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The motion of a radiating atom immersed in a gas of other atoms, the bath, may be de-
scribed by means of a nonunitary time-evolution operator U(t) = (Trzp) Troupe acting in
its Liouville space (Trz is the trace over bath variables, p is the density matrix, and H" is
the quantum-mechanical Liouvillian). In a previous paper, U(t) was written in the form U(t)
=exp [i jodt'L&(t')) (exp denotes a time-ordered exponential), and the time-dependent ef
fective Liouvillian Li(t) was expanded in powers of a "reduced density, "or activity. In this
paper the Fourier transform U(cg) = fo dt e '"tU(t) is written in the form iU(a&) = [cu —L&(cg)] ~,

and the frequency-dependent effective Liouvil'lian L2(cu), or "memory operator, " is expanded in
powers of the reduced density. It is argued that in treating L2(&) to first order in the reduced
density, one effectively allows the radiator to interact with only one perturber at a time, thus
neglecting all multiple-collision effects. This is in contrast to performing the same-order ap-
proximation on L&(t), which is equivalent to treating different perturbers as uncorrelated, but
still allows for multiple-collision effects. By adding the terms of higher order in the expan-
sion of L2(&), one allows the radiator to interact simultaneously with two, three, . . . pertur-
bers.

I. NOTATION

The time variable ~ and the frequency ~ will be
considered conjugate variables in the sense that for
any function f(r):

f((u)=—f dr e '"'f(r)= F(f(r)'t, -

f(r)-=(2x) ' f„da e' 'f((u)= V'(f((u)j, -

where 7 means Fourier transform. Functions of
7 are always defined as vanishing on the negative
semiaxis, so that

f(~) = f dr ''ef( ), r

and w will be understood to have a small negative
imaginary part whenever it is necessary to assure
the convergence of the Fourier integral.
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Convolution products are denoted by an asterisk:

f(&) +g(&) =- f „dtf(7 —t)g(t),

f(~)*g(~)=-(2v) ' f d~'f(~ -~')g(~');
we have

&9(&)*g(~)] =-f(~)g(~),
&9'(~)g(~)}~f(&u)*g((u) .

Given any operator A, the operator A" is defined
by its action on any operator 8:

g"gy=ggy- jpg .
Time-ordered exponentials are denoted by t. or

exp. , where the arrow indicates the direction of
increase of the time arguments.

II. INTRODUCTION

When considering a system s in contact with a
bath , such as a radiating atom immersed in a
gas, it is convenient to describe its time evolution
by means of a non-Hermitian operator U(~) acting
in the Liouville space of S, and governing its mo-
tion under the influence of the bath; the "time-
evolution operator" U(v) is defined'

U(v)=- (Trsp) 'Troppo"" (2. I)
where Trs (Tr, ) is the trace over bath (system)
variables, p is the initial density matrix, and H"

is the quantum-mechanical Liouvillian, H being
the total Hamiltonian. The average value of any
system observable, A„at time z is then written

Trpe""A, e ""= Tr,o U(7 )A, ,

where

o =- Tr~p (2. 2)

is the reduced density matrix describing the state
of S at time zero. Similarly one can express time-
correlation functions of S observables by means of
U(r) and o. In the specific case of pressure broad-
ening, ' we require the autocorrelation function
of the radiating dipole (or multipole) operator D:

f(7)= Trpe""De ""D=Tr, Dov(r)D .
Due to the very large number of degrees of free-

dom of the bath, U(r ) cannot, in general, be cal-
culated exactly; moreover, its perturbation or den-
sity expansions do not converge uniformly with re-
spect to v and consequently, cannot be truncated
(the successive terms of the expansions behave
asymptotically as increasing powers of r). One
therefore seeks to express U(r) in terms of other
quantities having expansions which can serve as
approximation schemes. More precisely, we wish
to write U(r) as a functional F of some other quan-
tity L(t),

v(~) = F[L(t)],

iv((u) = [(u — L(&u)] ',
L,(&u) = (u —[iv((u)] ' . (2.4)

Thus, in (2. 3), we replace the unperturbed Liou-
villian H", of S by a time-dependent effective Lion
gillian L&(t) (and time order since we have opera
tors), and in (2. 4), H,"is replaced by a freguency-
dependent effective Liouvillian L~(~). Since in the
absence of the bath L& and L2 equal H", , we may
write

L, (t) = H,"+R(t),

L,(ru) = H,"+C((u),

(2. 5)

(2. 6)

where R(t) and C(&u) contain the effect of the bath
and vanish in its absence. One must deduce the
perturbation expansions of R and C from those of
U, and verify that they can be approximated by
their first or first few terms.

The above procedure was carried out in Ref. 1
for the "exponential" method involving R(t). (Note
added in Proof. See, however, Ref. 22. ) In the
present paper, we discuss the "resolvent" approach
involving C(~). The resolvent form (2.4) is usually
reached by means of Zwanzig's projection-opera-
tor methods, ' and C(e) (or related operators) is

where L(t) = F ' [V(t)] possesses expansions

L(t)=L +L +L + ~ . .
[L' '(t) corresponds to the absence of the bath] that
can be truncated; U(r) can then be approximated by
keeping only the first few terms in the expansion
of L(t), e.g. ,

U(1. ) = F[L"'(t)+L"'(t)] .
The most direct procedure would be to first find

a L(t) = F '[U(t)] having expansions that can be
truncated, and then determine the functional form
F. There are, however, several different function-
als of U(t) satisfying the above requirement, and

a specific choice must be dictated by the additional
requirement that the expression of U in terms of
L be sufficiently simple and practical, and also,
preferably, that it be physically meaningful. It is
actually more profitable to start from this last re-
quirement and, making use of one's physical in-
tuition, first choose a functional form F[ ], then
verify that F '[U(t)] has useful expansions. In
this way, two approaches suggest themselves nat-
urally when one notices that in the absence of the
bath, U(v) =8""8and iv(rq) =(&g —H",), where H,"
is the Liouvillian of the unperturbed 3.

In the first approach, we write

U(v ) = exp. [i f dt L, (t)],
(2.3)

tL, (t) = v(t) 'v(t)-
(U=dv/dt), and in the second approach, we set
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generally referred to as a memory operator, a
term suggested by the form of its functional rela-
tion to U in the time domain. It seems quite com-
plicated to deduce the density expansion of C from
Zwanzig's expressions, while it is obtained quite
readily by the more direct procedure outlined
above. Still, in order to exhibit clearly the struc-
ture of the density expansion, we shall employ
methods analogous to Zwanzig's, with use of a
special type of projection operator which may be
called a "time-overlap destroying" operator.

The preceding considerations stem from mathe-
matical imyeratives. From the physical point of
view, the question arises as to what is the physical
meaning of treating a given L(f) to some order in
an expansion yarameter, and the related question
of what is the physical significance of each term in
the expansion. Clearly, to different functions I, ,
1.2, . . . correspond different answers to these
questions.

It was seen in Ref. 1 that by treating R(t) to
first order in the reduced density n, one is treating
collisions of the radiator with perturbing atoms as
independent of each other; in other words, the ra-
diator can interact with, or "feel, " several yer-
turbers simultaneously, but the perturbers do not
feel each other. This approximation may there-
fore be called an "independent-collision approxi-
mation. " By including the second-order term in the
expansion of R(t), one allows for pairs of corre-
lated yerturbers, and so on for higher-order ap-
proximations.

