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A theory for neutron scattering by a semiclassical system, which is appropriate for liquid neon, is
described. The theory is based on a generalized mean-field approximation involving the polarization
potential and the screened response function, similarly to what has been done previously for argon and
helium. The screened response function is assumed to be a sum of Gaussian functions weighted by
the momentum-distribution function. The polarization potential and the width of the Gaussians are
determined by the zeroth and third moments of the scattering law. The momentum distribution has
the Maxwell-Boltzmann form, but includes quantum corrections to order 7. The quantum-mechanical
zero-point energy is found to increase the kinetic energy per particle to a value of about 30% greater
than the classical equipartition value. Calculations have been done for wave-vector transfers in the range
0.75-5.5 times the wave vector at the principal maximum in the static-structure factor, and the theoret-
ical line shapes have been folded with the resolution function for the experiments of Buyers et al. Com-
parison of the position of the maximum, full width at half-maximum, and line shapes with the experi-

mental results gives good agreement.

I. INTRODUCTION

In recent years inelastic-neutron-scattering ex-
periments have provided considerable information
on the dynamical behavior of simple liquids. Two
systems which have been studied in great detail
are the completely quantum case of liquid helium!
and the essentially classical case of liquid argon. 2
For the case of liquid helium the spectral weight
of the density response is all in the frequency re-
gion which satisfies the inequality 7w > kT (T
being the system temperature), whereas the oppo-
site inequality holds for liquid argon. Further-
more, there are additional differences in the two
systems relating to the relative magnitude of quan-
tum-mechanical effects. For example, for liquid
argon the momentum distribution of the particles
is given by the classical Maxwell-Boltzmann func-
tion, whereas in liquid helium the momentum dis-
tribution is very different and in fact has a singu-
larity due to the quantum-mechanical effect of the
Bose-Einstein condensation.

Because the scattering properties of helium and
argon are so different, it is of interest to study a
system which is in some sense intermediate to
them. The only monatomic system in nature which
satisfies this requirement is liquid neon. It is a

liquid at temperatures between about 25 and 44 °K,
The spectral weight for the density response can
be concentrated at frequencies either large or
small compared to k,T/%, depending on the wave-
length of the response being observed. Also there
are small but observable quantum-mechanical ef-
fects in the structure of liquid neon and specifi-
cally on the momentum-distribution function,
Buyers, Sears, Lonngi, and Lonngi® have per-
formed a neutron-inelastic-scattering experiment
on liquid neon, so there are experimental data
available with which the theoretical results can be
compared. For these reasons there is interest in
studying liquid neon.

The theoretical considerations in the present
paper are related to those used before for helium
and for argon. The zero-temperature limit of
this theory was used by Kerr, Pathak, and Singwi?
for calculations on liquid helium and the high-tem-
perature limit was used by Pathak and Singwi® for
calculations on liquid argon. In the present paper,
the full finite-temperature quantum-mechanical
version of the theory will be used.

The outline of this paper is as follows. Section
I outlines the theory for the scattering law for
liquid neon and particularly discusses the proce-
dure for incorporating the quantum effects in the
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momentum-distribution function. Section II con-
tains the results of the calculations and Sec. IV
summarizes our conclusions.

'II. THEORETICAL FORMULATION
A. Quantum Effects

As was stated in Sec. I, liquid neon is of interest
because it is an intermediate case between liquid
argon, for which a classical description is ade-
quate, and liquid helium, in which quantum effects
are dominant,

The quantum-mechanical effects on the behavior
of particles can be classified into two categories. 8
The first of these can be described as essentially
a diffraction effect arising from the wave proper-
ties of particles; it is important when the de
Broglie wavelength of a particle becomes compa-
rable to the particle size. The second effect
arises from the requirement that the wave function
have the proper symmetry under exchange of iden-
tical particles; this effect is important when the
de Broglie wavelength becomes comparable to the
interparticle spacing. Thus, both effects should
be most important for systems of small atomic
mass. Further, the diffraction effect is dependent
on temperature, becoming more important at low
temperature, and the symmetry effect is dependent
on both temperature and density, becoming more
important at low temperatures and high densities.
Also, there is some dependence of the diffraction
effect on the density for systems obeying the ex-
clusion principle, since increasing the density at
low temperature increases the occupation of higher-
energy states; this has the same effect as increas-

ing the temperature.
The de Broglie wavelength of a particle in a

many-body system is determined by two different
factors. One of these is the scale of the spatial
variations of the wave function, which is deter-
mined by the Schridinger equation. . The other is
the statistical averaging over states which is de-
termined by the temperature.

