrupole pro-
cess specifies the two diagonal lengths. The number d&
is the distance in configuration space between the repre-
sentative points of the initial and exchanged arrangements,
in units of the near-neighbor distance. There are ZN
processes of each kind contributing to the energy of the
N-atom system.
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first four numbers in parentheses. For these
processes, then, ZN is just the number of quad-
ruples of the given kind which occur in the sum
over i &j&k & I in Eq. (39). There are no double-
pair quadruple processes listed in the table. Al-
though the largest frequencies of the cyclic and
double-pair types are of the same size in the ap-
proximation given by Eq. (53), we shall see shortly
that the short-range correlations have a much
more severe effect on the latter, and thus the
dominant quadruple processes should be the cyclic
ones.

The usefulness of the calculation of Eq. (53) as
shown in Table IV, is that the short-range correla-
tions will invariably reduce these results in size.
Thus, one may immediately see which of the
higher-order exchange processes are clearly
negligible and which might be important. The
striking feature of the results is how rapidly the
higher-order exchange frequencies fall off in size,
while the weight fact Z has not substantially in-
creased. This suggests that the expansion for the
exchange Hamiltonian in solid He does indeed
rapidly converge. As a specific illustration, note
that the collection of spin operators describing
each higher-order exchange process contains
some bilinear combinations of the spins which may
be regrouped in the pair-exchange Hamiltonians
in the manner of the renormalization of the pair
frequencies described in Sec. II. Knowing the
form of the higher-order exchange Hamiltonians
and the numbers Z, we have all the information
needed to determine the extent of this renormaliza-
tion. [Consider the (112) triple process. The
12N triangles contribute 24N (1) neighbor pair and
12N (2) neighbor pair bilinear spin products. Since
there are only 4N and 3N distinct (1) and (2)
neighbor pairs, respectively, this immediately
yields Eq. (4). ] For the renormalized (1) and (2)
pair Hamiltonians we have

( nn) (nnn)

FIX= —2A~ Q I, ~ I) —2A2 Q I( I~
i&/

where

~1 Ji 6 113+ 1111 6 J1l,3+ 2 J11gg+ ' ' '~9

A2 = Jg —4 J1lP+ 3J1l11+16J11gg —8 J223+ 2 J3$3P+ ~ ~

Using the results from Eq. (53) it is clear that
there is indeed extremely rapid convergence of
these series. It is apparent that the (1) and (2)
pair and the (112) triple processes are likely to be
the only important ones in solid He. The only
other processes even remotely close in size are
the (1111)cyclic four-particle exchanges. We
have not evaluated these integrals with correlation
functions, though we would expect their effect in
this case to be similar to that of the (112) triple
process, in which case the (llll) quadruple ex-

changes should be negligible. This matter is
perhaps worth checking more carefully, as the
quadruple processes introduce four-spin terms into
the exchange Hamiltonian, and recent results of
Osheroff et al. suggest that the magnetic ordering
in bcc He is not quite as simple as it has been
thought to be.

We now investigate the effect on the exchange
frequencies, of the short-range correlations be-
tween exchanging atoms. We confine our attention
to the (1) and (2) pair, and the (112) triple cases.
Intuitively, the effect is simply that the most im-
portant routes of exchange for a system described
purely by Gaussians, may involve atoms passing
"through" each other to some extent (see Fig. 1).
For a system of hard-sphere atoms, such routes
cannot contribute to the integral, and so the ex-
change frequency will be reduced in size. To un-
derstand the actual manner in which the integral
is affected, note that the short-range correlations
serve basically to drive P, and thus PPP, to zero
in regions of configuration space where two or
more atoms are closer to each other than the hard-
core distance o. If such regions coincide with
those where the Gaussian overlap in QPP is large,
the exchange integral can be severely reduced
over that calculated in the absence of the correla-
tions. This is precisely what happens. The Gauss-
ian overlap is large near the midpoint between p
and P„ in Fig. 3, as can be seen by the fact that
QPP is just a constant multiplying P„. In the case
of pair exchange, this corresponds to the two atoms
sitting on top of one another and midway between
the two lattice sites (see Fig. 4). The function

PPP is, of course, driven to zero in precisely this
region of configuration space owing to the short-
range correlation between the two atoms. Contri-
butions to the integral in Eq. (51) must come from
further out on the "tail" of the Gaussian part of

P„, where the two atoms are separated by a dis-
tance of o or more. The relevant Gaussian part
of P„ is e "" ~2, where r is the relative coordinate
for the two atoms. Thus for any pair exchange,
the effect of the short-range correlation between
the two atoms is to reduce the exchange frequency
by a factor of e" . This factor is about —,', for
A. = 1.30 A . [Actually, the Nosanow correlation
function is roughly equivalent in these exchange
integ rais to e(x —

p)& where p = 2. 25 A. Thus, one
should evaluate e "' 2. ]

The effect of the short-range correlations among
exchanging atoms is less severe for triple ex-.
change. In this case the Gaussian part of P,„ is
large when the three atoms are near the midpoints
of the sides of the triangle determined by the three
lattice sites, as shown in Fig. 4. In contrast to
the pair-exchange case, part of the region of large
Gaussian overlap is not eliminated by the correla-
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Pair Triple

R)

tions, as can be seen from the fact that the atoms
need only be displaced slightly away from the cen-
ter of the triangle in order to avoid each other' s
hard cores. The atoms have been drawn as
spheres of diameter cr in Fig. 4 to illustrate this
fact. Guyer and Zane have mistakenly argued that
this implies the effect of these short-range corre-
lations on triple exchange is negligible. This is
not the case. A crude estimate may be obtained
as follows: Note that the Gaussian part of Pa„ for

wlV) 3each atom, namely e "'~ "& ', lies half on each
side of the appropriate side of the triangle. Yet,
roughly speaking, only if each of the three atoms
lies outside the triangle will. one get contributions
to the integral in Eg. (51). Thus one might expect
the effect to be a factor of (—,)' = —,

' reduction in
size. Numerical computation of Eg. (51) for
A = 1.30 A and 4 = 3.75 A, including only the short-
range correlations among the three atoms, shows
the (112) triple frequency reduced by a factor of —',

over that calculated without these correlations.
These results, as well as those for the (1) and (2)
pair cases keeping only the short-range correla-
tion between the pair, are given in the fifth column
(J'») of Table IV. It is on the basis of these num-
bers, that we suggest the dominant four-particl. e
processes are the cyclic ones. For example, as
the relevant geometries are somewhat similar,
we would expect the effect of the short-range cor-
relations among the four atoms undergoing the

Rp

FlG. 4. Effect of the short-range correlations between
the exchanging atoms on the (1) pair and (112) triple-ex-
change processes. The Gaussian part of PPp is large
when the atoms are located nearby the positions shown
here, relative to the lattice sites 8&. The atoms are
drawn as spheres of diameter cr to illustrate the effect of
the short-range correlations, which is basically to drive
PPP to zero when any two spheres overlap. Thus con-
tributions to the pair-exchange integrals must come from
further out on the tail of the Gaussian part of PPP where
the two atoms are separated by a distance of 0 or more.
Thie leads to a reduction of the integral by a factor of
e +' 2=~t for A=1.3 L 2. Dominant contributions to the
triple-exchange integral come from configurations in which
any of the atoms may be displaced further out from, but
not in closer to, the center of the triangle. This leads to a
reduction by a factor on the order of (p) 3 = ~.

cyclic (1111)exchange to be of the same order of
magnitude as that for the (112) triple process,
i.e. , a factor 0( —', ). The corresponding double-
pair (1, 1) process, however, involves two pair
overlaps, and so the effect in this case is likely to
be O(~).