In the case of C(~), it will be found that by treat-
ing it to first order in the reduced density, one is
letting the radiator interact with only one perturber
at a time: During a multiple collision, not only do
the yerturbers not feel each other, but also the
radiator feels only one yerturber at a time, that is,
only one of the radiator-yerturber interactions is
turned on at any instant. This may be called a
"nonoverlapping - inter actions approximat ion. " By
adding terms of higher order in the expansion of
C(w), we allow the radiator to simultaneously feel
two, three, ~ . . perturbers.

The difference between the "independent-colli-
sion" and the "nonoverl. apping- interactions" approxi-
mations reflects itself in the corresponding ex-
pressions of the spectrum: The independent-colli-
sion spectrum contains features arising from the
simultaneous interaction of the radiator with sev-
eral perturbers, such as the pressure shift of the
wing structure, and possibly additional fine struc-
ture, 6 features which are absent in the nonover-
lapping-interactions spectrum which yields wings
given simply by the one-perturber spectrum.
Clearly, the independent-collision approximation
is better than the nonoverlapping-interactions ap-
proximation, the latter actually being a further ay-

p = e-'"/Z, Z= Tre '", - (3. 1)

where H is the total Hamiltonian. The state of S

at time t may be characterized by the operator
pe", e" being the I iouville-space time-evolu-
tion operator. We are interested only in the radia-
tor S, the bath being relevant only insofar as it
influences S. The state of the "open" system 8 can
be characterized by "reduced" quantities

eU(f) = Tr,pe""", (3.2)g= Trgp ~

where Tre (Tr, ) is the trace over bath (system)
coordinates, and

U(f)=o 'Trepe"", U(0)=1 (3.3)

is a non-Hermitian time-evolution operator govern-
ing the motion of s under .he influence of the bath.

In order to expand these reduced quantities in
powers of the system-bath interaction strength,
they are first written in an interaction representa-
tion by dividing out their behavior corresponding
to absence of the bath: We thus introduce

-1or= ps 0.

U, (f) = U(f)e-"", -
where

(3.4)

(3.5)

proximation to the former. On the other hand, the
resolvent form (2.4) is simpler and more practical
than the ordered-exponential form (2. 3).

In Sec. III, the relevant results of Ref. 1 are
summarized and expressed using a notation more
suitable for the purposes of this paper; also, a
(uniformly convergent) density expansion of U(&o)

is given, which allows one to assess the effect of
multiple collisions on the spectrum. In Sec. IV,
quantities M(~) =- U(&u)i~ —1 and N(~) = (I/~)C(&),
with cu =—cu —H,", are introduced, which have per-
fectly symmetric mutual relations; N(~) is treated
to first order in the reduced density n, and the re-
sulting nonoverlapping- inter actions spectrum is
discussed. To exhibit the physical structure of
the reduced density expansion of N, we Fourier
transform to the time domain in Sec. V, and ex-
press N using a "time-overlap destruction opera-
tor"; the physical meaning of performing approxi-
mations on + is then discussed. Our conclusions
are summarized in Sec. VI. Various mathemati-
cal formulas which we use are derived in four Ap-
pendixes.

III. SUMMARY AND DISCUSSION OF PREVIOUS RESULTS

A. Basic Expressions and Definitions

We consider a radiating atom, the system 3,
immersed in a perturbing gas, the bath . The
whole system 8+ S is assumed in thermal equilib-
rium initially, with its state specified by the densi-
ty matrix
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p
—e- SHs/Z Z —Tr e- sHs

and p" s are, respectively, the reduced-density
matrix and time-evolution operator in the absence
of the bath. The effect of the bath on the system
is specified by the bath operator

B(f) p (f) p-l(Tr pe(sz ) e-ksHs (3 q)

which equals unity in the absence of the bath. B(t)
can straightforwardly be expanded in powers of the
system-bath interaction or of the gas density, and
all relevant quantities will be expressed in terms
of it, in order to deduce their expansions from
those of B(t). We note in particular,

real axis, and

( ( ) ) =- Tr z pzT; ( ), (1)= 1 (S. 14)

where T,- orders operators such that when read
from left to right, the arguments g proceed from
—ip to f along the contour

By expanding the exponential in (S. 13), one ob-
tains the expansion of B(t) in powers of the inter-
action V, from which may be deduced' the corre-
sponding expansions of It(t) and C(&u). However,
we shall be concerned mainly with the expansions
in powers of the perturbing gas density, which
measures the average strength of the system-bath
interaction.

o, = B(O), V, (f) = B(0)-'B(f) . (3.6)
B. Reduced-Density Expansions

In terms of B(t), the average value of an S opera-
tor A, at time f is Tr,p, B(f)e""sA, , and the auto-
correlation function of the radiating dipole opera-
tor is

I(t) = Tr, Dp, B(t)e""sD . (s.9)

is the sum of one-perturber Hamiltonians, N being
the number of perturbing atoms constituting the
bath; the interaction

V= V) + V))
g=i

(s. lo)

is the sum of all interatomic interactions, radia-
tor-perturber (V,&) and perturber-perturber (V,~).
We define

pz = e /Zz Zz = Trae (3. 11)

the density matrix for the bath with turned-off in-
teractions V,&.

Introducing the complex time g = t+ jb, and the
interaction

W(z)= V(z)"= V(t)" (on the real z axis)

= V(z) = V(t+ ib) (off the real axis), (3. 12)

where

V(z)- zisHO Ve- kszo

we write B(t) in the form [Eq. (4. 6) of Ref. 1]

B(f)=(Z, Z, /Z)(exp[if dzW(z)]); (S. 13)

f &z dz denotes the integral from —ip to 0 along the
imaginary z axis, and then from 0 to t along the

In order to perform its perturbation expansions,
we must first express B(f) in a more suitable form.
The total Hamiltonian H is written

H=Hp+ V, Hp=H, +H~ )

where H, is the Hamiltonian for the radiator alone,
and

N

Hz =Z Hq

where

f„„( ip, z)=exp[i f' d-z' W.„(z')]-1, (3. 16)

and the superscript (r) onthe product symbol spec-

ifiess

the set of pairs (p, , v) over which the product
is taken; the labels p, v=s, 1, 2, . . . , N can de-
note the radiator (s) or perturbers (1, 2, . . . , N)
(whereas the labels i, j, . . . only denote pertur-
bers).

A product l may be represented by a graph con-
sisting of a white circle labeled s representing the
radiator, and black circles labeled 1, 2, . . . rep-
resenting the perturbers, with each factor f„
represented by a line or bond joining circles p, and

v, indicating that the interaction between these
particles is turned on.

We define an A reducible graph as a connected
graph containing the circle s, which is such that it
remains connected after the circle s and the bonds
attached to it are removed.