These effects have been discussed by de Boer in
his treatment of the law of corresponding states
for the noble gases.” If it is assumed that the in-
terparticle potential V() can be written in terms
of a universal function f(#») as V(7)= ¢f(»/0), where
the values of the depth parameter ¢ and the range
parameter o depend on the particular system, then
the two-particle Schrédinger equation can be writ-
ten

[ = (A/272 %2+ £ () [Y(r*) = EXPp(r*) , (2.1)

where 7* is the dimensionless relative coordinate
r/o, v*%is the Laplacian with respect to that di-
mensionless coordinate, and E* is the dimension-
less energy eigenvalue E*=E/¢. The quantity A
is de Boer’s quantum parameter
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A=2r7/o(Me)/? (2.2)

where M is the particle mass, From its definition
A is seen to be the ratio of the de Broglie wave-
length to the atomic diameter ¢ for two particles
whose relative energy is €. It is a measure of the
competition between the delocalizing effect of the
kinetic-energy operator on the energy eigenfunc-
tions and the localizing effect of the attractive part
of the potential. For small values of A the wave
functions are more localized and more nearly
classical in behavior, whereas they become more
delocalized for larger values of A, An equivalent
way of saying the same thing is that the zero-point
motion is more important for larger A.

Since the wave functions give more classical-
like behavior in the correspondence limit of high-
energy states, and since the statistical weight of
these states increases at higher temperatures, the
relative importance of these quantum effects is ob-
viously temperature dependent. This dependence
can be estimated by introducing the thermal wave-
length which, for systems at temperature T that
are close to classical behavior, can be defined as

Xen =27 7/ (3MEy T)ME, (2.3)

where kjp is Boltzmann’s constant. )., is essen-
tially the de Broglie wavelength in a system of tem-
perature 7. The natural scale for defining high
and low temperature of the system is in units of

the well depth €, so that in terms of the reduced
temperature T* = T/(e/ ky),

Xew/0= A/ (B3T*)M2 |

Based on the criteria given at the beginning of this
section, diffraction effects or the zero-point motion
will be more important in systems with larger val-
ues of A and at low temperatures. Introducing
parameters appropriate to neon® (o =2. 82 A, €/kp
=36.3 °K, and M=3.32x10"% g) and considering
the experimental situation (7=26.9 °K and T*
=0.741), we have

Aye=0.574, A,/0=0.39

For other rare-gas liquids, Ay,=2.68 and A, =
=0,186. Since the thermal wavelength for neon is
about 40% of the atomic size, quantum corrections
due to diffraction effects or zero-point motion
should contribute a measurable amount to the
properties of the system. Exchange effects are
much smaller, not only because 1, is a smaller
fraction of the interparticle spacing but also be-
cause the hard core of the potential reduces them
further, as has been shown by Larsen, Kilpatrick,
Lieb, and Jordan.®

One consequence of the quantum-mechanical zero-
point motion is a change in the momentum-distri-
bution function. In classical statistical mechanics

(2.4)

(2.5)
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the momentum-distribution function at temperature
T of all systems is the Maxwell-Boltzmann func-
tion and the average kinetic energy per particle

has the value 55 7. In quantum statistical mechan-
ics there is no general result for the momentum-
distribution function, but it changes in such a way
that the average kinetic energy per particle is al-
ways greater than the classical value, ¥ because

of the zero-point motion,

For systems in which the quantum corrections
to the classical values are small, these corrections
may be obtained by a perturbation calculation in
which 7 is treated as a small quantity. These cal-
culations were first carried out by Wigner!! and
have since been extended by others.?® The correc-
tions to the free energy of order 7% and 7* have
been obtained and also the order %2 correction to
the momentum-distribution function. 13