We turn now to the last of the three effects men-
tioned previously, that due to the short-range cor-
relations between the exchanging atoms and their
surrounding neighbors. It has been pointed out
elsewhere" that this effect is quite important,
though it has been ignored in nearly all the existing
exchange calculations in solid He, including the
estimates of Zane. A simple drawing can show
why these correlations are important. In Fig. 5
we show the relative arrangement of the exchanging
atoms and some of their neighbors, for the cases
of the three most important exchange processes.
The atoms are drawn as spheres of diameter o;
as the significance of the short-range correlation
functions is basically that the atoms should be
treated as impenetrable spheres of this size. We
have already discussed the reduction in size of the
frequencies which follows from the necessity of
the exchanging atoms maneuvering around each
other in the process of exchange. It is clear from
Fig. 5 that the processes will be further inhibited
by the necessity of their taking place within the
rather limited confines of the "cage" composed of
the hard cores of the surrounding neighbors. One
should not be misled by the possibility in each case
of choosing particular routes in which the exchang-
ing atoms do not encounter their neighbors.
Roughly speaking, the exchange integral represents
the net effect of all possible routes available to
the system. By including the short-range correla-
tions with neighboring atoms, some of the routes
which would otherwise have been possible for the
system, are eliminated, and thus the frequency
is reduced in size. Analysis of the exchange in-
tegrals with these additional correlation functions
is sufficiently complex, that it is not very illumi-
nating to try to put this intuitive discussion into
more rigorous form. Instead we shall immediately
turn to the results of numerical calculations, and
present them in such a way as to show which
neighboring atoms are important in each case, and
how large the effect is. We have used a greatly
improved version of the Monte Carlo technique
described elsewhere to do the integrals. We
discuss this technique in Appendix B.

The idea of hard-core interactions among the
atoms suggests that the short-range correlations
between the exchanging atoms and their neighbors
should be less important to the integral the farther
these neighbors are from the local region where
the exchange takes place. To this end, we have
grouped the neighboring atoms in shells, in each
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case according to their distance from the center
of mass of the two or three exchanging atoms (see
Fig. 6). One may then evaluate a series of cluster
approxiinations to Eq. (51) in which the short-
range correlations are retained only among a group
of atoms including and centered about the exchang-
ing atoms. That is, one replaces F by

II y(y, ) (54)
1+f&g+n

in both numerator and the normalization denomi-
nator of Eq. (51), where we assume the atoms to
be numbered 1, 2, . . . beginning with the exchang-
ing atoms and then working outwards through con-
secutive shells of the neighboring atoms. In the
case of (1) pair exchange, for example, taking n=2
retains only the correlation between the two ex-
changing atoms. The next choice is clearly n=8,
where the additional six intermediate atoms shown

l nghb. pair

()
0

2" nghb. pair
0

W.o
r~i

0 ~
0

triple

N.o
0 ~

0

~i
'

Qi

/t I

h.

0 0oo
0 0
0 0

exchanging atoms ~
t x

in Fig. 6 are included in the group, and so on.
(We shall subsequently refer to these integrals as
n-body cluster approximations to the full integral. )
The values of these cluster integrals for various
choices of n are given in Tables V-VII for the (1)
and (2) pair, and the (112) triple processes, re-
spectively. These tables should be read in con-
junction with Fig. 6. In all three cases it is evi-
dent that the cluster integrals converge fairly
rapidly with the value of n. The results for the (1)
and (2) pair cases are particularly striking. While
the integrals with just the single correlation be-

Z
neighbors {in order

scale x:y:z=0.7: l.0:3.5
of nearnessj , , 0

FIG. 6. Many-body contributions to pair and triple
exchange (II). The geometry of the surrounding neighbors
for the (1) and (2) pair and the (112) triple processes is
shown in more detail.

FIG. . 5. Many-body contributions to pair and triple ex-
change (I). (a), (d), and (g): The atoms respectively in-
volved in the (1) and (2) pair and the {112)triple processes
are shown in the basic cube of the bcc structure. Some
of the surrounding neighbors which form the "cage" in
which these processes take place are shown in the re-
maining drawings. These drawings are to scale with the
atoms portrayed as spheres of diameter 0.. (b) Near-
neighbor exchange occurs through two "hoops" of three
atoms each lying in planes 3 and 3 the distance from atom
1 to 2. (c) Top view. (e) Next-near-neighbor exchange
occurs through the center of a square of four atoms that
are second neighbors of each other. (f) Top view. (h)
Neighboring atoms lying in the plane of the exchanging
triple are shown.

n

2
8

14
22
40

—13.94
—5.12 + 0.03
-5.67+ 0.02
—5.10 + 0.03
—5.17 + 0.10

—5.67
—1.10 + 0.01
-1.21+ 0.02
—1.11+0.02

TABLE V. Convergence of the n-body cluster integral
for the first-neighbor pair-exchange frequency J~. As n
increases, more surrounding neighbors of the exchanging
pair are included in the integral (see Fig. 6). Two cases
are considered: (a) R= 3.75 A, A = 1.30 A ; and (b) R
=3.43 A, 2=1.60 A . All values of J~ are in units of
10-5 oK
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TABLE VI. Convergence of the n-body cluster inte-
gral for the second-neighbor pair-exchange frequency J2.
As n increases, more surrounding neighbors of the ex-
changing pair are included in the integral (see Fig. 6).
Two cases are considered: (a) R=3.75 A, A=1.30 A 2 ~

and (b) 8=3.45 L, A=1.60 A. . All values of J& are in
units of 10 ~'K.