Given any connected graph (or product) I' con-
taining the radiator, we define

( &)s&r&
im, (- ip, z)=-,r, —„r( ip, z), -(3. 1'7)

and in particular,

In Secs. VI and VII of Ref. 1, B(t) and R(t) were
expanded in powers of areduceddensity, or activity,

n=n, (z, /z["), (S. 15)

where nz is the perturbing gas density, and (Z,' ')
and (Z, )

' are the perturbing gas fugacities corre-
sponding, respectively, to mutually interacting and
noninteracting perturbers. Strict density expan-
sions may be obtained by further introducing the
expansion of n in powers of n~, but only the re-
duced-density expansions will be considered be-
cause they are physically more meaningful. The
reduced-density expansions are expressed in terms
of quantities of the form

r( p, )=n-"'f, „(- p,
ii. & v
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im, „(-tp, z) =-n~ —f.,(-ip, z), (3. 18)

where u is the volume containing the gas, k(I') is
the number of black circles (i. e. , perturbers) in

the connected graph I', and o (I') is s. symmetry
number characteristic of each graph. We can then
write, in the limit N- ~, 'U- ~, with N/U =ns [Eq.
(8. 12) of Ref. 1, with an over-all multiplicative
factor ZH(r 'Z, /Z neglected]:

a(r ) = &i f„dz Z m, (- iP, z))

=(exp[if, dzZ ntr(-ip, z)]), (3. 19)

where the sum g( "' is over all topologically dis-
tinct connected graphs containing the radiator and

some or no perturbers, while the sum g("" is
over all topologically distinct irreducible graphs
containing the radiator and one ox more pertur-
bers. We can also write

B(r)=exp [if dzR(-ip, z)],
where

(3. 2o)

Z

iR(-iP, z)= —exP i dz'Z" mr(-iP, z')
dz )p c(m}

=2'"'" &im„(- ip, z)),(„,),.
( ),» ) denotes a cumufant average, 3 the argument
inside the bracket f }indicating the elements with

respect to which the cumulants are constructed.
For instance, if z, & z2& z3, and denoting m, (-ip,
z, )=m, , we have

(m1), ( ) =(m1),

&m, m, ),(„)=(m, m, ) —&m, )(m, ),
(ml 2m3) ( ) ( 1m2m3) (m2m3 ) ( m1)

&m3 ) (m(m2) —(m2) (m3m1)

(m3) (m2) (m, )+(m, ) (m, ) (m, )

the cumulants ( ),«„,) are similarly constructed
with the irreducible components of the connected
products l as elements.

The reduced-density expansion R =gn2R(2) is
readily deduced from (3. 21); the kth-order term is

R"'(-tp, z)=E ' (mr(-ip, z)),(„,), (3. 22)

where the sum g'""2) is over all connected graphs
containing the radiator and k perturbers. In par-
ticular, we find (Zt —= Trte "t)

R")(-iP, t)=&m„(-tP, t))

n(g/Z )PHt (Tr e-HHtt et tHtt P" )e- ttHt

(3. 23)
By (3. 8) and (3.20), the interaction-representa-

tion time-evolution operator is

U, (r)=exp [i f dtR( ip, t)] . - (3.24)

[Recall that f, 2
= f,3+ f3, so that exp (f'(2 )

=exp. (f (2)exp (f') ]. Defining

R(t)= e-""tR( iP-t)e""t, (3. 25)

(3. 28)
R(2)( tp+ t, z) = ettHt R()t)(- ip, z t)e 1 tH

etc. According to (3. 25) then,

R(t) =R(- iP —t, o) . (3. aS)

Let us now consider the simplest tyye of opera-
tor m„( ip+t, r), n-amely, '

(n'0) 'm, „( ip+t, r)=-i-' —f,„( ip+t, r)-
= exp[i f, , dz W„„(z)]W, (r ) .

Because it is proportional to its latest interaction,
m „(-iP+ t, r) must operate on states such that
particles p and v are effectively interacting at
time v, in order not to vanish. Since, on the other
hand, the interaction or collision of the two par-

we recover expression (2. 3) for the time-evolution
operator U(r)= Ut(r)e""t, namely,

U(r ) = exp (if '
dt [H, + R (t)]}. (3. M)

C. Discussion

In the quantities m„(-ip, z), R'"'(-ip, z), etc. ,
the argument —ip indicates the "time" at which the
interactions are turned on; the interactions taking
place from —ip to 0 build up the initial correla-
tions between the particles involved, and the real-
time interactions affect the motion of the particles.
More general quantities in which the interactions
are turned on at any time (-ip+t) may be intro-
duced by performing appropriate time translations:
We first define

f„( ip+t, z)-=e" of „(-ip, z —t)e ""o
= exp [if, ,

dz' W„„(z')]—1, (3. 27)

where the integral f (2, t dz is from —ip+ t to t
parallel to the imaginary g axis, and then from t
to 7' along the real axis. The quantities mz, (- ip
+ t, z), R'"'(-ip+ t, z), etc. , are then obtained
from the corresponding quantities with t=0, by re-
placing all factors f„„( ip, z) by f„„(-i-p+t, z),
that is, by replacing all initial times —ip by —ip+ t
in expressions (3. 16)-(3.23). Formula (3. 2V) im-
plies

mr(-tp+t, z)=e omr( tp z t)e-""o

and, because of the relation

( et tH()( )e- 1tH()) et tHq ( ( ) )e- 1tH"

we have

(m„(- ip+ t, z) ),(,„,)
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ticles has a finite duration of maximum length t~„
say, it follows that if v' —t& t„„, the collision,
which must still be in process at r, started latex
than the time t at which the interaction was turned
on; this means that m„„(-ip+ t, r) becomes inde
pendent of t once t is earlier than 7 —t „, and we
can write

r —t& t, „~m, .„( ip+-t, r)=m„„(-~,r) . (3. 30)

The time-independent operator m, „(-~, 0) has the
structure of a T matrix, and may be called a
Liouville-space T matrix for scattering of par-
ticles p, and v.

It was argued in Appendix D of Ref. 1 that if I'
is an irreducible graph, then for (mr(- ip+ t, r))
not to vanish, the interactions it contains must be
clustered around time 7; in fact, this can be shown
rigorously only if less than three perturbers are
involved (see Ref. 22). Thus for r —t greater than
some tr and k(I') & 2, we have

r —t&t, &mr(-ip+t, r))=&m, (-, r))
(I' irreducible), (S.31)

t~ being the maximum duration of multiple colli-
sions of type I'.

If I' is connected, but not irreducible, then in
&mr(-ip+t, r)),«„», the cumulant average forces
the irreducible components of I' to be connected ig
tAme, thus forming one large multiple collision of
maximum duration t~, and we have the generaliza-
tion of (3.31): for k(I') &2,

tr~&mr(- tp+t, r)),{„„}= &mr(-~, 1)),{„,»

(I' connected), (S.32)

which implies in turn, for 4&2,

r —t& t{»~R"»(-ip+t, r)=R'"'(-, r), (3. 33)

where t,» is the maximum duration of multiple col-
lisions of the radiator with k perturbers.

Each operator &m„( ip+t, r))«-„,»
corresponds

to a particular type of multiple collision; the opera-
tor R =g{" »&mr ),{„,» thus appears as a sum over
all types of multiple collisions, that is, over all
mutually independent, or uncoxxelated, processes
by which the radiator can interact with the bath.
To further elucidate the physical significance of
R, or rather of the terms R'~' of its expansion, let
us consider the reduced-density expansion of Uz(r)
as deduced from (3.24):

U, (r) =1+f'dtiR{'» (- ip, t)+ f '
dt[iR "»(- ip, t)

0 0

t
+ f dt' tR"»(- ip, t ')iR'"(- ip, t)]+

(s. s4)
This expansion may be interpreted as a sum over
possible histories in the interval (0, r): The
zeroth-order term 1 corresponds to no interaction

of the radiator with the bath in (0, r). The first-
order term corresponds to the radiator interacting
with one perturber in (0, r). The second-order
term corresponds to the radiator interacting with
two perturbers in (0, r); it consists of two parts:
The term f JR"'R"' represents two independent
collisions of the radiator with single perturbers;
this independent-collisions term would be sufficient
if the two collisions never overlapped in time, in
which case their combined contribution is simply
the product of the contributions of each. But if the
collisions overlap in time, the two perturbers in-
teract with each other, and also their individual
interactions 8'„„with the radiator get time-en-
tangled because of the time ordering; it is the term
f R» which accounts for these effects. The terms
of higher order in the expansion of U, are con-
structed and interpreted in a similar manner.
Clearly then, when one retains only the first-order
term R"' in the expansion of R, one neglects all
correlations between the perturbers; by adding the
second-order term R' ', one allows for correlated
pairs of perturbers, and similarly for higher-or-
der approximations.

