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energies if the interactions are suddenly turned on.
'IIf initial correlations between particles are neglected,

there is no advantage in expressing L2(i. e. , N) in terms
of the R+~'s fcf. Eq. (5.10)]; on the other hand, when
inil, ial correlations are included, it is hard to see
the structure of L2 if one does not make use of the R 's.

Note that the znore general equation. M =N+ AM ~N is
obtained from (Dl) by the transformation M gQ, N QV,
so that its solutions are obtained from those of (Dl) by
the same transformation.

This is because if two successive collision times v
&

and T&+& in a product such as Il&mz&(~, Tf) s ~ ~ +$ —+2 +3~ ~ ~ y

are separated by more than the maximum collision dura-
tion t~ =max—(tr j, then the operators mr separate into
two time-disentangled groups, and the average ( ) of
their product factorizes: (II&mz ) |,II&& ~mz ) (II~q~mz &).
Now, the general term in Nq(t, v') is of the form (5.6),
with the correspondence A;(t, s&) mz (8, s~) and A P;
if for some i, (s;,~

—s~) &t a„, then the operator P appear-

ing between mz& and mz &,&
has the same effect as the

operator 1, which implies that the first two order terms
in the density expansion of N(t, v} exist in the limit
t —, by the same type of argument as those following
Eq. (5.6).
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The molecular-dynamic method was used to simulate a fluid of 500 rigid diatomic homo-
nuclear molecules interacting by a double Lennard-Jones potential. The equilibrium and time-
dependent properties are calculated in the liquid phase. The computed pressure and the in-
ternal energy agree quantitatively to a few percent with experimental values for nitrogen. The
reorientational and the velocity of the center-of-gravity self-correlation functions are also
discussed. The memory-function formalism and the extended-diffusion models are used to
interpret the reorientational self-correlation functions. The analysis reveals that these self-
correlation functions have an exponential behavior for times larger than 5 && 10 sec. In this
model, considering present computing precision, there is no observable hydrodynamic-type
relaxation in the reorientational. self-correlation functions.

I. INTRODUCTION

The molecular-dynamic (MD) method has been
widely used to study the monoatomic fluids.
Recent computer experiments, considering a Len-
nard —Jones (LJ) potential as the interaction be-
tween pairs of particles have lead to a determination
of several thermodynamic properties (pressure,
internal energy, and phase transition ), the equi-
librium cor relation functions, the self- correlation
function of the velocities, and the self-diffusion
coefficients. For argon, the calculated quantities
agree within a few percent with the experimental
data. The purpose of this comparison between
computed and experimental values is not to demon-
strate that the real potential is a LJ potential (for

instance in argon), but to establish that the pro-
posed model has all the significant physical prop-
erties of a real system. Then the simulated sys-
tem can be considered as a reference for theoreti-
cal studies of equilibrium and transport properties.

Up to the present time very few MD results on
polyatomic liquids have been obtained, mainly be-
cause the molecular interactions are badly known.
To our knowledge, the only MD calculations on
polyatomic fluids have been carried out by Harp
and Berne using a Stockmayer-type potential to
simulate CO and N2 and by Rahman and Stillinger
to simulate H&O.

In this work, we study another type of interaction
potential, the so-called diatomic potential. This
potential has been successfully used to determine
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the structural properties and the phonon spectra for
0, solid nitrogen. "'" A two-dimensional MD calcu-
lation using the same potential' gave the expected
qualitative behavior for the reorientational self-
correlation functions (scf). We shall test the valid-
ity of the diatomic potential by taking liquid nitrogen
as a reference. We have chosen this specific fluid,
because the potential parameters are well deter-
mined and experimental data are available.

In Sec. II we describe in detail the simulated sys-
tem and discuss the integration method used to
solve the equations of motion. In Sec. III we give
the computed pressure and internal energy for two
isochores. These isochores are calculated at two
nitrogen densities, at the triple point and near the
boiling point. In Sec. IV, the scf are discussed and
their relaxation times tabulated; the self-diffusion
coefficients are also given. The analysis of the
vectorial and tensorial scf reveal an exponential
behavior at long times (- 10 "sec), but for the an-
gular momentum scf, the decay is so fast that no
prediction of their long-time behavior is possible.
The velocity center of gravity scf are similar to
those of monoatomic fluids, but show some particu-
larities connected with the different types of relaxa-
tion of the velocity components parallel and per-
pendicular to the molecular axis. In Sec. V we
consider two phenomenological approaches frequent-
ly used to interpret the reorientational scf; the
memory-function formalism and the extended dif-
fusion models. 3 In the first approach, the intro-
duction of the first few moments and the relaxation
time is sufficient to describe satisfactorily the
computed scf. But for the second one, despite the
qualitative agreement between the computed and
the approximated scf, no conclusion can be given
about the validity of these models. Finally, in.

Sec. VI we discuss the connection between our re-
sults and previous computation on diatomic liquids.

II. DESCRIPTION OF MODEL: INTEGRATION PROCEDURE

We consider a system of N rigid diatomic mole-
cules contained in a cube of volume V with periodic
boundary conditions. We take N= 500. The inter-
action between any two molecules j and k are char-
acterized by the diatomic potential U'q» (Ref. 9, 10):

4

U's~ = Zv(x„),

where

with the parameters" z = 0. 6067&&10 ' erg and o'

= 3. 341 A. The x„re athe distances between the
center of force associated with the nonbonded atoms
of any two molecules. The centers of force are
located at a distance d' from the molecular center
of gravity, while the interatomic distance is I,

with d = 0. 1646o.
We denote by R& the position vector of the jth

molecular center of gravity and by u& a vector of
magnitude d' going from the center of gravity to
one atomic interaction center. Then the positions
of the two atoms belonging to the jth molecule are

Xxy = ~y + Qf uy, xg = Xg —Qf u), (2)

where n =d/d'. In most computations we put n = 1.
A schematic representation of the model is given
in Fig. 1.