2
6

14
22

J R
2

-75.7
—12.7+ 0.1
—11.1+ 0.2
—11.9 + 0.4

gb

-26.78
—1.52 + 0.01
—1.49 + 0.05
—1.50 ~ 0.04

tween the exchanging atoms are clearly inadequate,
one need only include the additional correlations
with the six and four intermediate atoms, respec-
tively, to get the result of the full integral to within
a few percent. This is intuitively quite sensible,
for it is precisely these atoms which in some sense
are the neighbors which directly get in the way of
the two exchanging atoms. The results for the
(112) triple process converge somewhat more
slowly with n. Perhaps this is because it is not
so much that there are key neighboring atoms which

directly interfere with the exchange, but rather
that the region in which the process may take place
is somewhat restricted by the totality of the im-
mediate neighbors. In any case, when e is as
large as 10, i.e. , the three exchanging atoms and
the seven closest neighbors are included, the
cluster integral appears to have converged to within
about 10% of the value of the full integral. For
the choice of 2=1.30A"~ and ~=3.75A the effect
of the neighboring atoms is seen to be a reduction
of the exchange frequencies by factors of about 3,
~s, and —,', respectively, for the (1) and (2) pair and
the (112) triple processes These. effects are by
no means small, as we have emphasized. They
are extremely sensitive to the parameters A and

Given the range of A values taken at each den-
sity in the current literature, the above choice
represents a relatively tight single-particle Gaus-
sian. For contrast, we have also evaluated the
cluster integrals for 4 = 3.45A and A = 1.60A"3,
which corresponds to a relatively broad Gaussian
given the current A values taken at this higher
density. In this case, the above factors are —,', ~z,
and 3, respectively, for the three processes. In
general, it appears that the effects of the neighbor-
ing hard cores are least severe for the (112) triple
process and most severe for the (2) pair process.
The fact that the effects are more severe for the
(2) pair than for the (1) pair process can be under-
stood in that for the former, the four intermediate
atoms are second neighbors of each other, as con-
trasted with intermediate neighbors (in a given
plane) for the latter being third neighbors of each

TABLE VII. Convergence of the n-body cluster integral
for the largest triple-exchange frequency 4~~2. As n in-
creases, more surrounding neighbors of the exchanging
triple are included in the integral (see Fig. 6). Toro

cases are considered: (a) A=3.75 A, A=l. 30 A 2 and

(h) ff =3.45 A, A =l.60 A . All values of the Zf/2 are in
units of 10 ~'K.

3
5

10
16
26

—20.3+ 0.1
—15.3+ 0.1
—10.4+ 0.1
-8.72 + 0.21
—9.35 + 0.23

-7.28 + 0.04-5.54+ 0.12
—2.30 + 0.05
—2.05 + 0.06
-2.52 + 0.08

other. Views along the axis of the exchanging
atoms in Figs. 5(c) and 5(f) show there to be
"more room" in the "cage" for the (1)pair exchange
than for the (2) pair exchange.

In all of this discussion, one should bear in mind
that the numerical results on which it is based
have been obtained with the Nosanow correlation
function —a function which levels off well before
the near-neighbor distance. In the case of corre-
lation functions for which this is not true, such as
f(r) =e ' ~"' I'used by Hansen and Levesgue, "for
example, the cluster integrals for the (1) pair fre-
quency mill not begin to converge until all. first
neighbors of the two atoms are included. Although
me expect generally the same qualitative features
as previously described, this becomes a more
complex problem numerically. These correlation
functions serve not only to represent the hard-core
repulsion between atoms but, in addition, play
an important role in determining the extent to which

the atoms are localized about their lattice sites.
This latter role is taken almost completely by the
single-particle functions when Nosanow-like cor-
relation functions are used.

%e would nom like to present calculated results
for the size and density dependence of the various
frequencies. Unfortunately, there is no clear
agreement in the literature as to what A values and
correlation functions should be used. The A values
(in some cases extrapolated) taken in some of the
exchange calculations in solid He are given in
Table VIII. Accordingly, we have performed
Monte Carlo calculations of Eg. (49) for the (1) and

(2) pair, and the (112) triple frequencies for a
range of A. values at each of four densities. Since
the effect of the different correlation functions
used by the workers listed in this table is expected
to be much less important, '~ we have used the
numerically convenient Nosanow correlation given

by Eg. (48) in all calculations. These results are
reported in Table IX and Figs. 7 and 8. The cal-
culations. were done taking e =8, 6, and 10, re-
spectively, for the three processes. Since the
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TABLE VlII. Gaussian parameter A at various values
of the near-neighbor distance B as extrapolated from the
values used by Nosanov and Mullin (NM), Guyer and Zane
(GZ), Ebner and Sange (ES), and Ostgaard (0). All val-
ues of A are in A

X (NM)
x (Gz)
A (ES)
x (o)

3.45

1.73
2.23
1.95
2.15

l.59
1.90
l.63
l.71

3.65

1,44
1.60
l.41
1.38

3.75

1.30
1.32
1.20
1.10

IO

statistical scatter for each Monte Carlo calculation
was typically a few percent, the accuracy of these
results is determined largely by the convergence
properties with n, as exhibited in Tables V-VII.
We expect the results to be within about 5% of the
value of the full integral for the pair frequencies
and within about 10% for the triple frequency. In
Figs. 7 and 8, it is seen that the dependence of the.

exchange integrals on A, at a fixed density, is
very nearly exponential, thus allowing easy ex-
trapolation of these results to any intermediate A

values. %'e present the values of the exchange

IO

-9

l.6
A (V) 2.2

FIG. 8. Exchange constants J (in degrees Kelvin) at a
molar volume of 20. 0 cme/mole (near-neighbor distance
d =3.45 A). The results of the full many-body calculation
of Ji J2 and J)i2 axe shown Rs a function of A, The
comments in the caption to Fig. 7 apply here.

lo

lo
0.7 l.o

A (A'-')

FIG. 7. Exchange constants J (in degrees Kelvin) at a
molar volume of 24. 7 cms/mole (near-neighbor distance
6=3.75 A). The results of the full many-body calculation
of J~ (first-neighbor pair), J'2 (second-neighbor pair),
and J&~2 (triple) are shown as a function of the Einstein
parameter A. The qualtative result is I Jg I » I J2 I » I Jff2 f .
As a consequence the effective next-neighbor pair-ex-
change constant A2 of Eq. (6) is ferromagnetic. Note that
the ratios I J~ I /f J2 I and I J2 I /f Jgf2 I are a mild function
of A while I Jg f, f J2I, and f Jg(2I change by three orders
of magnitude.

frequencies determined in this manner for the
Guyer-Zane, and for the Ebner-Sung choices of
A., in Fig. 9. These two sets of A. values more or
less represent the extremes occurring in Table
VIII, aside from those used by Nosanow and co-
workers which may exhibit'7 an unrealistically
"flat" density dependence.