The independent-collision approximation R- R' '

is strictly correct in the low-density limit where
(almost) only binary collisions occur. But it may
still constitute a reasonably accurate approxima-
tion at higher densities where multiple collisions
occur with an appreciable frequency: In particular,
the independent-collision spectrum does contain the
effect of simultaneous interactions of the radiator
with several perturbers, though treated in an ap-
proximate manner. As already noted in the con-
text of the adiabatic theory of pressure broaden-
ing, the main effect of multiple collisions is the
(experimentally observed) pressure-dependent shift
of the wing structure of the spectrum, plus possi-
ble additional fine structure. To see this in the
more general context considered here, let us make
use of formula (Bl) of Appendix B, and write the
Fourier transform of U(r) as given by (S.26) in the
form ((o = {0-H",).

i U(&u) = +=*R—.(co) —.1 1 1
CO (0

+ —.*R((u) —. *R((u) —.+ ~ ~ ~ . (S.36)
1 1' 1

(d

The propagators (1/~) represent free motion of the
system 3; all the frequency dependence introduced
by its interaction with the bath is contained in the
"interactions" R(~). At large values of t, R(t) is
assumed to tend to a constant

R = lim(1/T) f dtR(t), (s. s6)
0

upon which may be superposed oscillatory terms
due to formation of radiator-perturber bound
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R(f) =-R(i) -R,
and resum (3.35) into the form

(3. O'I)

states (in the following, we may also think of R as
treated to first or second order of g, since B'~' and

- B' ' have the asymptotic behavior assumed above
for R). The Fourier transform R/im of R diverges
at the origin, and causes the successive terms in
the expansion (3.35) to diverge at ~ =0 as increas-
ing powers of (I/Q). To obtain a well-behaved
expansion, ~2 we write R(r~) = R/irk+A(rd), where

unperturbed frequencies of 8, we have

&(~)= &,(~),
where we define, for any operator E(r),

E(a) ) = f"-d 7 E(r )e

Equations (2. 4) and (2. 6) are then written

ifI, (~) = [~ —c((u)] ',
c((u)=~ —[iv, ( ~)]

'

=sr(1-(I+[Pi((s)i(o —1]) ')

(4 2)

(4.4)

(4. 5)

1
+ + R((d~ —g

1 - 1
) * R((u) — ~

40 —2 co —2 + 7

(3.38)

iff((u) = + —— + R((o)
1 1 - 1

co —2 CO
—Z.

where, for the purpose of constructing its density
expansion from that of U, C(&u) is expressed in
terms of the quantity

M(u))-=ffi(~)i~ —1,
where

(3.39)

which vanishes in the absence of the bath. From
the relation [E(r) = dE/d7'1—

Expression (3.38) can also be obtained by writing
H,

"
+R(t) =2+R(t) in (3. 26), and then using formula

(Bl) to take the Fourier transform.
The operators R(~) are regular at the origin, and

they contain all the fine structure due to interac-
tion with the bath, such as satellites~3 and bound
spectra. In the propagators (&u —2) '= (~ —H,"
—R) ', the oscillation frequencies H," of 8 are
shifted and broadened by the amount 8; these prop-
agators combine with the interactions R(&u) by
means of coneolutions, and since the shift-zoidth
operator R increases with the gas pressure, it fol-
lows that the whole spectrum, including the wings
due to A(~), gets shifted and broadened under in-
creasing pressure. This remains true if one ap-
proximates R by R"' everywhere in (3. 38). One

may view Ri"(&u) as the spectrum of the radiator
while interacting with a perturber, thus forming a,

molecule; this molecular spectrum is broa, dened
and shifted by the interaction with the rest of the
bath. Also, larger molecules are formed during
multiple collisions, and their spectrum is given,
in the independent-collision approximation, by con-
volutions of the spectra of each component binary
radiator-perturber molecule. In such convolution
products, the fine structure of each factor R~~~(ar)

may combine to give additional fine structure'; for
instance, if R"'(~) has a pole at a bound-spectrum
frequency „ then, as indicated in Ref. 11, the
successive terms in (3. 38) have broadened and
shifted poles at the frequencies 2w~, 3co~, . . . .

IV. FREQUENCY-DOMAIN RELATIONS

Defining the operator frequency

CO: CO —Ha 7

namely, the frequency measured relative to the

E (u)) == f d7 E(7 )e-'"'= —E(7 = 0)+E(G()i~,

it follows that" [note that Uz(r =0) =1]

M(~) = U, (~);

(4. 6)

(4 "f)

M(r) is of the same general type as the operators
m of Sec. III, namely, the time deriva, tive of an
interaction-representation time-evolution opera-
tor Intr.oducing N(~) by the relation'8

C((d) = QPN((d),

we write Eq. (4. 5) in the form

N(~) = I —[&+M(~)]-' = M(~)/[& + M(~)]

= [M(~) '+ 1] '

or, equivalently,

[I+M(~)] = [1—N(~)]-' .

(4. 8)

(4. 9)

(4. 10)

N((0) = nM"'+ n'[M"' -M"'M"']+ ~ ~ (4. 11)

the first-order term is given by [cf. Eqs. (4. 7)
and (3.24)]

N"'(v. ) =M"'(~) =iR"'( iP, 7 ) =ie-""4' '(r) e ""~,
(4. 12)

whence

N"'(u3) =-iR"'(&0 )=- if d~ e '"'R"'(T), (4. 13)
0

where, for any operator E(T), we define

E(d )=- f d~ e-'"' (~E) = (I/id) ~ ((Eu) . (4. 14)

(The arrow indicates on which side of E the opera-

Equations (4. 9) and (4. 10) are perfectly symmetric
in M and —

¹ thus, any expression of M in terms
of N is inverted by simply interchanging Af with
—N, and vice versa.

The reduced-density expansion of N is obtained
from that of M=nM' '+g 1UI' '+ ~, namely,
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tor td appears. ")
In the approximation N- N"', we have

M(t, r)=exp [if dsR(t, s))R(t, r) . (5. 3)

U(td ) = (itD[1 —iR"'((D. )J)-' .
We expand

(4. 15)

iU(td) = (I/(D)+iR"'(tJ )( I/ td)+ [iR"'(t9 )]'(I/(D)+ ~ ~ ~

(4. 16)
and compare with Eq. (3.35) in which the approxi-
mation R-R'~' is made [call the result Eq.
(3.35a)]. The two first terms of (4. 16) are identi-
cal to those of (3.35a), but the succeeding terms
involve only powers of R"'(td ), and consequently
all have essentially the same shape as R' '(td-),
unlike the terms of (3.35a), which involve multiple
convolutions of R' '(td) with itself, and which may
therefore be of very different shape from R"'(td),
leading to the pressure shift and additional struc-
ture of the wings. It thus appears that (4. 15),
whose shape (in the wings) is essentially that of
the one perturber R' '(td ), does not contain multi-
ple-collision effects, as will be discussed in more
detail in Sec. V. In Appendix E, it is further
shown that in the far wings, the line shape Ref(rg)
derived from (4. 15) equals the one-perturber line
shape.