When corrections to order %2 are incorporated
into the momentum-distribution function, it still
remains a Gaussian function of the momentum,
but the temperature parameter T of the classical
formula is replaced by an effective temperature
T, Which is greater than T'; that is, the number
density of particles with momentum 7p is

_ 27 n)? s/2 -1 2p2 /2 MRRT
n(p)_n<27erB o e sTett  (2,6)

(note that the variable p in this equation is a wave
vector), where # is the average number density
of the system. The effective temperature is given
by13

72

T 12MR3T2

e

2= T+ %(ﬁ-f}cl . (2.7)
Here F denotes the force on one particle of the
liquid owing to the other particles, and (¥ - F),
is thus the mean-square force on a single particle,
The notation (...), means that the average is to
be taken over the classical phase space of the sys-
tem.

The quantity appearing in Eq. (2.7) can be writ-
ten in several alternative ways. Integrating by
parts gives

(FFyy=ks T (Vi) (2.8)

where UXy,.. ., Xy) is the total potential-energy
function of the system and v’ is the Laplacian with
respect to the coordinates of a single particle.

If the potential energy is a sum of pairwise inter-
actions, U=J, V(X,-X,), then

<V12U>cl = nf digcl (x) VZV (x) = <Vzv>cl

Here g, (x) is the pair-correlation function the sys-
tem would have if it were completely classical,
Presumably, g (x) is not very different from the
true pair-correlation function g(x) of the liquid.
Evaluation of the integral in Eq. (2.9) using an ex-

(2.9)
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perimental g(x) or a classical g,,(x) from molec-
ular-dynamics calculations thus provides one way
of calculating the quantum correction to the mo-
mentum distribution,

It should be noted also that the mean-square force
on a single particle is related to the fourth fre-
quency moment of the Van Hove self-correlation

function, 4

With #(p) given by Eq. (2.6) the average kinetic
energy per particle is 3k, Ty, and is larger than
the classical value as it should be.

The corrections to #(p) which are of higher or-
der than %2 are of two kinds: (i) additional correc-
tions to T, which will involve the static correla-
tion functions for three or more particles; (ii) de-
viations from the Gaussian dependence on p. These
higher-order corrections to #(p) are not known,
although formulas for #* corrections to the classi-
cal free energy are known, 1+1215

This correction to #(p) is the major quantum-
mechanical effect which we want to take into ac-
count in the theory for the scattering law for liquid
neon, This topic is taken up next. A discussion
of the magnitude of T, is given in Sec. IITA 1,

B. General Properties of the Scattering Law

The important function used in the theory is the
density response function y(q, w), which gives the
proportionality between the amplitude of an applied
weak external potential V**(J, ) with wave vector
4 and frequency » and the amplitude of an induced
density response §{p(d, w) )

6 (p(@, w))=xlg, 0) V=@, w) . (2.10)

The general properties of this function are exten-
sively discussed in the literature!® and the specific
properties of importance for the problem here are
discussed in previous papers on similar sys-
tems, #5117 g0 the essential facts will only be
listed.

x(g, w) is a complex-valued function, whose real
and imaginary parts, x’ (g, w) and x’’(g, w), respec-
tively, are related by the Kramers-Kronig disper-
sion relations. The scattering law S(g, w) is re-
lated to the imaginary part of the density response
function by

13 1 ,
Slg, w) == — T=warir X (g w) ,  (2.11)

which is a specific example of the fluctuation-dis-
sipation theorem. S(g, w) is essentially the cross
section for the scattering of neutrons with a trans-
fer of momentum 7§ and energy 7w to the system. '8

Important quantities associated with y(g, w) are
the low-order frequency moments of its imaginary
part. These are!®?®

1 (c . . o\ 2n
TJ’_” dwx''(g, ) coth (2kBT> =7 S ’ (9
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-1 N I n
T_‘ dwwy' (g w)= @ , (2.13)

=1(" 8 . 4( g
ndew X" (g, w)= YAk 2Qr+

n jgf Fgl) (1 - cos. %) (- V) vm)

(2.14)
Here @, is the average kinetic energy per particle
and S(g) is the static-structure factor, which is re-~
lated to the pair-correlation function g(x) by the
Fourier transformation