The results for J& in Fig. 9 are of about the
right density dependence, but even the best is a
factor of 6 smaller in magnitude than experiment.
We shall address this problem a bit later. (We
must also show, for example, that Panczyk and
Adams are essentially measuring 4,. ) The im-
portant point for the moment is that we will be un-
able to conclusively determine the ratio J»s/Jt
which is so important to the discussion of Sec. II.
Thus, at the density corresponding to 6 = 3.75 A
the choice of A taken by Ebner and Sung leads to a
value of 40 for this ratio. Qn the other hand, if
one takes the A value at this density for which the
calculated J, agrees with experiment, i.e. ,
A = l. OP..", then this ratio becomes more like ao.
%'hile the former value is clearly too small, the
latter collles solllewllat closeI' 'to 'tile 1'a'tlo $ in-
dicated in Sec. II as being necessary to explain the
results of Kirk and Adams. Unfortunately,
picking the A value by fitting the (1) pair results
to experiment is phenomenology. In spite of these
uncertainties, however, there are certain conclu-
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TABLE IX. Exchange frequencies at various densities
and for various Gaussian values. J1, J2, and Jf12 are the
first-neighbor pair-, second-neighbor pair-, and the
largest triple-exchange frequency, respectively. They
were calculated with the 8, 6, and 10 atom cluster inte-
grals, respectively. B is the near-neighbor distance and
A is the Gaussian parameter. All frequencies are in
degrees Kelvin.

a five-order-of-magnitude change, while 6 causes
the frequency to be changed by only about a factor
of 2. To within a factor of 2, then, the density
dependence of J, is seen to be completely due to
that of the parameter A.

To facilitate a comparison of theory and experi-
ment, we now briefly comment on the measure-
ments of Panczyk and Adams. According to the
analysis in Sec. II, they have measured a quantity
J, defined by

A (A2)

—5.12x 1Q 5

—6.69 x 10"
—7.63 x 10-3

—1.27 x 1Q-6

—3.41 x 10 5

—1.04 x 10"3

—1.04x 10+
—2.53 x 10"~
-6.74x 10 4

3.75 1.30
1.00
0.70

2 dlnl Jl 2 dlnlA1l 3 2 dlnlA2l
1 d in+' 4 2 d in+ (55)—5.81x 10+

-7.73 x 1O-4

—6.52 x 10 8

-5.08 x 10-5
-6.24 x 10
-3.67 x 1O 5

3.65 1.60
1.00 where

~2 J1 6 J112 x ~2 J2 4 J112
—6.95x 10 7

—8.35x 10 5

—4.25 x 10"9
-2.69 x 10+

—6.14x 10 &

—2.61 x 10 s
3.55 1.90

1.30

Except for unrealistically small A values near
A = 0.7 A, we find that A2 is generally an order of
magnitude smaller than A, for the whole range of
densities and A values we have investigated. Since
the various magnetic Gruneisen constants are
roughly of the same size, it is clear that Panczyk
and Adams have measured essentially A„which
is in turn within 20%%u~ or so of J, itself. Thus, it

—9.33 x 10+
—9.32 x 10-'
—1.10x 10"5

—2, 92 x 10-10

-6, 07 x 10"9
—1.52 x 10 7

-6.98 x 10
-1.18 x 10-
—2.30 x 10 7

3.45 2.20
1.90
1.60

sions that follow clearly from our results. Over
the whole range of densities and A values we have
investigated, J„2 is either approximately equal
to or at most a factor of 2 larger than J2. The ef-
fective second-neighbor exchange frequency defined
in Sec. D, A2=J2-4J112, is thus clearly ferro-
magnetic. The effect of the higher-order exchange
frequencies in bcc He is, therefore, in the right
direction to explain the Kirk and Adams results.
We are also able to determine the magnetic
Gruneisen constants for the various frequencies.
We do so for the lower densities (6 = S.65 —8.75 A)
taking the Ebner-Sung A values, as these lead to
a density dependence for J1 in best agreement with
experiment. We find d ln I J, I /d lnV = 18.0,
d ln I Ja I /d ln V = 28. 5, d ln I J,~a I /d ln V = 22. 9,
d lnl A, I/d lnV= 17.7, and d lnl Aa I/d lnV= 21.9.
These values are good to about + 1.0. The esti-
mates of Zane' are thus somewhat too large for
din l J»al/d lnV and too small for dlnl J'll/dlnV.

Our results illustrate certain more general fea-
tures relating to the density dependence of the fre-
quencies, which are worth mentioning. It is well
known that the implicit density dependence of the
frequencies through the parameter A dominates the
explicit dependence through h. That is, if 6 is
increased, the exchange process is enhanced far
more by the fact that the atoms may be found
farther away from their lattice sites (the parameter
A) than it is inhibited by the fact that the atoms
have a slightly larger distance to go in order to
exchange (the parameter 6). We illustrate the de-
pendence of the frequencies on these two param-
eters in Fig. 10. We have taken the results for
the frequencies as functions of A at the two density
extremes, and included them on the same plot, ex-
trapolating the curves over the full range of A
values in each case. For the (I) pair frequency,
for example, the parameter A is seen to govern

IO = t=+'

r+
r rr rrr

PA

IO

IO =— I

IO

& IO

IO

IO

-IO
IO

E I

M5 5.55, 5.65
R (A)

I"IG. 9. Exchange constants as a function of near-
neighbor distance B. The dashed linea are the experi-
mental values of J1 from the thermodynamic data of Pan-
czyk and Adams (PA) and the NMR data of Richardson,
Hunt, and Meyer (RHM). The remaining curves are theo-
retical results for J&, J2, and J1&2 obtained using the
values of the Einstein parameter due to Ebner and Sung
(dash-dot lines) and Guyer and Zane (solid lines); see
Table VIII. Note that even the best theoretical values for
J1 are about a factor of 6 smaller than experiment. See
the discussion in the text, below Eq. (55), on this point.
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is valid to compare our calculated results for J&

to these experimental results as is done in Fig. 9.
We conclude this section by discussing the dis-

crepancies between our theoretical results for J,
and experiment. Even the most favorable A. values
in Table VIII lead to magnitudes for J& about a
factor of 6 smaller than expeximent. Furthermore,
we expect the Nosanow correlation, which was
used in these calculations, to give a larger magni-
tude for the exchange frequencies than would be
given by the other correlation functions. This has
been explicitly demonstrated at least at the level
of the two-body cluster approximation. ~~ In the
crucial region 2A«&3A, the Nosanow correlation
has the "softest" hard core of these various cor-
relation functions. This is also true of the Qs-
gaard correlation, which falls between that of
Nosanow and that of Ebner-Sung in this region. ~7

It has been noted elsewhere'7 that the tendency
for theoretical calculations of J& to come out too
small is often obscured in the literature by calcu-
lations which neglect the short-range correlations