We note that we may write B(rg) = o, U(td) in re-
solvent form as follows, so as to put all the effect
of the bath in the denominator:

B((3)= B(0) [t(0 —iC ((d )]
'

In order to exhibit the physical structure of the
reduced-density expansion of N, the relations of
Sec. IV are written in the time domain by Fourier
transforming. As shown in Appendix D, Eq. (4. 9)
is equivalent to the integral equation

M(t, &)=N(t, r)+ f dsM(t, s)N(s, r), (5. 1)

where double-time operators F(t, r ) are defined in
terms of single-time operators F(r) by means of
the correspondence

F(t r )
—ettHtF(+ t)e tt Ht- (5.2)

Thus, by (4. V), (3. 24), and (3. 26) we find [to sim-
plify notation, we sometimes write R(- iP+ t, s)
-=R(t, s)]:

[Recall that oz = B(0).] One may treat the denomina. -
tor to first order in the gas density, by using the
expansions C = C"'+ Ct2'+ and B(0)= 1+B"'(0)
+ B+'(0)+ . , the latter being deduced from the
first line of (3. 19); we have then

B(td)=fitd[I —B"'(O)J- tC"'((u)} '.
V. TIME-DOMAiN RELATIONS

Equation (5. 1) can be solved iteratively for M in
terms of N, or for N in terms of M; as already
noticed on its Fourier transform (4. 9), (5. 1) is
perfectly symmetric in M and —N, and expressions
of M in terms of N are inverted by simply inter-
changing M with —N So.lutions of (5. 1) are written
in several different manners in Appendix D.

According to (5.3), M(t, v') is of the form (Dlo)
(with P= 1), and we can make use of formula
(Dll) to write

N(t, 7)=exp [i f dsR(t, s) (1—A)] R(t, r), (5.4)

where the "time-overlap destruction operator" A

is defined as follows: Appearing inside a product
of operators R( ip+t,-, rt), A makes all those t, 's
on its sight-hand side which are smaller than, equal to
the largest 7', on its left-hand side; for instance, if

+i f ds Rt"(t, s) (1—A)Rt"(t, r)]+ ~ ~ ~ . (5. 5)

We write explicitly, for instance, the second term
in the coefficient of n, namely,

i f, 'tfs [R"'(t, s)R"'(t, r)- R"'(t, s)R"'(s, 7)] .
The general term in (5. 5) is of the form (we set
v=-s )

f' tts & f 'tfs„z. . . f' ds, Ai(t, st)

X(I —A)A (t, s ) (1 —A). . . (1 —A)A, (t, s ); (5. 6)

if it is assumed that each At(t, st) becomes indepen-
dent of t once (s; —t) &t&~&, then (5. 6) becomes in-
dependent of t as 7 —t- ~; indeed, let t be the
largest of these ts&'s: The integrand in (5. 6) van-
ishes whenever for some i, s&,~- s& &t, for then

A&(st, s&) =A&(t, s&) for all j &i, so that the operator
A appearing between A& and A.&„does not change
anything; i. e, , it has the same effect as the op-
erator 1 from which it is subtracted. Thus, all the
s&'s must be clustered within a time interval smaller
than mt~~ for the integrand not to vanish, which
implies that (5. 6) becomes independent of t as

00

l Note added in proof. Thus, the (assumed) exis-
tence of R(t, r) in the limit t- —~ implies that each
term in the expansion (5. 4) of N(t, r) in powers of
R also exists in that limit (the existence of N(t, v)
as t —~ is required for C(v) = tdN(v) not to di-
verge at values of equal to eigenfrequencies of

R(-i P+ t, s)AR(- jP+ t, 7' ) = R( iP + t, s-)R(- iP + s, r ) .

The reduced-density expansion of N(t, r) is obtained
by inserting the expansion of R into (5. 4):
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H," [note that N(~)-=fo" dtN(f)e ' '= fo dte ' '

xN( f, 0)]). As for the density expansion (5. 5) of

N(f, r), it is free, as is that of R(t, r), of the
"worst" secularities present in the expansion of
U(7'), namely, those arising from successions of
uncorrelated collisions. Because R' '(f, 7) and
R' '(f, r) exist in the limit f- —~, the same holds
for the terms of order n and n in (5. 5), and

N(f, r) may therefore be approximated by these
two terms only (it is not clear how one can obtain
higher-order approximations ). If one treats R
to first or second order in (5. 5), one obtains a
density expansion in which each term exists in
the limit t- —~; in particular, by making R-R"'
in (5. 4), or (5. 5), we obtain N(t, r) in the "indepen-
dent-collision approximation, " expressed as a uni-

formly convergent expansion in powers of nR '. j

We now wish to investigate what is the physical
meaning of approximating N by its first-order
term R"'; for this purpose, we recall Eqs. (5. 1)
and (4. 7), and make use of formula (D9) of Appen-
dix D to write

U, (r ) = exp [i f ds AN(0, s )] . (5.7)

Inserting the approximation N- R"' in (5. 7), and
comparing with the exact expression (3.34) of
Uz(7'), we first note that in neglecting all R'"' 's of
order & 1, we neglect all correlations between per-
turbers, i. e. , we make the independent-collision
approximation; we note furthermore that the op-
erators A ensure that in each term of the form

f ds & f ds 2. . . f ds&AR' '(-iP, sq)A. . . AR"'(-iP, s t)
0

'r Sm- f= f ds„, f "
ds~ g. . . f ' ds, R"'(- i p, s,)R"'(- i p+ s, , s,). . . R"'(- i p+ s„„s,), (5. 8)

the different binary-collision factors R' '(- ip
+s. .. s, ) span mutually nonoverlapping time inter-
vals (s. .. s, ), that is, the interactions of the ra-
diator with each perturber are turned on one at a
time. ' This implies that effects due to the simul-
taneous interaction of the radiator with several
perturbers will not appear in the spectrum calcu-
lated with the approximation N- N"', as already
observed in Sec. IV, and shown more explicitly in
Appendix E.

The significance of the terms of higher order in
the reduced-density expansion of N is now clear:
For instance, the third term in (5. 5) is the contri-
bution from the overlapping part of the simulta-
neous interaction of the radiator with two mutually
independent perturbers, and the term R' ' is the
correction due to the mutual correlation of the two
perturbers. Thus, by adding the term N~2' to the
approximation N- N"', one allows the radiator to
feel two perturbers simultaneously, with these
two perturbers also feeling each other, and simi-
larly with higher-order approximations.

We note finally that the expression of N(r) is
somewhat simpler if one neglects initial cor~ela-
fions betweenatoms, i. e. , takes p = e ~o/Tre
= p, ps. In this case, B(0)= 1, and by (3.8), (3. 19),
and (4. 7),

1'

M(r)= U, (r)=B(r)=—exp' i dsZ m (0, s) P,
0 ~a

(5.9)
where

(. . . )P=((. . . )) (P operates on the left-hand side) .