S(g) = 1=nfd% e F{ g(x) ~ 1]

As was explained in detail in Refs. 4 and 5, the
theory requires that the approximate expression
for the cross section exactly satisty these low-or-
der-moment relations. They are the coefficients
in the short-time expansion of the density response
of the system and thus are important in determining
the cross section for large momentum and energy
transfers,

(2.15)

C. Model Form for x(¢q,w)

The mean-field model will be used for the density
response function, In that model (g, w) is as-
sumed to have the form

%(2 )= Xselgy )/I1 = 9(q) Xeolgy )] . (2.16)

The screened response function y,.(g, w) gives the
response of the density to the sum of the external
potential and the internal polarization potential,
which is related to the function ¥(q) by

Voor (g, w) =9(g) 5 (plgq, w)) . (2.17)

This same form for y(g, w) has been used previously
for calculations on other systems, %517

The functions y,,(g, w) and P(g) appearing in Eq.
(2. 16) must still be determined. To obtain y4,(g, w)
we use the same arguments that were used in Refs.
4 and 5, for liquid helium and liquid argon, respec-
tively., Briefly the argument is that we are inter-
ested in obtaining $(g, w) for fairly large values of
momentum and energy transfer, where the sys-
tem response should be approaching free-particle-
like response. Having introduced the denominator
in Eq. (2.186) to allow for the possibility of collec-
tive modes, we choose the following form for the
imaginary part of the screened response function:

Xaelgy ) = = w7 20 m(p) [w T ()] M2
D

y 'Eexp(— {@;ﬁiﬁ)f)w exp <—~ (w+ w;?(iq‘; 95)2_)] .

(2.18)
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Here Q is the volume of the system, w; is the free-
particle dispersion relation

wp=HpY/2M

and 7(p) is the momentum distribution discussed
previously. I'(g) is an unknown width function for
the Gaussians in Eq. (2.18). If I'(g) is taken to
approach zero, then the Gaussians become delta
functions and xso(g, w) becomes the imaginary part
of the response function for free particles.

The real part of the screened response function
is obtained from Eq. (2.18) by using the Kramers—
Kronig dispersion relations.

Having made a choice for the form of the screened
response function, there are now two unknown func-
tions (q) and I'(g). Because we are interested in
the large-¢ and - behavior of the cross section,
we require that the density response function de-
scribe the short-time behavior of the response
exactly. This short-time behavior is given by the
moment relations in Egs. (2.12) to (2.14), so we
determine (g) and I'(g) by requiring that these
relations be exactly satisfied. The resulting re-
lations are the same as those used by Kerr,
Pathak, and Singwi? in their calculations for liquid
helium.

The first moment relation in Eq. (2.13) is iden-
tically satisfied for all ¢(g) and I'(¢). Requiring
that the third-moment relation in Eq. (2.14) be
satisfied gives an equation relating ¥(g) and I'(g),
viz.,

(2.19)

M T
WD i) =nrrla) | (2.20)
where

Pylg)= ‘ql.'z‘ j dxg(x) 1 -cosq - X)(g- VPV(x) (2.21)

is the potential part of the third moment. Now
requiring that the zeroth-moment relation [Eq.
(2.12)] be satisfied does not give another explicit
relation between ¥(g) and I'(g), but must be im-
posed numerically. [In the high-temperature limit
where coth(7iw/2%,T) can be replaced by (2k, T/ %),
the integral in Eq. (2.12) can be evaluated using
the Kramers-Kronig relations, and two simple
formulas for P(g) and I'(g) then result. These are
the formulas that were used by Pathak and Singwi
in their work on liquid argon. %]

Having specified y,.(¢, w) and the procedure for
obtaining the polarization function ¥(g)and the width
function I'(g), the model form for ¥(g, w) and
S(g, w) is now complete,

The final formulas for the scattering law in
terms of the functions ¥(g) and I'(g) are as follows:
From Egs. (2.11) and (2. 16) the scattering law is

B 14 1
Slg, w)=~ P R T s
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x Xse (g @) _
[1-9(q) xoo(g, )P+ [0(@xse(g, w)I?