IO I I I I I I I I

IO

Sa5.45)(

IO

Z lo
I rlghb. pair

IO

90
nd2" nghb. pair

IQ

-Q~
IO O8 IO I 2 I4 I6 I8 20 22

A{A-')

FIG. 10. Volume dependence of the exchange constants.
The volume dependence of the exchange constants comes
about primarily because of the volume dependence of A,
ameasureof the size of the single-particle density. Re-
call (s2) = aA. To emphasize this point we have plotted
I J~ t, IJ'2I, and )J'&&2 I as a function of A at two different

values of 6, 3.75 and 3.45 L. The variation of 8 with A
is dramatic whereas the variation of t'with 6 is about a
factor of 2. At b,=3.75 A a reasonable value of A is
1.3 A; at 6=3.45 A a reasonable value of A is 2.0 A

See Table VIIl.

between the exchanging atoms and their neighbors.
For example, the two-body cluster approximation
to Eq. (49), which also neglects these correlations,
yields about the same result as obtained by Ost-
gaardts when his (extrapolated) A value is used at
low density. The full integral is reduced by a fac-
tor of 3. At this density extreme, Ostgaard's A

values are somewhat smaller than those of Ebner
and Sung, from which the higher J, curve in Fig.
9 was obtained.

We have argued previously that the many-body
surface integral given by Eq. (45) will give the
correct result for J, to first order if the true
home-base function is used. The general tendency
for theoretical calculations of J, to be too small
seems to suggest that the usual approximation to
the home-base function is not adequate. We feel,
however, that there is still too much uncertainty
in the lattice-dynamical calculations for solid He
to discredit use of Eq. (47) in exchange calcula-
tions. For example, there is one lattice-dynam-
ical calculation which is radically different from
those on which the workers listed in Table VIII
have based their exchange calculations. Hansen
and Levesque ' have used Eq. (47) with

-(a/r)' 2f(r) =e" ~"' ~t and obtained A values generally less
than half the size of those in Table VIII. Such
small A. values are possible in their calculation
because the correlation function rises very slowly
to unity, and thus plays an important role in de-
termining the localization of the atoms about the
lattice sites. In preliminary calculations of the
many-body surface integral with this correlation
function and with smoothed fits to the Hansen-Le-
vesque values for A and I3, we find J, of about the
right density dependence, but about an order of
magnitude t00 Eggs in size.

It is entirely possible that when the lattice-dy-
namical calculations can agree on the choice of
correlation function and the value of A, that Eq.
(47) will prove inadequate for exchange calcula-
tions. Solution of the various differential equations
for the correlation function cannot, in practice,
correct any error in the tail of the single-particle
Gaussian. As mentioned earlier, there is good
reason to believe that the tail of the single-particle
Gaussian is in fact too smal. l, which is consistent
with the generally small results for J&. We do not
feel that the use of an Einstein approximation to
the phonons in Eq. (47) accounts for these small
results, at least as calculated by the many-body
surface integral. Although Nosanow and Varma
have found the inclusion of phonons to increase J,
by as much as a factor of 4 in working with a two-
body cluster approximation to the many-body vol-
ume integral, we find the corresponding calcula-
tion for the surface integral to not only have a
much smaller effect, but in fact, the frequency is
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reduced in size. A crude estimate shows why.
The two-body cluster approximation to Eq. (49)
with the Einstein agproximation to the phonons

'„g(b2~fy )/2yields J&-8 "'~ "', as we have discussed ear-
lier. If the two-branch'~ approximation to the pho-(zs~ )nons is used, one gets Jz - e-' ii

~~' ', where the
notation is that of Nosanow and Varma. From
their Table III, one sees that I', and G, differ from
—,
' A by roughly the same amount, and G, & —,

' A & +„.
Since 6 -20, the coefficient of 4 is more im-
portant and the frequency is accordingly decreased
in size relative to the Einstein calculation. We do
find, in agreement with Nosanow and Varma, that
the two-branch approximation yields results of the
same density dependence and about a factor of 2

larger than those obtained with the one-branch'2
approximation.

V. CONCLUSIONS

In this paper we have presented a formal. devel-
opment of the Hamiltonian taken to describe
higher-order exchange processes in solid He.
Exact expressions for the various frequencies have
been analyzed in detail to see what effects contrib-
ute to their size and to show that the exchange
Hamiltonian for this solid converges rapidly. It
is seen that the (1) and (2) pair-exchange pro-
cesses and the (112) triple-exchange process are
likely to be the only important ones. Monte Carlo
calculations of the many-body surface integral ex-
pressions for these frequencies show that I J& I

» I Jal =
I J»al. Because of uncertainties in the

current lattice-dynamical calculations, we can only
say that J»3 is somewhat less than an order of
magnitude smaller than Z, . The density dependence
of J», is found to be essentially the same as that
of 8'z and din[ J»zl/dlnV —1.2d inl J~[/dlnV.

The significant effect of the (112) triple exchange
is to renormalize the (2} pair-exchange interac-
tion, and, in fact, to make it ferromagnetic.
analysis of the thermodynamic functions it is seen
that only by measurements in nonzero magnetic
fields can one hope to see the effects of the higher-
order exchange processes in bec He, i.e. , this
renormalized next-near-neighbor exchange inter-
action. However, most of these measurements
mill be hindered by trivial field dependences,
against which it will be difficult to discern any ef-
fects of the higher-order exchange processes.
Such trivial field dependence is absent in quanti-
ties involving a volume derivative. Of the current
measurements, only the single experiment of Kirk
and Adams is truely suited to probe the existence
of higher-order exchange processes.

In sum, although both theory and experiment
strongly suggest that the presence of higher-order
exchanges is indeed being seen, this matter has
not yet been conclusively settled.
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APPENDIX A. TWO-BODY SURFACE INTEGRAL
A number of theories 6 treating first-neighbor

pair exchange in solid He have been based on
perturbation solutions of either a two-body
Schrodinger equation or Bethe-GoMstone equation.
They determine J as the sum of various "tunnel-
ing", "interaction", and "correlation" contribu-
tions. The purpose of this appendix is to show that
the two-body surface integral for J follows rigor-
ously from the two-body Schrodinger equation, and
thus must exactly sum all of these various contri-
butions. We. state certain general conclusions
which follow simply from the surface-integral
treatment, but which are obscured in the above
theories due to the large caneellations among the
competing contributions. The terms in the Bethe-
Goldstone equation which distinguish it from a two-
body Schrodinger equation are associated with
small corrections to the single-particle potentials.
In a practical calculation, these terms have a
negligible effect on the mave function and on energy
differences. ' Therefore, me believe the conclu-
sions in this appendix to be also valid for theories
of exchange based on the Bethe-Goldstone equa-
tion. Brandow" has, in fact, observed that the
surface integral should yield a reasonable approxi-
mation to the singlet-triplet splitting of the Bethe-
Goldstone equation. It should be noted that the
disadvantage of working mith any two-body equation
is that the choice of single-particle potentials
which are amenable to practical computation are
unlikely to represent the effect of the lattice me-
dium sufficiently realistically. In particular these
calculations omit the rather sizeable effect of the
many-body short-range correlations. Thus, the
J we discuss in this appendix, and which the various
workers calculate, is not by any means guaranteed
to be the true exchange frequency. Rather it is
simply half the singlet-triplet splitting of the two-
body Hamiltonian one assumes to begin with.

