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Glauber. But, from a practical point of view, we
must take into account the fact that g, (t) is mea-
surable only for / of the order of a few units or at
best of a few tens, and for a non-negligible inten-
sity of radiation. With these restrictions we have
found that large fluctuations will be reached only
for mo of order smaller than E . This result
means that the atomic system must be prepared in
a state very near the excited state. For example,

if the excitation can be described by an angle 8,
mo is given by the relation

m, = ,' N (-co so+ 1) .

Obviously, in the limit of large N, mz wil]. be a
great number even if 8 is very near m. For
8= m- e, then mo=N~ E . Therefore, unless the sys-
tem is almost completely excited, it will exhibit in the
present conditions of technology a classical behavior.
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The heating of plasma electrons in a laser beam by the inverse Bremsstrahlung process is considered

from a quantum-mechanical viewpoint. A kinetic equation is derived and the change in kinetic energy
of the electrons is calculated. Effective collision frequencies are found for the two cases of weak field

and strong field and are compared to the classical results. It is found that the Coulomb logarithm,
which appears in the classical expressions for the effective collision frequency, does not appear in the
strong-field expression for effective collision frequency of the present work.

I. INTRODUCTION

The inverse Bremsstrahlung process is believed
to play an important role in the breakdown and
heating of a gas by a laser beam. The exact na-
ture of this process in intense laser beams has
never been quite clear. From a classical view-
point, an electron in an oscillatory electric field
of frequency & and intensity Eo has time-average
kinetic energy e Eo/2m~ . If the electron makes
a collision between the times of application and re-
moval of the oscillatory field, then an energy of
this order may be retained by the electron when the
field is removed; otherwise, the energy is re-
turned to the field. The rate of change of the ki-
netic energy of the electron is given by~

dE 8 Eo
dt 2m(d'

where v,« is an effective collision frequency.
Silins has used a classical kinetic equation to find
expressions for v,« for the two cases of weak and
strong field. The Coulomb logarithm occurs in
both expressions.

From a quantum-mechanical viewpoint, the elec-
trons can gain energy only in units of ~ and it is

not clear that Eq. (1) and the classical argument
which preceded it have any validity. However,
Zel'Dovich and Baizer have shown4 that Eg. (1) is
valid when only one-photon processes are con-
sidered and &» ~. One of the aims of this paper
is to clarify the relationship between the classical
and quantum-mechanical viewpoints.

To treat processes in which a large number of
photons is absorbed or emitted by the usual per-
turbation theory requires a prohibitively high order
of perturbation theory. However, when there is a
large number of photons in the same state, then it
is valid to treat the electromagnetic field classical-
ly. The electrons are treated quantum mechanical-
ly and nonrelativistically. The inverse Brems-
strahlung process is treated using first-order per-
turbation theory in a manner similar to other
authors. The unperturbed electron states are
taken to be the solutions to the Schrodinger equa-
tion for an electron in the field of a classical elec-
tromagnetic wave. The field of a nucleus is treated
as a perturbation. Transition probabilities are
calculated between the unperturbed electron states.

We begin with a brief derivation of the transition
probabilities. A kinetic equation for the electrons
is then written using the transition probabilities.
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A(t) =AD(e„cos(dt+e, sin~t) .
The time-dependent Schrodinger equation

(2)

—'. v-- A(t) p(, t)

After taking the classical limit, the rate of change
of the kinetic energy of the electrons is calculated
and comparison with the classical equation (1) is
made. Expressions for effective collision frequen-

cy are found for the two cases of weak and strong
field. The weak-field expression agrees exactly
with Silin's3 weak-field expression. The strong-
field expression agrees closely with Silin's3 strong-
field expression except that the Coulomb logarithm
does not occur in the present calculation. The
Coulomb logarithm normally enters because it is
necessary to cut off a divergent integral. We find
that in our strong-field expression the integrals
are convergent so that no cutoff is necessary.

II. TRANSITION PROBABILITIES

We assume a circularly polarized electromag-
netic wave propagating in the g direction. The
spacial dependence of the wave is neglected (dipole
approximation). The vector potential is

x Q g„—g(tI —~~), (3)

where 4„ is the Bessel function of order ~. Posi-
tive values for g correspond to the absorption of z
photons and negative values to the emission of

I nt photons.

III. KINETIC EQUATION

From Eq. (3), we see that the transition prob-
ability per unit time for the transition from state
1 to state 2 with the absorption (~ &0) or emission
(n & 0) of I' n l photons is

r(n p -p }=—V —— Z —~(n-&m &.
2'tt' — p2 —p g

SQJ
p ~

(4)
The 5 function implies that the energy of the elec-
tron-photon system is conserved. The momentum
of the electron-photon system is not conserved
(the nucleus may carry off some momentum), and

a sum over momentum will appear in the kinetic
equation for the electrons.