I

Then, by (Dll), we can write

N(7)=exp [if dsZ ~, (0, s) (I - PA)]

&Z m, (O, r)P . (5. 1O)

VI. CONCLUSION

The motion of a system S in contact with a bath
can be described by means of a nonunitary time-
evolution operator U(f) acting in the Liouville space
of S. The perturbation expansions of U(f) do not
converge uniformly and cannot be truncated; in or-
der to perform approximations, we express U(f)
as a functional P[L(t)] of some quantity L which has
expansions that can be truncated. There are several
possible such functions L, and one must choose
those for which the relation E is sufficiently sim-
ple and practical. At the end of Appendix D, an
example is found of an L(f) which has suitable ex-
pansions, but for which the relation E is of no

practical value. Two forms of E have been con-
sidered, namely, an ordered exPonential U(f)
= exp/i f0 dt'L&(t')] and a resolvent form iU(&u)
= [~—L,(~)] '. We investigated the physical struc-
ture of the reduced-density expansions of Lf and

Lz, and the physical significance of approximating
these expansions by their first few terms. It was
seen in Ref. 1 that by treating Lf to first order in
the reduced density, one effectively assumes mu-
tually independent perturbers, whereas by treating
L~ to the same order, we saw in this paper that one
allows the radiator to interact with only one per-
turber at a time. These differences reflect them-
selves in the corresponding expressions of the
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spectrum: Multiple-collision effects are absent in
the second case, but present in the first case,
though treated approximately, resulting princip31-
ly in the pressure shift of the wing structure.
Thus, the independent-collision approximation is
better than the nonoverlapping-interactions ap-
proximation, but on the other hand, the resolvent
form is more practical for calculations than the
ordered-exponential form.

In the ordered-exponential and resolvent ap-
proaches, we replace the unperturbed Liouvillian
H," of the system by time- and frequency-depen-
dent effective I iouvillians L, (t) and L»(~), respec-
tively; time being a more "physical" variable than
the frequency co, it is expected that Li(t) will have
a more physical significance than Lz(&u). Indeed,
the expression of U(t) in terms of the reduced-den-
sity expansion of Li(t) seems the most "natural, "
for it breaks up the interaction of the system S
with the bath into its elementary mutually indepen-
dent processes; and it also proved advantageous'
to also express L»(&u) in terms of the B'"''s.
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APPENDIX A: CONVOLUTION PRODUCTS AND FOURIER
TRANSFORMS

Given operators A(ti, tz), B(ti, tz), . . . depending
on two time arguments, we define a double-time
convolution product denoted by +:

A*B(t, i. ) f„dsA-=(t, s) B(s, 7) . (AI)

xAi(t~ sl)A»(si ~ s»). . . A»(s» i, 'f)

=f dsif ds». . . f ds» i

A(u)) =- f dr A(~) e '"'= Ty(A-(r)], (A8)

where 9 is an operator frequency not commuting
with the operators A and 8, we can have a result
analogous to (A5) by defining double-time opera-
tors A(t, i ) in terms of the single-time A(7) by
means of the prescription

A(t, r)=- e'"'A( —r-t)e'"' (A7)

then,

i(A* B(0,~)'f= f dr A* B(0, ~)e-("'

= f di f dsA(0, s)B(s, i )e '"'
= fdsA(0, s)e '"' f d7 B(0, r —s)

e-fa(t-8)

that is

x A, (t, si)A»(si, s»). . . A„(s» „r) . (A4)

In case A, (t, 7') =A((v —t) are functions of r t, t—he
convolution product defined above reduces to the
usual (single-time) convolution product

A, *A,(t, i.)=A, *A,(r t)—= f dsA, (s)A, (7 —t —s) .

As is well known, the Fourier transform of an
ordinary (single-time) convolution product equals
the (ordinary) product of the Fourier transforms of
each factor:

0 (A i' B(7')]=—f„d7' e '"'A* B(v) =A(v)B(+) .
(A.s)

If we now define

This is essentially a matrix product, and is clearly
associative, ffA* B(0, r)] =A((u)B((u) . (A8)

(A» B)» C =A. » (B+ C) =A»' BT C,

In general,

A, *A»* * A, (t, 7 ) = f ds, f ds». . . fds„,A, (t, s, )

)&A,(s„s,). . . A, (s, „r) . (A2)

The unit for this product is the Dirac 5 function
n(t, r) =()(7 t):—

A i' 5 (t, i ) = f ds A (t, s )6 (s, r ) = A (t, r ) .

We note that if A, (t, i ) vanishes when v —t& 0, we

can write

Ai + A»(t, & ) =
f, ds A, (t, s )A, (s, r ), . (AS)

A(+A»»' ' ' ' +A»(t~i')= f ds» i f ds»» . . ~ f dsi

since, for instance,

(A * B)+ C(t, T') = f ds (A* B) (t, s)C(s, r )

= fds f ds' A(t, s') B(s', s) C(s, r) .

By the associativity of the double-time convolution
product, we have, more generally,

4{A,*A, * *A„(0,i )] = A, ((S)A, (a) ). . .A»(a& ) .
APPENDIX 8: FOURIER TRANSFORM OF

ex@ ~~J& «to+F(&))}

%e have

exp. fi f dt[Q+F(t)]] =exp. [if dt e""F(t)e ""]e""
e(T 0 + i f dt e((oF(t)e( (T T )0 4

0

~ ~ +i'G")(r )+ ~ ~

where

G"'(r)= f dti f dt». . . f dt»e"»"F(t»)e "»

e(tioF(t )e(( tiT)Q
y 8

= f dt, G" "(t,)F(t,)e'"-'i'"-
0

[G(»-i)(r )F(~)]», [e(T 0]
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G(0&(z) s«o

(As usual, all functions of v are understood to van-
ish when r & 0.) Fourier transformed, the above
equations read

T

xe"p-
I

ds' V(s') (1 —Q)
-4s

d
ds E&(t, s) —exp ds' V(s') (1 —Q),

APPENDIX C: PROJECTION-OPERATOR METHOD

In this appendix, Zwanzig's projection- operator
method4 is given in a form suitable for our pur-
poses.

If M(t, w) is of the form

M(t, v)= —exp
d

d&
ds V(s) Q

= exp. ds V(s) V(~)q, (Cl)

where Q is a (projection) operator acting on the
left-hand side [e.g. , ( )Q=(( ))], satisfying 1Q
=1, then

N(t, ~)= xpe[f ds.V(s)(1 —Q)] V(r)q (C

satisfies the equation

M(t, ~)=N(t, ~)+f"dsM(t, s)N(s, 7) . (C3)

Proof: Call

F(t, r)= exp [f —ds V(s)],

E,(t, 7 ) = F(t, v)q, -

note that

E=Eg+Eq, Ei(t, t)=1,
E,(t, t)=o .

We have (the dot denotes differentiation with re-
spect to 7.)