1. Exchange in Terms of "Exact" Home-Base Wave Functions

We briefly review the derivation of the tmo-body
surface integral using a generalization of standard
procedure. Consider the spin-independent two-
body Hamiltonian

H(12) = r(I)+ T(2)+ W(I)+ W(2)+~(12) =a(21),
where T(1) and T(2) are the kinetic-energy oper-
ators, the double-well potential W(r) has minima
at lattice sites R, and Rm, and where e(12} incor-
porates the hard-core repulsion between the two
atoms. We are interested in the lowest symmetric
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and antisymmetric eigenstates of H(12), with
ergies E' and E", respectively,

H)))' =E'g'

H)j) =E )))

(56)

(57)

and taking the real part of Eq. (61) one obtains

As we are treating a system where exchange is
small, the eigenfunctions )t)' and )t) may be taken
so that g'=( in the "right" half of the configura-
tion space of the pair of particles (denote this
space by I'„), and ('= —g in the "left" half of the
space (denoted by I'~). The "exact" home-base
functions Ps and Pz, , defined by (P'+ P )/W2 and
(tI)' —

tt) )/v 2, respectively, are thus mainly local-
ized in the "right" and "left" half-spaces, respec-
tively. The half-space I ~ is defined by

(r, - r, ) ~ (R, - R,) & 0, (58)

where r~ and r2 are the position vectors for the
two atoms. The "right" and "left" half-spaces are
separated by a five-dimensional hypersurface
which we denote by Z (see Fig. 11).

To obtain the surface integral, one multiplies
Eg. (56) by )jI *, the complex conjugate of Eg. (57)
by P', and integrates over I"s. The difference of
the two resulting equations is

e'
= ——Re ds(y, V,yy, —y, v,y, ) .

m

The integral on the left-hand side is 1+0(J ), so
that to leading order

2 (E' —E ) = — Rel ~.(y„V,y~i y"xVBy„)

= —Rel, ds pz V (62)

y„(s,) = ()t)'~ q )/W2 (68)

2. Relation of the Surface Integral Formula to Perturbation
Theory

This is the surface integral expression we employ.
It rigorously gives half the singlet-triplet splitting
of H(12) to leading order, when the "exact" home-
base functions are used:

(E' —E )
"rs " rs

(R„R,) —(R„R,) (61)

where Z= R) —Ra. Expressing )I)' in terms of the
home-base functions,

6 aL.

(R~, R,) (Rf, Ri)
FIG. ll. Geome-

try of configuration
space.

V8
' (( *VSt]

—)t' Vz)t *)2'
(59)

where V6=(V;, V, ) is the six-dimensional gra-
dient. From Gauss's theorem, Eq. (59) becomes

r
A*=

~

d '(O*VSP' O'V64-*»
2PE „E

(60)
where ds =dse„I,,' e» is a six-dimensional unit
vector orthogonal to, and pointing from the
"right"-hand to the "left-hand side of the hyper-
surface Z,

The theories mentioned at the beginning of this
appendix calculate half the singlet-triplet splitting
of H(12) in first-order perturbation theory. We
schematically indicate the perturbation expansion
for the eigenfunctions )t)' as follows:

p'=)j)o+xp)+x )))q+

For the "exact" home-base function Ps we thus
have

ys = (qt+ )j)())/) 2 + )) ()j)', + )j),)/v 2 + ~ ~ ~

+&4'I) + ' '
~

(64)

(65)

Qn and near the hypersurface Z we expect )t)' and (0
to be of order (J/eo)' & 10 (here eo is some ap-
propriately defined single-particle energy, e.g. ,
88n). We expect the most important corrections
X"P'„ to be of order X"(8/eo) in this same region.
According to Eq. (65) these same estimates apply
to the size of P'„) and ))."P'„") in the neighborhood of
Z. If we were to evaluate Eq. (62) with the approx-
imation ps = ps ', and similarly $1, = PI ', we
make errors only to order XJ. This is a second-
order correction to the singlet-triplet splitting of
H(12), while the splitting itself is a first-order
quantity in perturbation theory. We therefore con-
clude that all first-order contributions to J which
can be obtained using the zeroth-order functions

are included in the surface integral when the
corresponding zeroth-order home-base functions
are used, i.e. , &~so) =()j)0+)t) )/W2, p~o) =(tj)', —)t),)v2.
A crucial factor in this conclusion is that our ex-
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pression for J involves the behavior of the various
functions only near Z. We shall shortly see, in
fact, that the cancellation of g'„against („in the
"left" space is not very good for the various
higher-order terms in Eq. (65). One effect of
these terms in Eq. (65) is thus to generate a small
"bump" of order J/eo in size in the "left" half-
space. While this "bump" might lead to a first-
order contribution to a volume integral, it leads
to only a second-order contribution in the surface
integral. To illustrate this fact, consider the
pathological case where P~z'~ in Eq. (65) might ac-
tually equal P~z~~. The arguments we have made
above for the surface integral still apply, as XPz
is of order X(J/eo)' near Z.

In order to make further connection with the
work of Brandow" and others, we write the eigen-
functions of H(12) as

g"(12) = [8 (12)+8 (12)]Q'(12) (66)

= 8~+ 8,& (67)

where we have defined Q =-, (Q'+ Q ) and
bQ = —,(Q' —Q ). Note that Q(12) and EQ(12) are
also symmetric. Similarly

(66)

The departure of Q' from 0 is related to the ex-
change process (see Guyer and Zane's or
Brandow's discussion of the "correlation" term).
In the absence of exchange one would have O'= 0 .
Thus with exchange we expect 0' and 0" to differ
by terms of order J/eo, i.e. , bQ is of order J/eo.
We expect that near the hypersurface Z, both 81,
and 8„are of order (J/eo)'~, EQ is of order
J/eo, and Q can be of order unity. The arguments
of the previous paragraph apply, and so to within
errors of O(J /eo):

J= (8 /m) Re f ds ~ (8 Q)" V (8„Q)