The kinetic energy of the system is written as
N ~ e

K= —,'m Z [R', + o, 'u,'J
gR f

N ~

= 2m Z [X&+ d (8& + sin 8& p& )J,
5=1

where m is the molecular mass. 8& and p& are the
angular coordinates of vector u&, as is shown in
Fig. 2. We denote by f» the force between the cen-
ters of gravity of molecules j andk sothattheequa-
tions of motion are

(4)

4I e 1 ~ eU
8y = sln8y cos8g (pg —

2 Z
md ~~ &8)

10 gU
9»= —2cot8& 8& q» ———

2md sin 8&

These equations are of the form 0(f) =y(s (t), 5 (t)),
where y is an arbitrary function. To solve them
we use an algorithm obtained by Taylor expansion
of s(t+ b f) and s(t —d f). By summing up both
expansions we find

s(t+ 4t) = 2s(t) —s(t —rh, t)

i (ht)'y(s(t), s(t))+O(d t4), ' ('I)

FIG. 1. Potential model used to simulate homonuclear
diatomic liquids (Ref. 9). The four LJ interactions be-
tween neighboring molecules are indicated by dashed
lines. For the first molecule, 0 represents the position
of the center of gravity, P~ and P~ the atomic positions,
and Q~ and Q& the atomic interaction centers. The same
with primes, for the second molecule. The molecular
orientation angles are defined as follows: 8~ and 82 are
the polar angles measured relative to the vector connect-
ing the centers of gravity of the interacting molecules,
and P is the difference between their azimuthal angles.
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and by subtracting them,

s(t) = [s(t+ ht) —s(t —dd)]/2ht + O(hf2) . (6)

This algorithm is useful only when the y function
is independent of s(t), because Eq. (8) gives s(t)
as a function of the unknown s(t+ ht). Therefore,
only the translational. equation of motion can be
solved by (V). To solve Eqs. (6) and (6), we compute

81 and P) by

81(t+ 4t) = 81 (f)+ ht 81(t)+ —,
' d f 8 1(t)+ O(ch f')

~f [~2' 81(f+ &f) —681(t)+3 82(t —b, t)

and

—
2 81(t —2hf)]+ O(ht2) (9)

sin281 (f+ 4t) y2(t+ &f) = sin 81(f —&f) y1(f —&f)

+ 2&t
&

[sin'8&(t) p1(t)]+ O(&f') . (10)

Here, 8& and P& are obtained from a relation simi-
lar to (V). The choice of these equations yield a
good stability of the integration algorithm.

The term sin 8& in Eq. (6) introduces numerical
errors in the computation of p& when 8& is nearly
0' or m'. To avoid this difficulty, when 0' & 8& &,'p m

or gp
7l' & 8y & m, we change the definition of the

spherical angles 8&, p& to 8&, p& or vice versa. '
This situation is shown in Fig. 2. As this change
does not modify the expressions of the center-of-
force Cartesian coordinates, the computations of
the intermolecular forces are independent of the
angular definitions. The previous algorithm, Eqs.
(V)-(10), has been tested for a free rotator and

for an X particle system in which density and tem-
perature conditions are extreme. When we use it
in a simulation of 800-1000 integration steps with
&t = 5~10 "sec, the relative variation for the
total energy and the total linear momentum are of
the order of 10 -10 '. Nonconservation of energy
and total momentum is due to the LJ potential cutoff

at &„=3. 20, to the algorithm which is only exact
up to order (&t)4, and to the finiteness of the inte-
gration step.

The initial conditions for the integration process
are selected in such a way that the positions of the
molecular center of gravity and each molecular
orientation correspond exactly to those of the nitro-
gen e phase. ' Furthermore, translational and

angular velocities are chosen according to a Max-
well distribution. Then the system evolves until
equilibrium is reached. This condition is obtained,
first, when the temperature and pressure do not
systematically increase nor decrease, but both
fluctuate about their average values, and second,
when the density corresponds to a liquid phase, i. e. ,
when the melting factor p2=$&. , cos(k ~ X1) varies
bet ewe n+N' and —N' (here k is the smallest
vector of the reciprocal lattice). Once thermo-
dynamic equilibrium is attained, we start the calcu-
lation of the average values and the evolution of
the system is recorded.

Throughout our computation we use reduced units
r*=r/o', T*=I2sT/e, p2'= po', p*= (o'/e)p, t*=t/2.„
where T is the temperature, k~ the Boltzmann con-
stant, p the molecular density, p the pressure, and
f the time, with so= (112&/24')' 2= 2. 9848&&10 '2 sec
when the nitrogen molecular mass and the LJ pa-
rameters correspond to nitrogen. "

III. THERMODYNAMIC QUANTITIES AND STATIC
PROPERTIES

In Sec. IIIA we give the computed internal energy
and pressure and we define the radial pair-corre-
lation functions in terms of which those thermody-
namical quantities are expressed. In III 8, we
discuss these correlation functions. Finally, in
III C we give the computed static structure factors.
Comparison with experimental data for liqui d ni-
trogen is given as well.

A. Thermodynamic Quantities

The internal energy is computed from

g /
/r /

and the total pressure from the virial theorem

(12)

=Y
where p is the molecular density, X»=X& —X~, and
the brackets ( ) indicate time averages. The
time-average quantities can be rewritten by intro-
ducing the atomic pair-distribution function

FIG. 2. Frames of reference used to measure the
spherical angles 8 and y or 8' and y', required to
evaluate the components of the molecular orientation u{t).

P(r1 2 ~1 2) (P / v )Z (r 1 r2 ~1 f12)

(13)
This function represents the probability distribu-
tion of finding an atom of one molecule at r&, with
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orientation A„and an atom of another molecule
at rz, with orientation Qa. (Q~ corresponds to the
variables 8& and p& characterizing the orientation
of u~).

For liquids, the correlation function g depends
only on r = r2- r, and on 0, the relative orientation
between 0, and 0, . Then we can write

ffg (r„rz, A„Az) dr, dA, = 4v'Yg 0(r, &). (14)

As the molecule has a cylindrical symmetry, g0
(r, 0) is only a function of r, 8, and 0, when 8 is
the angle between r and the orientation vector u

of one of the two molecules. We define

i,
p

lt

$0.
10.