M(t, ~) = E,(t, T ) = E(t, ~ ) v(~)q

= F (t, ~ )V(& )Q+ F (t, 7') V(& )Q,

F2(t, 7 ) = E,(t, 7') V(7 ) (1 —Q) + E2 (t, 7 ) V(r ) (1 —q) .
The second equation, with the boundary condition
E(,(t, t) = 0, has the solution

E,(t, ~ ) = )t ds F,(t, s) V(s) (1 —Q)
t

G"'(~)=[G" "((d)*E((d)][I/i(~ —f~)],

G"'((o) = [i((u —n)] ',
whence, setting v —0=- co,

if dv s '"'exp. {if dt[n+F(t)]]

1 1 1 "" 1 1
= —„+ —„eF((d) —„+ —„*E((o) —„~F((d)

CO (0 '

CD QP

1x —„+.~ ~ . (Bl)
(d

and the first equation can be written

F,(t, 7 ) = E,(t, 7 ) V(7.)q — ( ds F,(t, s) —N(s, r),
(C4)

where N(s, r) is given by (C2). Integrating by
parts the second right-hand term of (C4), we re-
cover Eq. (C3).

Equation (C4) is of a familiar form in irreversi-
ble statistical mechanics, ' and it is (d/ds)N(s, v),
which is generally referred to as a "memory op-
erator. " The form (C3) has the advantage that it is
easily solved for N directly in terms of M (see
Appendix D), without requiring the projection-op-
erator method which applies only when M is of a
certain type, such as (Cl); in our case, for in-
stance, M is not of the type (Cl) when initial cor-
relations are included, and one cannot use Zwan-
zig's method4 directly. (Fano, ~ who uses an equiv-
alent of Zwanzig's method, neglects initial corre-
lations between atoms. )

We note that Mori's continued. -fraction expan-
sion"~' may be obtained by forming a succession
of equations of the type (C3): Let us define

N'( )v= N-(s—, ~)~, ,=d

M, (~)= N,'(0)-'N,'-( )7;

Nj(~) -=(d/d7')N~(7'), where double-time quantities
are related to the corresponding single-time quan-
tities by (A7). We have

N&(7') =—e '"' N&(7' —s)s'"'~, 0

= —i(dN~(T )+N)(7')i(()- NJ(7'),

so that by (4. 6),

i(dN&((d) = NJ(0) —N&(v) .

We now introduce the recursive relations

~~ (t, 7') = NJ, g(t, v )+f ds M~ (t) s)N~, ,(s, 7 ),
which imply

N,'(a) =N,'(o) ..
AD —503%~+ i/, co j

=N,'(o) .i N(d&, &(0) + N&, ,(2)

We can now build a continued-fraction expansion
for any quantity A((()) by writing

w( )-=)(',( )=w(o) ( (; -))(o)+))',(o)
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1
ei -)i) (0)+&i(0) ((/. . . ) )

When applied to the case that A(~) is a correlation
function, this is entirely equivalent to Mori's con-
tinued-fraction expansion. ' '

Let us now introduce Fourier transforms defined
as follows:

A((D)=- f dT A(0, T)e '"',
where

(d= CO —J
APPENDIX D: EQUATION M =N+N e N

Let us consider the equation'0

M(t, 7)=N(t, T)+M*N(t, T)

=N(t, T)+f dsM(t, s)N(e, 7) . (Dl)
M((3) =N(a&)+M((3)N((d), (DS)

If M(t, T) satisfies (D4), we have by the results
(AS)-(AS) of Appendix A that the Fourier transform
of E(I. (Dl) is

Because of the associativiiy of the convolution
product, we can immediately write the expression
of M in terms of N implied by (Dl), namely,

M(t, T ) =Z N*'(t, T ),
a=1

(D2)

where N*"=N*N+ *N (k factors N) is the kth
convolution power of N (we verify that M = gN*"
=N+PN*'e N=N+M~ N). Formula (D2) implies
the commutation relation

—N=Z (-M)*~ . (D3)
k= 1

If M(t, T) vanishes when T —t& 0, then (Dl) im-
plies that N(t, T) also vanishes when T —t&0. In-
deed, it is readily verified that if A(t, T) and

B(t, T ) vanish when T —t& 0, then the same holds
for A* B(t, T)= f,'dsA(t, s)B(s, T), from which it
immediately follows, by the associativity of the
convolution product, that if M(t, T) vanishes when

T —t & 0, then so does N(t, 7') as given by (D3).
E(luation (Dl) also has the following implication:

If M(t, T ) has the time-translation property

M(t, T ) = e'"M(t e, T —e) e-'", —

where L is some operator, then N(t, 7 ) also has the
same property. We first verify that if A(t, T) and

B(t, T ) have property (D4), then so does Ae B(t, T ):
Indeed,

A* B(t, T) = f ds e"~A(t —e, s —8)e-'"
x e" B(s —8, T —8)e '

=e' A* B(t —8 T —8)e "
the above implies, by the associativity of the con-
volution product, that if M satisfies (D4), then so
does N as given by (D3).

M+N=ZN* =NUM
4=3

which implies in turn that E(I. (Dl) is perfectly
symmetric in M and —N, that is, (D1) is unaltered
if M and —N are interchanged; thus, expressions
of N in terms of M may be obtained by simply in-
terchanging M with —N in expressions of M in
terms of N. Hence, it follows from (D2) that

or equivalently,

M(t, T) = N(t, T) + f ds M (t, e) AN(t, T),
t

which has the solution

d 'r

M(t) T) = exp [ f ds AN(ti 8)]
t

this follows from the fact that if E(T)
=exp [f,'ds G(s)], then

P(T) =F(T)G(T) =[1+f der(s)] G(T) .
Ne give explicitly the term of third order in N
in (D9): It is

f ds f ds'AN(t, s')AN(t, e)AN(t, T)

(DQ)

ds f ds'N(t, s')N(s', e)N(s, T) .
One readily verifies the identity of (D9) and (D2) by
referring to formula (A4).

Let us now assume that M is of the form

M(t, T) =—exp [ f

dern(t,

s)]P

= exp„[ f, ds m(t, s) ] m(t, T)P,
where P is a (projection) operator acting on the

(D10)

N((D) = M(cu)/[I + M((D)] = —Z [-M((()) ]
a=1

this being of course the Fourier transform of (D3).
We now restrict ourselves to the case that M(t,

T), and therefore also N(t, T), vanishes when T
—t&0; E(I. (D1) can then be written

M(t, T) =N(t, T)+f dsM(t, s)N(s, T) . (DS)

In order to write the expression of M in terms of
N in a form that is practical for physical discus-
sion, we define an operator A as follows: When

appearing inside a product of double-time opera-
tors A, (ti, I T, ), A makes all the t, 's on its right-
hand side which are smaller than, equal to the
largest T, on its left hand -side. For instance, if
t&&s, i=1, 2, 3, then

(g, ) (g, ,) (g, g)= (g, ) () g) (, s).
We can now write E(I. (DS) as
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Applying the results of Appendix C, we have that

N, (t, r) = exp. [ f ds m(8, s) (1 —Q)] m(8, r) Q
(D13)

satisfies the equation

M, (t, r) =N (t, r)+ f'ds M (t, s)N (s, r) . (D14)

[In the above, m(8, s) is considered a function of s
alone, and it plays the role of V(s) in Appendix C. ]
Now,

Mq(f, s)Ne (s, r) = exp. [f ds' m(8, s ')] m(8, s)PA

xexp. [ f ds'm(8, s') (1 —PA)]m(8, T)PA

= exp [ f ds' m(8, s')] m(8, s)P

x exp [ f ds' m(s, s') (1 —PA)] m(s, v') P

=M, (f, s)A-'N(s, ~), (D15)

where N(t, r) is given by (Dll). Putting 8 = i in

Eq. (D14), and making use of (D15), we recover
Eq. (DS) after identifying M, (f, 7')A with M(t, 7).
This completes the proof.