Since e» V~ and Q(12) are odd and even, respec-
tively, under permutation of the particles, and

8z, (21) = 8s(12), this becomes

J=(8/m)Re f ds ~Q~ 8I, V,8s

What conclusions about the sign and magnitude
of J can be drawn from Eq. (70)? The function

(69)

(7o)

where 8„(21)= 8&, (12) and of necessity Q'(l2)
=Q'(2l). This is quite rigorous, as given the
functions 8~ and 8L,, we are simply defining the
functions Q' and Q . The functions 8s(12) and

8z, (12) are chosen to incorporate as much as pos-
sible of the localized nature of g'(12) in the "right"
and "left" half-space, respectively. In terms of
Eq. (65) the exact home-base function P„ is

&f&s= a 8s(Q'+Q )+ p81, (Q' —Q )

J&0

FIG. 12. Sign of J.
The sign of J~ is deter-
mined by the behavior
of the relative coordinate
wave function in the
vicinity of the interface
between X'z and I"z. If
the wave function decays
as it approaches this
interface the sign of J
is negative. If the wave
function is increasing as
it approaches this inter-
face, the sign of J is
positive. In order for
the wave function to be
increasing near the in-
terface it must have an
extra node (see the
dashed line). Since it
is not then the ground-
state wave function, we
argue that J&0 in the
ground state.

8s(12) is localized in the "right" half-space about
the point (R„Rz), and drops off as one moves away
from this point. The quantity e» 7'6 is the deriv-
ative in the direction from the point (R„Rz) to-
uards the point (R2, R,), and thus 8~(e„~ V~)8„
should be negative in the vicinity of the hypersur-
face Z. Clearly, if 8~ reached some minimum and
then began to increase as one approached Z from
the "right"-hand side, the sign of 8z, (esz, V6)8s
could be positive (see Fig. 12). However, the re-
sultant "bump" that this feature would introduce
into the eigenfunctions P' makes this possibility
highly unphysical on the grounds of the cost in
kinetic energy. It is therefore evident that the sign
of J determined by Eq. (70) is manifestly negative.
This is consistent with the general arguments
made elsewhere' that the lowest eigenvalue of the
Hamiltonian must correspond to a spatially sym-
metric eigenfunction, and is thus a singlet state
for our two-body problem. Further, it is perfectly
clear that 0, the short-range correlation function,
cannot enter into a discussion of the sign of J.
It can only have an effect on the magnitude of J,
and this effect is discussed at length in the body
of this paper. The dominant contribution to the
magnitude of J is due simply to the size and slope
of the functions 8„and 81. in the neighborhood of
the hypersurface.

I et us repeat our main conclusions and discuss
their limitations.

(1) The sign of J is negative.
(2) When the eigenfunctions of the two-body

Schrodinger equation are written in the form in
Eq. (66) the sign of J depends in no way upon the
short-range correlation function.
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dr dr 6(u ) II -A«r«-"«"&'Z '
f-"1

dr, . . . dr II e "'"""E 2

fa1

where

&„(r„.. . , r„) = D f(1";,)
2&f&3~n

(Vl)

and where the permutation I' indicates the exchange
process. For the pair frequencies (atoms 1, 2)

d„=&2~R2 —RI~ =V2R21, u, =R„r„/d„,
(72

R,'"= R;"=-.' (R, + R,),
For the triple frequencies (atoms 1, 2, 3)

(R21 + R32 +813)
2 3 2/2

u1 (R21 I 1+ R32 12+ R13 13)/d+ p

(73)
RI 2 (R1+R24 42 2(R2+R3)t R3 2(R3+R1)
HRV

To facilitate a practical Monte Carlo evaluation
of these integrals, one must avoid generating the
order of magnitude of J~ in a statistical manner,
e. g. , a number O(10 3) generated by having non-

(3) Since the surface-integral expression given
in Eq. (70) is correct to order Z /&3 = 10 'Z it is
clear that the surface-integral formulaimplemented
with a given set of approximate home-base func-
tions sums all first-order perturbation-theory
contributions calculated with the corresponding
approximate eigenfunctions. These conclusions
are correct subject to the analytic form chosen
for (' in Eq. (66) and the requirement that J cal-
culated with a given approximation to the home-
base function be reasonably good, i.e. , J'/23« l.

APPENDIX B. COMPUTATIONAL TECHNIQUE

A combined cluster approximation and Monte
Carlo technique has been used to evaluate the
many-body surface-integral expressions for the
(1) and (2) pair- and the (112) triple-exchange
frequencies. The former aspect has been dis-
cussed in Sec. IV. We describe here the Monte
Carlo evaluation of these n-body cluster integrals.
We then describe our tests of this technique.
Finally, we point out that this combined approach
is far superior to that used previously to calculate
the (1) pair-exchange frequency, 7 and that it may
also be more generally useful in evaluating other
many-body integrals involving wave functions of
the form of Eq. (4V), i.e. , the Jastrow-Gaussian
form.

The n-body cluster integrals discussed in Sec.
IV are given by

-Ad /«2
pe2m

negligible contributions to the integral from only
one out of every 10 configurations. This matter
is elaborated elsewhere in a treatment of the (1)
pair-exchange calculation, ~ where two coordinate
transformations were used to put the integral in
a form amenable to practical computation. For
our present purposes we note that the first trans-
formation used in that work is effectively incor-
porated in Eq. (Vl) by our having factored out the

Agf /4Gaussian overlap e ~~ . The second-point trans-
formation used there is necessary for our calcula-
tions of the (1) and (2) pair frequencies. Letting
r& and r& be the original and transformed coordi-

rh

nate, respectively, it is given by r,'=r, + & pz»,~ ] f ~ )r2 = ra - 2 pf'2» and r, = r; for z - 3, where p - cr and
0 =2. 556A. For the pair calculations, then, we

use the following form of Eq. (Vl):

e-A(««21 +P 1/2
ya«r 21

x dr1 . . . dr„6(uI) II exp[-A(r« —EP,")2]V„
J

dr . . . dr II «,
'f «1 y' (74)

1=2

where
V„(r„.. ., r„) = e "'"12(1+p/«12)E„(rII . . . , r„')

(76)

u1 = '521 r12jv/2

(76)

(V7)

u, =g '(~«)/vX+U, (num~, i-2),
«,„=g (so )I/vp«+ R, (den),

where

g(x) =(1/~m)f"dte '

i = 3j —n, and ~ = 0, 1, 2 corresponding to the x,

For calculation of the triple frequency, Eq. (Vl)
is already in adequate form, as the short-range
correlations amongst the three atoms have a much
less severe effect than in the pair case. In the
following, we shall explicitly refer only to Eq. (71).
It is to be understood that for the pair frequencies
we actually calculate Eq. (74), and so the appro-
priate Ena should be replaced by e "' '

Vn.