2.
2vg, (r, 8)= J g,(r, 8, A)dA,

ga(r)= f g,(r, 8)sin8d8 .
Then the internal energy given by (11) can be re-
written as

(15)

Uz -—- 16vp f v(r) g2(r)r'dr

and the pressure given by (12) as

P= p&g&+Pg+ p2,
where

(16)

2P, =--, ~p
"

&v(r)
g z(r) rSdr, (16)

e~ (r&

8y
0

x g& r, 8 cos8sin8d8 . 19
0

In the MD experiments we compute gz(r) for r
~ 3. 20'. The long tail corrections to Eqs. (16) and

(18) are calculated by settinggz(r) = 1. In Eq. (19)
we neglect this correction because in a fluid, for
r &r„ the correlation functiong, (r, 8) is almost
independent of 8; hence, in (19) the angular inte-
gral vanishes. We have another kind of error in
our values of P* and Ug owing to the limited time
averaging. These errors denoted by &P* and by
& Ul* can be evaluated by comparison between sev-
eral independent computations of the same duration
and at the same p* and T~. The estimated values
are 4P*= 0. 2- 0. 1 and AU/ = 0. 1-0. 05.

The values for P* and Ul are given in Table I.
The comparison of the equation of state with experi-
mental data for nitrogen is done in Fig. 3. The
densities of the two computed isochores are p*
= 0. 696 and p*= 0. 622, and correspond, respective-
ly, to triple-point and near-boiling-point densities.
The agreement with experimental results is satis-
factory and sufficient to establish the reliability of
the model. The fact that at low temperature the
P* computed values are lower than the experimen-
tal ones and that at high temperature the situation
is reversed could not be improved by rescaling the

FIG. 3. Equation of state. Full lines give computed
isochores; the upper one corresponds to p* =0.696 and
the lower one to p*=0.622. Dots represent MD results
and cross experimental values (Ref. 13) for liquid nitro-
gen. Dashed lines are the coexistence curves, between
solid and liquid phases and between liquid and gas phases.

LJ parameters. We have modified the parameter
a =d/d' without altering s and o'. The results ob-
tained at p*= 0. 696 and T*= 1.79 are P*=4. 6 for
e = 0. 9, P*= 0. 48 for 0. = 1. 1, and P*= 2. 1 for 0.
= 1. The experimental pressure for nitrogen is P*
= 2. 0. The value e= 1 seems to correspond to the
most realistic situation.

The equation of state can also be obtained from
equilibrium perturbation theory. '4 The center-of-
gravity radial correlation functiongo(r) determined
from this theory was compared with the MD re-
sults at triple point (p~ = 0. 696 and T*= 1.5). ' The
comparison between these functions gives an agree-
ment similar to that reported by Sung and Chand-
ler. Nevertheless, the pressure computed from
the theoreticalgo(r) departs strongly from the MD
data reported in this work.

B. Atomic Pair-Correlation Functions

We have defined in Eq. (15)the atomic pair-correla-
tion functions g&(r, 8) and gz(r) In Fig. 4. , g2(r) is
plotted at p*= 0. 696, 7.'*= 1.83 and 4. 03. These
functions differ strongly from the monoatomic pair-
correlation function at the same thermodynamic
state (for instance at triple point). The first peak
of g~(r) is not so high, it is broader, and has two
humps which correspond to the atoms of the nearest-
neighbor molecule. Otherwise, the molecular cen-
ter-of-gravity correlation function gn(r) looks like
the monoatomic pair-correlation function at simi-
lar state, as it is shown in Fig. 4, where the go(r)
function is also given for the triple point (p*= 0. 696
and T*= 1, 51).

In order to determine the number of nearestmole-
cules, we have computed the coordination number:
4'

f0�
"g,(r)r 'dr, where r„corresponds to the

first minimum of ga(r). For any temperature, the
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TABLE I. Computed thermodynamical quantities.
First and second columns give the density and the tem-
perature of the system. Columns 3, 4, and5 correspond,
respectively, to pressures P*, P&*, and P2, evaluated
from formulas (17), (18), and (19). Last column is the
internal energy U& given in (16). All these quantities are
expressed in reduced units.

p* T P P( P2

2. 12 0.026 —2. 734 1.485
0.6220 2. 57 l.968 —1.293 1.667

3.48 5. 812 + 1.605 2.028

-16.35
-15.93
-15.10

0.6964

1.51 0.303
1.62 0.824
1.76 2. 120
2. 12 4. 208
3.14 10.452
4.03 15.239

—2. 636
—2. 298
—l. 246
+0.396
+5.375
+8.965

2.099
1.992
2.152
2.336
2.918
3.465

—18.89
-18.75
-18.49
—18.06
-16.76
—15.77

FIG. 5. Pair-correlation function g~(r, 0) at p*=0.696
and T*=1.53. The distances in reduced units correspond
respectively to: 0.94 (1); 1.10 (2); 1.30 (3); 1.39 (4);
and 3.15 (5).

value obtained at p*= 0. 6S6 is between 11 and 12,
whereas from neutron diffraction experiments it is
about 12'7 and from x-ray diffraction experiments
it is about 10.

The function g, (r, 8) has been computed at ps
=0. 6S6 and T*=1.53 and is represented in Fig. 5~

as a function of 8 for several values of ~. When r
goes to infinity, g, (r, 8) goes to 0. 5. This value
corresponds to an uncorrelated situation and it is
attained approximately at =rr( cruev5). But for
smaller distances the curves show minima or maxi-
ma, implying the existence of strong correlations
in the positions and in the orientation for the mole-
cules in the three first-neighbor shells. Figure 6
gives an idea of the organization of the first-neigh-
bor shell. There we sketched a rigid diatomic

molecule by two circles of diameter 20 whose cen-
ters are at a distance 2d (dumbbell molecule). As
is expected, there is a symmetry with respect to
an axis passing at the molecular center of gravity
and perpendicular to the molecule axis. The most
probable positions of the neighboring atoms are
given by the maxima of g, (r, 8). These maxima
are situated on two circles of same radius and
centered, respectively, on each atom of the ref-
erence molecule.