We notice that had we taken Q= P instead of Q
= PA in definition (D12), we would not have been
able to get rid of the 8 dependence of N~(s, r) in

Eq. (D14). We would then have the equation

M(t, r) = N, (t, r) + f ds M(t, s)N, (s, r), (D16)

where N, (s, 7') is given by (D13) with Q -P. If
we let

m(f, r) =p'"' im, (f, r),
so that M(f, 7) is given by (5.9), we obta. in for
N,(t, 7) a quantity whose density expansion has the
same asymptotic behavior ' as that of N(f, r); but
the dependence of N, (s, 7) on three time arguments
prevents the Fourier transform of (D16) from
yielding simple or useful expressions, such as (D6)
We have here an example of a quantity having a
density expansion that can be truncated, but whose
relation to M is not convenient for practical use.

APPENDIX E: WING BEHAVIOR OF SPECTRUM

The spectrum can be written

left-hand side. We shall show that

N(f, r) = exp [ f ds m(t, s) (1 —PA)] m(t, r) P
(Dl 1)

satisfies Eq. (DS).
Proof: Introduce some time 8 &f, and define

M, (t, r) =-exp [ f dsm(8, s)] m(8, r) Q, (D12)

where

where {[ and t j denote, respectively, bras and
kets in Liouville space (the notation 1)) is more
commonly used). For any operators A, B, . . . ,
we define

ReA —= &(A+ At),

ImA:—(1/2i) (A —A ),
where A~ denotes the Hermitian conjugate of A.
We have the relations

ReA = ReA~, ImA = —ImA~,

Re{DIAI»={DIReAI», Im{DIAID)={DII~ID]

ReBAB~ = B(ReA)Bt, ImBABt = B(ImA)B~ .
Inserting 1= U(u&)t[U(&u)t] in (El), we write, using
Eqs. (4. 2) and (4. 4),

sf~)= —. Ia „,l~ —c(~&'l~ „' aI
(E2)

and deduce

Re1(td) = IB „ i tImrrc(e)j „Dl1 1

(E3)

Imi(&o) = D „ t [op3 —ReoC(ar)]
)

D
1 1

(E4)
(Note that o is a function of H, , by Appendix C of
Ref. 1, so that ou3 is Hermitian. )

In the wings, at frequencies far from all eigen-
frequencies of H, and such that l~l»lC(&) I, we
have

i(~) -{Dl(I/g) [ImoC(&u)] (I/a3) lD]+ i{DIo/~ lD).
(E5)

[Here we assume that the translational motion of
the radiator is neglected, or that it has been in-
cluded in the "bath" (cf. Sec. VIII of Ref. 1), so
that the spectrum of H," is discrete. ]

We now show that if C(&u) is treated to first or-
der in the density, the line shape Rei(ap) is, in the
wings, proportional to the one-perturber line shape
Rei, (~), where I,(~) is the spectrum corresponding
to the presence of only one perturbing atom. We
have

I,(~) =6'{Tr,~De ~"» e '"8~D](Tr,~e 8"») '

~ Tr~Dp J((D)D,

where

g(r) = (~c0/Z )ewa (Tr e-Bs~gekvsag) e- /as

According to (3. 23) and (4. 12),

J(r) = iII"'(- iP', r) = N" '(7'),

I((e) = Tr,DoU((u)D

= {DloU(~) lD], (El)

so that by (4. 6),
N" '(FD) = J'(e) = —J(r = 0) + Z(&3)id . '
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With the approximation N-N ", o - p, , the real
part of (E5) becomes [recall C(v) = &3N(g)]

Rer(u&) = (D l Imp, (1/v) C"'(ur) (I/d)) l D]

=&DIBep. ~(~) ID)

cc Ref, (&u)

[note that J(r = 0) = n'U(es"'/Z~) Tr~e "» is Hermi-
tian, so that the term Im J(r = 0) = 0].

Note added t'n Proof. After completion of this
work, the author became aware of the vast amount
of literature dealing with the density expansion of
transport coefficients (Ref. 22) in which expansions
analogous to those given here or in Bef. 1 are per-
formed; Albers and Oppenheim (Ref. 23) have also
applied these methods to the specific case of pres-
sure broadening. In Bef. 1, it was argued that
each term R" (f) in the density expansion R
=En~R'»' tends to a constant as f- ~; in fact, this
can be shown rigorously (Ref. 24) only for the
terms 2i,

""and 8' '. lt appears that recollision

cycles cause the higher-order terms to grow in-
definitely with time (Refs. 23 and 25) [though una-

nimity has not yet been reached concerning the
form (Bef. 26) or even existence (Ref. 27) of these
secularities]. Thus, the discussion given in Sec.
VII of Bef. 1 only shows that the density expansion
of R(f) is free of the "worst" divergences present
in the expansion of U(f), namely, those arising
from successions of uncorrelated collisions of the
radiator with clusters of perturbers. Even though
the terms R'~'(f), k&3, grow with time, it is still
believed that R(f) itself exists in the limit f- ~,
so that one is still justified in approximating R(t)
by nR"'(f) or nR' '+n R' ', which also exist as f.

In order to get approximations of higher or-
der in the density, resummation procedures have
been proposed (Befs. 23 and 28), but these still
do not seem to eliminate all divergences (Ref. 29).
The author acknowledges discussions with Pro-
fessor S. Fujita and Professor B. C. Eu on these
matters.
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The molecular-dynamic method was used to simulate a fluid of 500 rigid diatomic homo-
nuclear molecules interacting by a double Lennard-Jones potential. The equilibrium and time-
dependent properties are calculated in the liquid phase. The computed pressure and the in-
ternal energy agree quantitatively to a few percent with experimental values for nitrogen. The
reorientational and the velocity of the center-of-gravity self-correlation functions are also
discussed. The memory-function formalism and the extended-diffusion models are used to
interpret the reorientational self-correlation functions. The analysis reveals that these self-
correlation functions have an exponential behavior for times larger than 5 && 10 sec. In this
model, considering present computing precision, there is no observable hydrodynamic-type
relaxation in the reorientational. self-correlation functions.

I. INTRODUCTION

The molecular-dynamic (MD) method has been
widely used to study the monoatomic fluids.
Recent computer experiments, considering a Len-
nard —Jones (LJ) potential as the interaction be-
tween pairs of particles have lead to a determination
of several thermodynamic properties (pressure,
internal energy, and phase transition ), the equi-
librium cor relation functions, the self- correlation
function of the velocities, and the self-diffusion
coefficients. For argon, the calculated quantities
agree within a few percent with the experimental
data. The purpose of this comparison between
computed and experimental values is not to demon-
strate that the real potential is a LJ potential (for

instance in argon), but to establish that the pro-
posed model has all the significant physical prop-
erties of a real system. Then the simulated sys-
tem can be considered as a reference for theoreti-
cal studies of equilibrium and transport properties.

Up to the present time very few MD results on
polyatomic liquids have been obtained, mainly be-
cause the molecular interactions are badly known.
To our knowledge, the only MD calculations on
polyatomic fluids have been carried out by Harp
and Berne using a Stockmayer-type potential to
simulate CO and N2 and by Rahman and Stillinger
to simulate H&O.

In this work, we study another type of interaction
potential, the so-called diatomic potential. This
potential has been successfully used to determine