The change in N, (I)2), the number of electrons
with momentum p2, may be written schematically
as

has the solution (normalized in a box of unit vol-
ume)

2

p(x, t)= exp —p x —
,'p ——A(t )pp) . '

2m@„' c
0

Using first-order perturbation theory and Eq. (2),
the transition-probability amplitude for a transition
from a state 1 with momentum p& to a state 2 with
momentum p~ is found to be

r T/2

a(1- 2) = ——'
'

gf (x, t) V(x) g, (x, t) d'xdt
P/2

v P2-pi I

'
dt

(I 8 ~ p /2

xexp —Qt- —sin((~t —g)
I

A.

GO

where V(x) is the potential of the perturbing nu-

cleus, V [(P2-p~)/5] is the Fourier transform of

V(x), and

f1=(t2-t i)/2m,

x = (ezo/m(d)t). p, ,

n = tan-'(t p, /t p„) .
Here hp=p~ —p, and the subscript 1 refers to the
direction perpendicular to the direction of propa-
gation of the wave (the z direction). The transition
probability per unit time is

Ip((-p))' px — pp
—p,

)
'

T 8 h

SN()'t()p), X +X~ Xr
/' /'l.

The processes in which an electron with momentum

p~ is destroyed are subtracted from the processes
in which an electron with momentum pa is created.
This difference gives the increase in N, (p,). The
schematic equation may be converted to a mathe-
matical equation by replacing the diagrams in Eq.
(5) by the transition probability per unit time for
the processes given by Eq. (4). This mathematical
equation is

' =2 2 (T(n, p, -p, )N. (p,)[I-N, (p,)]Bt

+ T( n, P —P )N, (-P ) [1 —N, (P2)]

—&(-~, pa -pi) N. (pa) [I —N. (P~)1

—&(, p -p )N, (p.) [I - N. (p )]] (6)

In Eq. (6), [1 —N, (p)] is the square of the matrix
element of the fermion creation operator and.

N, (p) is the square of the matrix element of the
fermion destruction operator. These factors ap-
pear in the transition probabilities when the elec-
trons are treated using second quantized theory
rather than the first quantized theory used in
Sec. II.

We assume that the electrons are far from de-
generacy so that N, (p) «1. Vfe take V(x) to be the
Coulomb potential. Then
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P2-P

and it is readily shown that T(n, p& -p2) = T(-n,
p2 —p~). Equation (6) becomes

Z T(n, p, —p, )[N.(p,)-N.(p,)].
mao Qg

n~O

We let the volume of the box in which the system
is normalized become infinite so that the sum over

p, becomes an integral. A Maxwell distribution is
assumed for the electrodes. Using Eqs. (4) and (&),

Eq. (6) becomes

~g' (v, ) 4Z'8'N m

~t m 2nKT

- mfPi/2k' - mug /2k'

IV2-v

x Q g' —'
6(Q „@~) (9)

@CO

neo

where f, (v) is the electron distribution function and

N is the electron density. Equation (9) is the ki-
netic equation for the electrons.

over 8, comes from small scattering angles. We
therefore assume 8 is a small constant angle and
take it outside the integral over 8,. The Z, axis
is chosen to be along the direction of propagation
of the electromagnetic waves so that hv,
=

l v2 —v& l sin8, . After evaluation of the integrals,
Eq. (12) becomes

Bf,(v2) SwZ 8 N m ~ 8 ""~~ '
9 t 3m 2@kT V2

eEo
2~AT (sin~@8) (13)

The change in average kinetic energy of the elec-
trons is

d(e), mv2 Bf (v, )

tN „2 Bt
(14)

Substituting Eq. (13) into Eq. (14) and choosing the
Z2 axis so that 82 = 8, we find that

d(s) 8'E,' 4 (2v)"'z'8'N
2&i~ 3 vl v~

where vr = (kT/m)'~ is the thermal velocity of the
electrons and 1. is the Coulomb logarithm defined
by

IV. EFFECTIVE COLLISION FREQUENCY L= f cot —,'8d8 .
min

(16a)

Expression. . for the effective collision frequency
wi. l]. now be found for the two cases of weak and

strong field, .

For the weak-field case, X«5~ and the square
of. the Bessel function is approximately

.&.„'(&/@u) = [1/(~ ')'] (&/2@~)'~ "i .
Using Eq. (10) and retaining only the first two
terms of the sum, Eq. (9) becomes

Bf~(Vp) 4Z 8 N FPl ~&2)2'
8t rn "71k7

(10)

Bf (v~) BZ 8~N m ~2yggr '8EO

&t I 2m'AT 2~AT

2 (».)' 3 ax dpi' s&&8~d8~ v)dye ~ ~~ 6(gq —gq) .lv2- v& l

(»)
Since v& = v2, we may write lv2 —v~l =2v&sin —,8,
where 8 is the angle between v, and v2 (the scatter-
ing angle). The major contribution to the integral

d v, —,
-- =-=~-[(8- " —1)6(Q+e~)(~/2@&+) - 0 e/kr

lv2 —vy l

+ (8"""r—l)B(Q —m~)] . (11)

lt. is apparent from Eq. (11) that only single-photon
processes are significant for the weak-field case.