C. Static Structure Factor

Neutron- and x-ray-diffraction experiments in
nitrogen ' lead to the determination of the static
structure factor 8(k). It is defined by

8(() = Z (e'"'s ~ e' '*&) )2K

«»1 «1.tk O(~ -x&i&

N

N~ cos2k u& +1.
N (20)

I

l
l

l

/

6

FIG. 4. Computed pair-correlation functions at triple-
point density p*=-0.696. Solid line represents the atomic
pair-correlation function g2(x) at T = 1.83 and dot-dashed
line the same function at T*=4.03. Dashed line corre-
sponds to the molecular center-of-gravity pair-correla-
tion function g&(x) at T =1.51. The distance is in re-
duced units.

But, as the angular distribution of the vector u&

is uniform, we can write

S(k) = 1+ sin(2kd)/2kd

+4pf e '[ga(r)- 1]d r+4p5(k) . (21)

This formula gives a very simple way to compute
S(k), if we know ga(r). But our MD calculations
give gs(r) only for r(r„, and we cannot use the
approximation ga(r) = 1 when r )r„because S(k) will
be poorly calculated for sma11 k. Neither can we
extrapolate ga(r) for long distance using deerlet's
procedure, because the interaction does not have
spherical symmetry. Thus, the only way to com-
pute S(k) is by using Eq. (20) directly, In Fig. 7,
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FIG. 7. Atomic static structure factor S(k) for nitro-
Ex ' tal results (Ref. 18) are indicated by

dashed line at the triple point (p*=0.696 and = . )
and by solid line at the boiling point (p*=0.649 and T*
=1.75). Dots represent the MD results at equivalent
thermodynamical states. The k units are zn '/2m.

FIG. 6. Structure of the first-neighbor shell for a
dumbbell molecule. The maximum of g& (~, 8) is given
for different orientations as a function of the distance,
which is measured from the origin 0 in reduced units.
The angle e is measured from the u direction and dots
represent t e cen er oh t of gravity and the atomic positions.

8(k)
' ared with the experimental resul s. 18is compare w'

The first and second maxima of the computed 8(k)
are located at 0=0.942 A and 0=1, 753 A ' re-
spectively. They correspond exactly with the ex-

erimental values but their heights differ up to
8/q for the first peak, 5% for the second one a

of atoms than indicated by experimental results.
Figure 8 shows the static structure factor at p*
= 0. 696 for two different reduced temperatures,
1.83 and 4. 03. The position of the first maximum
is almost temperature independent at constant den-
sity, but its height decreases, indicating a pro-
gressive isappe rd' pearance of the local order in the
fluid, when the temperature is raised.

The errors in the calculation of 8(k), as well as
in all computed quantities, are due to the limited
number of time configurations. A second source
of error in the calculation of 8(k) comes from the
periodic boundary conditions which limit the num-
ber of k vectors with the same magnitude Ikl en-

tering in the evaluation of Eq. (20). Finally, the
total error is estimated at 3-4%.

IV. TIME-DEPENDENT SELF-CORRELATION FUNCTIONS

The scf of a microscopic quantity A. , (t) associ-
ated to the ith molecule is computed in a MD ex-
periment by the formula

tl
~I

I
/

lq

0.5
FIG. 8. Atomic structure factor at triple po~nt dense

and two different temperatures. Solid line corresponds
to T*=1.83 and dashed line to T*=4.03; k is measured
in A-'/2~.
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T

E„(t)= Z A, (7)A((t+ r)d
5"-1

= 8(0)A(t)&/&A'(o)&,

Z A)(r)A)(7')dr
=1

where T is the duration of the simulation (T =10 "
sec).

In this section we study the. scf associated with

u~(t), ~~t(t), and J&(t) = mu, (t) &cu&(t), the angular mo-
mentum about the center of gravity of the molecule.
We denote these functions by Ev(t), Fo(t), and

Fz(t), respectively. We also study the function
E;(t):

F~ (t) =- k [3&(w(0) ~ w(t))'& —lj, (23)

where w~(t) = u, (t)/d'. The functions Ev(t) and Er(t)
are known as the first and second spherical har-
monics of the molecular orientation. The proper-
ties of these five functions have been discussed
extensively elsewhere. '

In the reported MD experiments, the maximum
value of t «s 6. '7 v0= 2. 0&& 10 ' sec, but for times
greater than 4v0= 1. 2 10"' sec the statistical fluc-
tuations have the same order of magnitude as the
value of the scf (about 0. 02).

A. Reorientational scf

For a free rotator the reorientational scf are
given by

E'„(t)= f &re '"'~'cos(&t) d&,
0

(24)

Er(t)= 4 J &ue
" i f3cos(2tut)+ ljdv . (25)

Comparison with the computed scf (Figs. 9 and 10)
leads to the conclusion that the rotational motion
in the simulated liquid is strongly hindered.

For short times, t & 6. 0&&10""sec, E„(t) and
Fr(t) decay more rapidly for increasing temperature
and cle creasing densltles as expe cted by time
expansion. But, for t &6. 0&10 sec the situa-
tion is not the same. When p~= 0.696 and T* ~2. 3,
and p~ =- 0. 622 and T~ & 2. 6, both scf decay expo-
nentialiy. The characteristic time of the exponen-
tials are nearly equal and are not very sensitive
to temperature and density variations. At higher
temperature than those mentioned before, these
scf decay so rapidly than the statistical errors pre-
vent any accurate analysis for large time. This
behavior i.s shown in Fig. 11 in semilogarithmic
scale. There we also compare Er(t) at the boiling
point (T*=- l. 75, p*= 0. 640) with the same scf given
by Gordon from Haman depolarized diffusion
data. ' The agreement is only qualitative for
t &0. 3&&10" sec.