The Monte Carlo evaluations of both numerator
and denominator of Eq. (71) were performed si-
multaneously. For the numerator, it was convenient
to work with variables Q2 ~ ~ ~ Q3 obtained by or-
thogonal transformation from r„.. . , r„, in order
that the 5 function could be explicitly integrated
(the same transformation defines U, in terms of the
R«"). Separate configurations for the numerator
and denominator were generated according to the
Gaussian parts of the respective wave functions
using the same set of 3n random numbers u„
0-ED' -1~
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y, z directions. The numerator and denominator
were obtained [aside from factors of (pj's)'~"-~'~2
and

(pj's)

"~ ] by averaging E„over the appropriate
sets of configurations. For n = 8, convergence
was generally reached between 4000-8000 config-
urations, and subsequent scatter in the value of J~
was less than a few percent. For this same value
of n, the running time for 10000 configurations on
the CDC 3800 was about 6 min.

The programs were tested in several ways. The
two-body cluster integrals for the (1) and (2) pair
frequencies can be reduced to one-dimensional in-
tegrals for independent computation. The n = 2
Monte Carlo results easily agreed with these in-
dependent results to better than 1/o. Furthermore,
the converged (with n) values for the (1) pair fre-
quency agree to within 6% over the whole density
range considered with earlier Monte Carlo calcu-
lations of this same frequency, '~ which used a con-
siderably different method. This is well. within the
combined uncertainties of these two calcul. ations.
A test of the full many-body nature of the triple-
exchange program was made using the test correla-
tion function

B(y(r(g Egg)

B&~=B i,j near neighbors

= 0 otherwise

While the Monte Carlo calculation with F,st is of
the same order of difficulty as our calculations
with the Nosanow correlations, the full integral as
well as each of the cluster integrals may be re-
duced analytically in this case to one-dimensional
integrals for independent computation. The in-
dependent calculations showed the value of the full
integral to be increasingly reduced, and the cluster
integral to converge less rapidly, as B increases.
We chose B=—3'2A, A =1.30A to make the test,
in which case the full integral is reduced by more
than three orders of magnitude over its value with
B=O, and the n=16 cluster integral is about a
factor of 5 larger than the value of the full integral.

The Monte Carlo evaluation of the n = 16 cluster
integral was found to agree with the corresponding
independent calculation to better than I /~.

In a previous calculation'7 of the (1) pair fre-
quency it was seen that the many-body short-range
correlation effects in solid 3He are quite important
to the exchange process. That calculation incor-
porated 54 atoms, with periodic boundary condi-
tions, in the usual attempt to minie an infinite lat-
tice. The results reported in Sec. IV of this
paper, however, show that those many-body ef-
fects which are most important to the exchange
process are associated almost entirely with only
those few immediately surrounding neighboring
atoms which in some sense directly get in the way
of the exchanging atoms. This fact permits a dis-
tinct improvement in the speed and accuracy of
the Monte Carlo calculations in that one need only
evaluate relatively low-dimensional integ rais.
(The present method is about an order of magni-
tude faster than the earlier one. ) A second im-
provement exhibited in our present technique is
that rather than the full wave function, -only the
Gaussian part is used to generate the configura-
tions. This allows one to handle the 5 function in
a simple and rigorous manner. The 5 function was
a source of some difficulty in the earlier work.

We feel that the combined cluster approximation
and Monte Carlo technique used here may be useful
in evaluating other many-body integrals involving
Jastrow-Gaussian wave functions. In addition to
exchange integrals, single-particle densities and
matrix elements of two-body potentials should be
amenable to this technique. We have in fact used
it successfully in ca1.culating the single-particle
density for bcc He. Recent criticism of cluster
approximations is really directed at the two-body
approximations most often used. We suggest that
retention of a more realistic number of neighboring
atoms in the cluster approximations will yield
quite good approximations, and that such relatively
low-dimensional integrals may be evaluated fairly
quickly and accurately by the Monte Carlo tech-
nique.
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Sound-Modulated Flow of Superfluid Helium through a Small Orifice: An Attempt to
Observe the ac Josephson Effect~
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Two chambers filled with superfluid helium to different levels were connected by a small
orifice (10-15 pm). The flow of the liquid through the orifice was modulated by a sound field.
With one experimental apparatus only a continuous flow was observed. With a modified ap-
paratus it was possible to obtain stable states with no net flow at finite level differences be-
tween the baths. The spacing between these states is inversely proportional to the sound fre-
quency. It depends on the total height of the liquid in one of the baths and not on the level differ-
ence between them. We conclude that the stable states of zero flow result from ultrasonic
standing waves of the superfluid in one of the chambers. A phase coupling or Josephson effect
can be excluded as an explanation for these states.

I. INTRODUCTION

One of the most fascinating aspects about super-
fluid helium is the similarity of many of its proper-
ties to the properties of metallic superconductors.
The many analogies between these superfluids sug-
gest the possibility of observing the ac Josephson
effect in Hen. Experiments whose results were
interpreted as the ac Josephson effect in superfluid
hell. um were reported some years ago in Refs, 1
and 2, and recently in Ref. 3. Inthese experiments
two chambers filled v, ith superfluid helium to dif-
ferent levels were connected by a small orifice, as
shown in Fig. ).. Although this orifice is very
large (about 10 pm) compared to the coherence
length of Herr it is supposed to act as a "weak
link" between the two baths. Below the orifice an
ultrasonic transducer is mounted. Its sound field
can modulate the flow of superfluid through the
orifice. The authors observed interruption of
flow at distinct level differences ~z between the
two baths. The arrests seem to occur whenever

n j fplg+8 = Ã3 Av
q

where nj and nz are integers, m the mass of a He

atom, g the gravitational acceleration, hg the level
difference, h Planck's constant, and v the frequen-
cy of sound.

This Josephson frequency relation proposed by
Anderson is based on two concepts: (i) There is
a phase slippage of the superfluid order parameters
of the two coupled baths due to a chemical potential
difference between them. This difference results
from the difference mg4z in gravitational potential.
(ii) The variation ot' the phase may be synchronized
by an external sound field of frequency v. Then
the net flow between the bvo baths may be inter-
rupted whenever the difference in gravitational
potential is compensated by a constant phase slip-
page. This phase slippage could result from the
generation and motion of vortices in the orifice at
a rate (n2/n, ) v. Details can be found in Refs. 1-4.
Several aspects of these experiments have remained
unexplained, particularly with regard to what is
happening at the orifice. In addition, steps in the
flow curve have only been observed when the dif-
ference in the chemical potential was created by a
gravitational head diff erence. '

In 1968 we tried to repeat and possibly extend the
above-mentioned experiments by varying some ex-