Upon taking the classical limit 5-0, Eq. (11)
becomes

v„,= ~3 [(2m) Z 8 NL/m v'r] . (16)

Equation (16) agrees exactly with Silin's expres-
sions for the effective collision frequency for the
weak-field case.

For the strong-field case, A. » ~ and the argu-
ment of the Bessel function of Eq. (9) is large.
Let us consider the expression

Z J 5(Q nb~)=jogq Z 5(Q nba))
A. 2 A.

A(Q n=- ~
n80 neo

as a function of Q. For A. » hm, Jo~t, „(X/5v) is
a function which has maximum values near Q=+ X.
We write approximately

~g yg„— Q Q —~5(g = —
Q Q —g + Q Q+ g

(16)
The factor —,

' in Eq. (16) may be verified by inte-
grating both sides of the equation over Q.

Substituting Eq. (18) into Eq. (9), we have

The angle 8 „is the lower cutoff of the scattering
angle, usually taken to correspond to an impact
parameter equal to the Debye length.

Comparing Eq. (15) to Eq. (1), the effective col-
lision frequency for the weak-field case is found
to be
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x d~vg - 4 [(e~~"r —1) 5(Q —X)
Iv&-v&I

For the strong-field case, multiphoton absorption
and emission are dominant over single-photon
processes, and the number s of photons absorbed
or emitted is the same order of magnitude as the
ratio of the classical oscillatory energy of the
electrons to the photon energy.

%e now assume the temperature to be low so
that X»kT. Then Eq. (19) becomes

&f,(va) 2Z e N m
et nz 27rkT

For low temperature, the contribution to the kinet-
ic equation of processes in which protons are
emitted is negligible compared to the contribution
of processes in which photons are absorbed.

From the 5 function of Eq. (20), we have v2

»v& for the strong-field case. Then, ~e, =~~ and

Iv, —vol =-va. Equati. on (20) becomes

&f,(v2) 2Z e N mva eEovz,
)t~ 4 (21)

Substituting Eq. (21) into Eq. (14), we again find
Eq. (1) with the effective collision frequency given
by

p,f, =8m NZ emu) /Eo . (22)

This collision frequency is the same as that found

The first term in the brackets in Eq. (19) corre-
sponds to the absorption of s —= (eZ~hv, /~ ) photons
and the second term to the emission of s photons.
It is apparent from Eq. (4) that T(n, pq —p~) =0
for 4p, = 0. Most photons are absorbed or emitted
nearly perpendicular to the direction of propaga-
tion of the electromagnetic wave. Using —,'m(&v, )
= g5~, we find that

by Silin [derived from Eq. (5-6) of Ref. 8] except
that Silin's collision frequency contains an addi-
tional factor of L given by Eq. (15a).

The relative magnitudes of the electron velocities
before and after scattering determine the occur-
rence of the Coulomb logarithm in our expressions
for effective collision frequency. The integrand
of the kinetic equation (9) contains a factor
Iv&-v~l . In the weak-field case, the scattered
electron absorbs or emits a single photon. The
electron's speed is not altered significantly (v&-= v,)
and therefore

~
v, —v, ~-'=-(2v, sin-,'e)-',

where 8 is the scattering angle. The integral over
8 is divergent for small scattering angles and the
Coulomb-logarithm results. In the strong-field
case, the scattered electron absorbs a large num-
ber of photons. The electron's speed is altered
significantly (u~«v2) and therefore Iv2-v~ I

=- vq .
The integral over 8 is convergent and the Coulomb
logarithm does not occur.

It follows from the above analysis that the heat-
ing of electrons by multiphoton processes may be
important if 2e2EO/m&» 8&. For a neodymium
laser, this corresponds to a laser intensity of I
» 10' W/cm'. Equation (22) indicates that the
rate of energy absorption by the multiphoton in-
verse Bremsstrahlung process is proportional to
I . This result agrees with an analysis by
Bethe~ in which the Rutherford cross section is
used to calculate the energy absorbed by an elec-
tron from a strong electromagnetic field. It has
been proposed that plasma be heated to thermonu-
clear temperature by the rapid absorption of elec-
tromagnetic energy from a laser beam. In a very
strong electromagnetic field, the rate of energy
absorption by the multiphoton inverse Bremsstrah-
lung process is slow and other processes, such as
the excitation of collective instabilities, are re-
quired for rapid energy absorption. However, col-
lective instabilities do not develop until at least
several picoseconds after initiation of the strong
electromagnetic field. For intense laser beams of
picosecond duration or less, collective instabilities
do not develop during the period of the laser pulse,
and the multiphoton inverse Bremsstrahlung pro-
cess may be the dominant heating mechanism.
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