The angular momentum scf Ez(t) are nearly in-
dependent of temperature and decay faster at higher
densities. As shown in Fig. 12, these functions
decrease rapidly towards zero and have no nega-
tive region, implying that J is quickly decorrela-

FIG. 9. Computed vectorial scf E&(t). Upper curves
correspond to triple-point density p* =0.696, where the
solid line is at T*=1.43, the dot-dashed line at T =2.30,
and the dashed line at T*=4.03. Lower curves give re-
sults near boiling-point density p =0.622, where the
solid line is at T*=2.12, the dot-dashed line at T*=2.57,
and the dashed line at T*=3.48. Each division in time
axis corresponds to 10"'3 sec. Dotted line represents the
free-rotator scf EzQ) at T~ =4.03.

ted by "collisions" between molecules. These re-
sults are partially explained for short times by a
weak dependence of the second moment of Fgt) on
T*. For long times and at p*= 0. 622 and 7.'*= 2. 12,
Ez(t) decays exponentially; but for p*= 0. 696, the
decay is too fast to obtain information on the long-
time behavior owing to the statistical error.

The relaxation times vz defined by

= f F„(t)dt (26)
0

are given in Table II. It must be noted that v'& is
very different from the characteristic time of the
exponential tail of E„(t) because, when it occurs,
the tail starts at times t &0. 5&&10 sec.

From NMR experiments on nitrogen the relaxa-
tion time v'T has been determined at temperatures
between 63 and 91'K under equilibrium vapor pres-
sure. At the boiling point the value is 2. 2&10 '
sec, while the MD result is vT= 2. 4~10 "sec; the
agreement is good considering that the uncertainty
of the experimental value is of the order of 10%%.

For this relaxation time 7T the authors report an
Arrhenius behavior: 7'T. =ce "~, with an activa-
tion energy E estimated in 100+ 30 kcal/mole.
Along the triple-point isochore and in the same
range of temperatures (l. 4 ~ T* ~ 2. 3) the MD re-
sults can also be approximated by an Arrhenius
behavior with E= 118 kcal/mole. Nevertheless, the
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~o ewase o~ ~~

0.

FIG. 10. Same as Fig. 9 for the computed tensorial scf
E&(g).

E value is so small that in this range of tempera-
ture, 7'& would be as well represented by a linear
function of T* ~.

FIG. 11. Heorientational scf in a semilogarithmic scale.
Solid lines represent Ez(g) and dotted lines Ez(g). In
central curves the dashed line corresponds to Gordon's
result. From top to bottom, these curves are obtained
at: p*=0.622 and T*=2.58 p =0.622 and T*=2.10; p*
=0.640 and T*=1.75; p*=0.696 and T*=2.30; and p*
=0.696 and T =1.43 (triple point). Time is given in
units of 10 sec.

B. Molecular Center of Gravity Velocity scf

The scf Eo(f) are given in Fig. 13. As in mono-
atomic liquids, they have a negative plateau. At
p*= 0. 622 this negative region is only present at
low temperatures. However, at p*= 0. 696, T*
= 1.43 and 1.83 there exist two minima near t = 3
~10 ' and Gx10 ' sec, which disappear at higher
T*. This fact is associated with two very different
behaviors of the scf at small times. One relaxa-
tion behavior is related with the X(t) component
parallel to u(0) and the other one to the perpendic-
ular component. We define

E'(f)= g '&[ (o) X(0)][ (o) X(f)l&, (»)

cm sec

V. MODEL INTERPRETATION FOR REORIENTATIONAL
SELF-CORRELATION FUNCTIONS

The most important aspect of the self-motion in
liquids can be described by two phenomenological

E (f)= (X ) ([ (0) ~ X(0)l [ (0) ~ X(t)]),
where s is a unit vector perpendicular to u.

Then we have

Eo(f) =Ea(f)+ 2Eo(f)

(28)

(29)

The computation of Eo(t) and Ez(f) has been done
at p*=0.696, T*= 1.83 and 4. 03. The results are
plotted in Fig. 14. They confirm the precedent
interpretation of the two minima in Ez(f).

The self-diffusion coefficient D is given by D
=AeT 7o/m. The MD values are given in Table II
and can only be compared with an estimation given by
Sears, using the law of corresponding states be-
tween argon and nitrogen. He gives D = 3. Vx 10 '
cm sec" at boiling point and we find D = 2. 5&& 10

0.

0. .

FIG. 12. Same as Fig. 9 for the computed angular mo-
mentum scf E&(g).
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TABLE II. Computed relaxation times and self-dif-
fusion coefficients. First; and second columns give, in
reduced units, the density and the temperature of the
system. The next four columns correspond to computed
relaxation times in 10 ~2 sec. Last column inc'. icates the
self-diffusion coefficient in 10 cm2 sec '.

The values of the M„'(0) are defined in terms of
successive derivatives of F„(t) at f =-0.

In order to use (34), a decoupling procedure
must be given. by assuming at some stage a simple
analytical form for M„(t); usually an exponential
or Gaussian form is chosen:

M~(i) = M~(0) 8 A

2. 12
0.6220 2. 57

3.48

0.41 0.22
0.32 0.19
0.27 0.16

0.24 0.13
0.24 0.13
0.24 0. 13

1.43

0.6964
1.83

B

4. 03

0.71
0.55
0.46
0.28

0.34
0.28
0.24
0.15

0.17 0.04
0.17 0.06
0 ]7 ~ 0 ~

0.17 0.08

0.6400 1.75 0.47 0.24 0.24 0.11

3.59
4.36
5.90

2. 52

0.75
l.43

4. 21

or

or

M (i)-M (0)e
2

M„'(i) =M „'(0)e-"~'

M'(i)=M'(0) e-'"»~

(35)

(36)

A. Memory-Function Formalism

The time evolution of the scf F~(&), defined in
(22), is given by' '"

M „(i—t') F„(f') dt' = 0, (30)

approaches: the memory-function formalism and
the stochastic models. In Sec. VA the memory-
function formalism is summarized and an applica-
tion to the reorientational MD results is given. In
Sec. QB one of the stochasticmodels, theextended-
diffusion model, is compared to exact scf. In both
approaches, the parameters defining the models
are taken from the MD experiments.

When one of these forms has been chosen, we may
either consider M„(0), M„'(0), n„, and y„as
parameters or determine them in such a way that
certain known data on the scf is reproduced. In
general, M„(0) and M„'(0) are chosen to give the
greatest number of exact F„(t)derivatives at t= 0,
being defined in terms of the mean-square values
of dynamical quantities and the molecular moment
of inertia. The M„(0) and M„(0) values which are
not simple functions of the temperature are given

where the kernel M„'(f) has the meaning of a memo-
ry or retarded-effect function and can be considered
as a generalized friction coefficient nonlocal in.ime. This kernel also satisfies an equation simi-
lar to (30), in which a new memory function M„'(f)
is introduced. In this way, an infinite set of mem-
ory functions is obtained; these functions are re-
lated to each other by a hierarchy of coupled equations.
Consider the Fourier-I. aplace transform definitions

F~(~)= J e'"'F„(t)dt (31)

F~(~) = F„(0)
—i~+ Mo (0)

—i~ + M„'(0)

—$(d+. . .

M~(v) = 1 e "'M„(t)dt, (32)

where i = 0, I, 2, . . . . Then Eq. (30) can be written as

F~(~) =F„(0)/ I.-iv+M~(&u)] (33)

and the hierarchy as FIG. 13. Computed center-of-gravity velocity scf
E~(t}. Upper curves represent near-boiling-point results
at p*=0.622, where the sol d line is at T*=2.12, the dot-
dashed line at T*= 2. 57, and the dashed line at T*=3.48.
Lower curves give the triple-point results at p* =0.696,
where the solid line is at T* =- l.43, the dot-dashed line
at T*=1.83, and the dashed l.ine at T =4.03. In both
curves the time unit is 10"~3 sec.
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y&=m&(O)/ftf &(0) ~& . (36)

'(

p

~

0].
l

0.
l'

lI

FIG. 14. Analysis of the relaxation behavior in E+(P)
at triple-point density p* = 0.696. Upper curves corre-
spond to T*=4.03 and lower ones to T*=1.83. In both
cases, the solid lines represent E@(t), the dot-dashed
lines I'~ (t), and the dashed lines 2E~(g). Time scale is
in 10 ~2 sec.

in Table III. The two other quantities, +& and y~,
are chosen to obtain equal relaxation times of the
scf calculated from (35) and (36) and from MD com-
putation. With this choice the approximations (35)
correspond to two and three exact E„(f)derivatives
at f=0. Then, from (33) we obtain

The exponential memory functions give a very
simple analytical representation of the scf just by
linear combination of exponentials. This result
comes from the fact that the denominator in Eq.
(34) is a polynomial in to. On the other hand, an
advantage of the Gaussian memory functions is to
present the correct time-parity in the scf. How-

ever, at the same order of approximation in the
hierarchy (34), both analytical forms lead to simi-
lar results.

We show in Fig. 15 an example of the applica-
tion of the approximation given by Eq. (35). Com-
parison between the scf derived from this approxi-
mation and the vectorial scf Ev(f) at p*= 0. 696 and
T*= 1.83 gives a very poor result. In the exponen-
tial case the disagreement is stronger than in the
Gaussian case, because the former short-time
behavior is not correct. Moreover, the exponen-
tial decay observed in Fig. 11 is not well repro-
duced. The next order approximation in the mem-
ory function, Eq. (36), is given in Fig. 16 for the
same scf at the same thermodynamical state.
Here the agreement between postulated and exact
scf is satisfactory, being good at short times, and
for t &10 ' sec both functions differ in quantities
of the background-noise order (estimated in a 0. 02).
Also, in this approximation the long-time exponen-
tial decay is well reproduced. In fact, from the
MD results the decaying characteristic time of this

o'~ = &~~~(0) (3V)

The approximations (36) correspond to four and
five exact F„(f)derivatives at t= 0. Thus, from

TABLE III. Mean-square values for the center-of-
gravity acceleration (at) and the torque about the molecu-
lar center of gravity (A2). First and second columns
give, in reduced units, the density and the temperature
of the system In the th. ird column (at) is given in 10~8

(cm/sec2} and in fourth column (R2) in 10 t ergst. The
corresponding conversion factors to reduced units are
(at) =14.0595&& 10 (a*t) and (Rt) =8.4807x10 t (R*).

0.6220

0.6400

0.6964

2. 12
2.57
3.48

1.75

1.43
1.83
3.14
4.03

6.69
8.97

14.27

5.33

5.10
7.55

17.02
24. 56

&R')

21.29
27. 74
44. 12

16.79

16.45
23.40
52. 41
75.98

~ ~ S ~ ~0

FIG. 15. Comparison between the memory-function
formalism and the MD results for the vectorial scf E~(t)
at p*=0.696 and T*=1.83. The exact sef is in solid line
and the sef derived from postulated memory functions
[Eq. (35)] are indicated by a dashed line for the exponen-
tial case and by a dot dashed line for the Gaussian ease.
Time scale is in 10 ~3 sec.
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quires the computation of the mean-square value
of the time derivative of the torque (R ).

The memory-function formalism cannot be ap-
plied to analyze the tensorial scf Er(f), and for
Eo(t) it is more complicated .However, the for-
malism is well adapted to describe E„(t) and Fz(t),
in particular because their structure is very
simple —they are always positive and decay exponen-
tially or go to zero very rapidly (Figs. 9 and 12).
At times I'= 10 ' sec these two scf do not have the
complex structure of Eg(t); inparticular, the struc-
ture of Ez(t) gives no indication about the existence
of an hydrodynamical behavior.

o. 5. 10.

FIG. 16. Same as Fig. 15for a higher-order approximation
in the memory functions [Eq. (36)].

scf is equal to 2. 0vp, while from the exponential
memory function given in (36), it is equal to 1.9vo.
For all thermodynamical states reported here, the
denominator in (34) has always two complex roots
and one real root. The later corresponds to the
longest decay time. It is this time which repro-
duces correctly the behavior shown in Fig. 11.
For instance, the values obtained from the MD and
from the analytical solution of Eq. (34) are, re-
spectively, 2. 4vp and 2. 5v'0 at p*= 0. 696 and 7*
=1.43, and 1.0ip and 1. 1vpat p*=0.696 and T*
= 4. 03.

In conclusion, the previous study shows that the
knowledge of the first two moments and the relaxa-
tion time are enough to represent Fr(t). This
representation is limited by the errors produced
in the MD calculation, their estimation summing
up for 3-4% with a noise background of the order
of + 0. 02 for t &10" sec. Therefore, taking into
account that the model simulated here seems quite
realistic, any experimental study of Fv(t) which
lacks a higher precision than the MD results will
probably give very little information about the de-
tails of molecular motion in diatomic liquids. In

fact, from a knowledge of Ev(t) with an MD pre-
cision we can only deduce the values of the relaxa-
tion time 7„and the mean-square torque (R2).

The MD angular momentum scf Ez(f) at p*= 0. 696
and T*=1.83 is compared to Fig. 17 with the scf
obtained from approximations (35). At intermedi-
ate times (f = 5&&10 ' sec) the agreement between
the exact and the postulated scf is somewhat better
than for E„(t) at the same order of approximation.
For I'&10" sec, the agreement is also satisfactory
owing to the rapid decorrelation observed in Egt).
In order to improve the agreement, it would be
necessary to introduce the next moment, which re-

P(nt)= , (
—

)
e' ', (39)

which gives the probability for one molecule to
bring about n collisions during a time I;, v being
the mean time interval between two collisions.

The models differ in the description of the colli-
sion effect on the angular momentum J(t). 8 s4 It
is assumed that the collision randomizes at least
the orientation of J and that each collision termi-
nates a free rotation step characterized by its
angular frequency +„.

Following Gordon, the vectorial scf F„(t) can
be written as

nf .

F~(t) = Z „dt„cosv, (t —f„)
wp

10.
L

15.

FIG. 17. Same as Fig. 15 for the angular momentum scf
&&(t).

B. Stochastic Models

The reorientational motion in liquids has been
discussed as a binary collision process. General-
ly, this process is governed by a Poisson distri-
bution



SIMULATION OF DIATOMIC HOMONUCLEAR LIQUIDS 1103

n

dt„,costa„(t„t-„.,)

dticos+2(ta —ti) cosaiti I'(&, t) .
0 (40)

A similar procedure can be applied to compute the
tensorial scf when cost@„t is replaced by &[3
&icos(2~„t)+ 1]. The effect of the collision is then
considered in two extreme situations, the so-
called M diffusion and J diffusion. The reorienta-
tional scf will be denoted by two indexes, one in-
dexX describing the type of model% or J and
another index k specifying the order of the spheri-
cal harmonics. Then from (40) and (39)

E'(t) =e '/'G'(t),
with

(41)

tff

Gx(t) = ~ ~ «.fx(t —t.) dt.-ifx(t. - t.-i)

t~
«ifx(ta- ti)fx(ti), (42)

where the functions fx(t) will be explicited later on.
In the M-diffusion model only the orientation of

J is randomized by the collision, and all the angu-
lar velocities +„are equal to co. This frequency
is distributed over a classical Maxwell distribution
and

F„'(t)=e '" f" (ue ""'G„'(t)d(o .
0

Here Ge(t) is given in (42) and

f„'(t) = cos((ut),

f//(t) = ~[3 cos(2~t)+ 1] ~

(44)

(45)

E~(t) = e '/' G~(t),

with Gz(t) given in (42) and, using Eqs. (24) and

(25),

&v
fz(t) = ee " /'f„'(t)d&u =

Formula (42) has been computed using matrix-
multiplication method '; however, it is com-
pletely equivalent to next integral equation

Gx(t)=fx(t)+(I/&) f fx(t &)Gx(s-)d&,

which can be solved numerical or in terms of La-
place transforms, when the functions fx(t) are
simple. ' Then, for the M model we obtain

(4'7)

(48)

In the J-diffusion model, both magnitude and
direction of J are randomized by the collision, and
the angular velocity at one step is statistically in-
dependent of the angular velocity at the step before.
For each collision step the randomization of the
magnitude of J is introduced by an average over a
Maxwell distribution. Then

Gi (t) et/2tr

with P=4u&'v', and

cosh[t(l —P)'/2/27] +

1+ t/2v,

cos[t(P - I)i/'/2~] +

(1 —P)
'/ sinh[t(1 —P)'/ /2r], P(1

P=1
(P —1) / sin[t(P- 1)'/'/27], P &1

(49)

Ae + e "[B,cos(bt) —B2sin(bt)], pw 9
2 g. ) t/3y
N% 7 ~ g 2' g C gg a

9

(50)

where the quantities A, 8 j, 82, a, and b are all
determined in terms of the poles of Eq. (48).
Using (49), (50), and (41), the vectorial and the
tensorial scf will be obtained for the M model.
For the Z model, Eq. (48) must be integrated nu-

merically. In all cases the simulated scf are be-
tween the corresponding M- and J-model predic-
tions. With the computed values for v = 7'J, the
comparison with exact scf is satisfactory up to 10%%

at low densities and at higher temperatures.
Starting from rather different hypothesis, the

phenomenological approaches previously discussed
in Secs. VA and VB lead to a similar conclusion;
At long times the exponential behavior is dominant,
and this fact agrees with MD results. However, the

hypothesis of the stochastic models leads to rather
complicated analytical expressions and the flexibil-
ity of these models to reproduce the MD results is
reduced, owing to the fact that only one parameter
can be adjusted to give the adequate relaxation.
Qtherwise, the fourth moment is not included; this
explains the difference between approximate and
exact scf at intermediate times. Though the de-
scription of the scf can be improved, even for con-
densed systems, the stochastic models oversim-
plify the interpretation of the reorientational pro-
cess. In fact, in some situations the agreement
between the MD results and the stochastic models,
represented by the extended-diffusion models, is
semiquantitatively correct. However, the agree-
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ment between a theoretical prediction and an ex-
perimental result, coming from a simulation or
from a physical experiment, is not an absolute
guarantee of the validity of the hypothesis in which
such predictions are supported.

Indeed, as we have seen, the memory-function
formalism gives a quite good description of the
reorientational scf with only three parameters.
Thus, any other representation of the reorienta-
tional scf will contain, at most, the dynamical in-
formation given. essentially by the torque and the
relaxation time. Therefore, the validity of the
stochastic models is relative and their utility
limited, because their simplicity masks the real
dynamical behavior and in the best situation the
provided information is restricted. In order to
test the general hypothesis of the stochastic mod-
els we have applied the MD method to follow the
motion of any one of the molecules of the system
and then computed the quantity u(0) ~ u(t), during
a time equivalent to 10 "sec. We observe that
the molecule spends a time of the order of 3&& 10 '
sec in a given orientation and then jumps into a
new orientation in a time of the same order of
magnitude. This shows that at least angular dis-
placements are not small and that collisions have
a finite time duration. A similar calculation on

J(0) ~ f(t) shows that this quantity fluctuates ran-
domly and that, reasonably, there is no time in-

terval during which the molecule behaves as a free
rotator. This behavior was confirmed by several
runs at triple point by following different molecules.

VI. CONCLUSIONS

The previously reported results show that the
equilibrium properties of the simulated model have
all the characteristics of a fluid of diatomic homo-
nuclear molecules. In fact, when the parameters
e, o, and n are well chosen, the equation of state
and the structure factor S(k) agree nearly quanti-
tatively with nitrogen experimental values. With
respect to the reorientational scf E~(t) and Ez(f),
the first one represents a qualitative behavior
similar to the same scf computed by Harp and
Berne with a modified Stockmayer potential. How-

ever, the present model gives a rather different
structure for EJ (f) because the angular moment is
decorrelated by the "collisions" between the re-
pulsive core of the LJ potentials and not by the
effect of dipolar or quadrupole couplings as in the
modified Stockmayer potential.
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We develop the generalization of the Heisenberg near-neighbor-exchange Hamiltonian necessary to
incorporate the effects of multiple-exchange processes. Many-body expressions for the multiple-exchange

constants (pair exchange, triple exchange, and quadruple exchange) are derived. The physics that enters

these exchange constants is discussed. For the most important of the pair and triple cases, these

expressions are carefully evaluated using a Monte Carlo integration scheme. We show that the exchange
Hamiltonian for solid He is rapidly convergent, and that the near-neighbor pair, next-near-neighbor

pair, and triple-exchange processes (involving two near neighbors and a next-near neighbor) are likely to
be the only important exchange processes to the low-temperature thermodynamics of bcc 'He. The
magnitude of the triple-exchange process is such that the "effective" next-near-neighbor pair-exchange

interaction in bcc 'He is ferromagnetic. This result provides qualitative and quantitative support to the

explanation of the data of Kirk and Adams made by Zane.

I. INTRODUCTION

A quantum crystal is a crystal in which the zero-
point displacement of a particle, g(u~), is a sub-
stantial fraction of the near-neighbor distance A.
Quite surprisingly, there are many macroscopic
properties of the best-known quantum crystals
(solid sHe and solid 4He) which appear relatively
unaffected by this large zero-point motion. Simple
thermostatic measurements, e. g. , specific heat,
thermal conductivity, etc. , yield evidence for
properties that are much like those of similar non-
quantum crystals. The truly unique experimental
properties of the quantum crystals, however, are a
consequence of the large zero-point motion, as
manifested in ihe tunneling motions of the constitu-
ent particles. The wide variety of motionally
narrowed nuclear magnetic resonance (NMR)
phenomena in solid 'He provide ample evidence for
the presence of these tunneling motions. 3 The
dominant motion that leads to this narrowing is the
cooperative tunneling of a pair of near-neighbor
He atoms past one another, the exchange process.

In crystals with vacancies, the tunneling of He
particles into vacant lattice sites leads to vacancy
waves. In crystals containing isotopic impurities
the cooperative tunneling of an impurity atom and
a neighboring host atom leads to "impuritons" or
"mass-fluctuation waves" (for dilute 'He in He)."

A discussion of the excitations that are a con-
sequence of tunneling or a discussion of systems
containing these excitations proceeds on two levels.
EA st a qualitative description of the physics can

proceed from an assumed form for a model Hamil-
tonian or an assumed form for the dispersion
relation. The work of Andreev and Lifshitz, on
"defectons" and "impuritons", Guyer and Zane on
"mass-fluctuation waves" and Guyer, Richardson,
and Zane in explanation of NMR phenomena are
in terms of systems of excitations whose quantita-
tive parameters are assumed known. For example,
the behavior of solid He at low temperatures is
taken to be that of a nea, r-neighbor Heisenberg
antiferromagnet with the value of J being deter-
mined by experiment. Second, the model Hamil-
tonians employed in qualitative descriptions must
be formally justified and a rigorous determination
of the parameters that enter them must be imple-
mented. These parameters depend strongly on
the wave function of the system so that their deter-
mination constitutes an important test of the solu-
tion of the wave-function problem.

The near-neighbor pair-exchange Heisenberg
Hamiltonian has in the past proved quite adequate
in theoretical analyses of the thermodynamic '
and NMR properties2' of solid He. An extensive
literature 7 exists which reports calculations of
the corresponding exchange parameter 4, and
adequate agreement with experiment has generally
been obtained. We briefly review some of the
recent progress reported in this literature later
in this section. Recently, however, the excess
pressure of solid He in strong external magnetic
fields has been measured by Kirk and Adams, "
and found to be in disagreement with the predictions
of the usual near-nei ghbox pair-exchange Heisen-