. (2.22)

Using the momentum distribution function from
Egs. (2.6) and (2.7) in Eq. (2.18) for y!! (g, w)
gives

Xoolgs w) = - %(Wg]_)__)l/a

x[e-m-wq)z/w(q)_ e-(w+wq)2/W(q)]; (2.23)

the Kramers—-Kronig transform of this is
2n R
x;c(q’ CU): _%- [W(Q)] /2

X[D([—ﬁ,ﬁﬁ) -D <rv°;—(tq)ﬂ]§7f>] . (2.24)

In both Eqs. (2.23) and (2. 24) the function W(q) is

W(g) = @kgTe /M)g*+T(q) (2.25)

where I'(g) is the function introduced in Eq. (2.18).
The function D(x) in Eq. (2.24) is Dawson’s in-
tegral, defined by

D)= [ ¢ ay . (2.26)

For sufficiently large-¢ values, the scattering
law should be described by the impulse approxi-
mation, 22! in which the interatomic interactions
are completely neglected and the distribution of
scattered neutrons is given by the Doppler shift
of a neutron scattered with momentum transfer 7g
from a free particle of initial momentum 7p aver-
aged over the distribution of initial momenta which
are present in the scattering system. Thus

lim S(g, w)=Su (g, w) :Zb' n(p)o(w— wg,g+ wy) .
’ (2.27)

Using the momentum distribution of Eq. (2.86), this
becomes

Sl w) = M ve - M(w = w))*\ |
Wi @ (Z'”kBTeff—fIT P 2kp Tetr q

(2.28)
The theory described above reduces to the impulse
approximation at sufficiently large ¢, which can be
seen as follows: P,(q) [defined in Eq. (2.21)] decays
as ¢~2 at large ¢. It was argued in Ref. 4 that y(q)
must decay to zero more rapidly than q‘z and there-
fore I'(g) must approach a nonzero constant at
large ¢g. Equation (2. 25) then shows that as g be-
comes large I'(g) eventually becomes negligible
compared to (2ks Toge/M)g?. In this limit where
both ¥(g) and T'(g) can be considered small, this
theory reduces to the impulse approximation.
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1Il. CALCULATIONS

The results of the calculations presented here
will be compared with the results of the neutron in-
elastic scattering experiment performed by Buyers
et al.® This experiment was performed at the tem-
perature 7'=26, 9 °K and at saturated vapor pres-
sure, which gives a number density »=3.66x 102
atoms/f&s, according to the thermodynamic data of
Gibbons, %2

A neutron diffraction experiment on neon has been
carried out by de Graaf and Mozer? at 7= 35, 05 °K
and at three different pressures extending up to
140 atm. However, they have given no data for the
inelastic scattering,

A. Auxiliary Quantities

In this subsection the values used for the effec-
tive temperature, the static-structure factor, and
the integral P;(q) will be discussed.

1. Effective Temperature

The formula for the effective temperature T,
requires evaluation of either the mean-square
force on the particle, as in Eq. (2.7), or the aver-
age Laplacian of the interparticle potential using
a pair-correlation function for a classical system
at the same density and temperature, as in Eq.
(2.9).

Molecular-dynamics calculations provide a di-
rect evaluation of the mean-square force, since the
force acting on each particle must be obtained to do
the calculations, and the average can then be -
straightforwardly carried out. Verlet? has per-
formed such calculations for a system of particles
interacting via the Lennard—-Jones potential

V() =4e[(o/7)2 - (6/7)8] (3.1)
and given values for the quantity
Q=(F+ ¥y /MksT (3.2)

as a function of the dimensionless density n* =no®
and temperature T*= T/(e/kg), where ¢ and € are
the Lennard-Jones parameters. By scaling his
results using the parameters appropriate for neon
[given just preceding Eq. (2.5)], values for the
mean-square force and hence the effective tempera-
ture are directly obtained.

In principle there are two advantages in using the
the value for the mean-square force obtained in
this manner. First, the formula in Eq. (2.7) spec-.
ifies that the averaging is to be done classically,
and that is what is done in the molecular-dynamics
calculations. Secondly, this procedure allows one
to avoid the problem of evaluating the integral over
the classical pair-distribution function in Eq.
(2.9). A large contribution to that integral comes
from the region close to x=0, where the deriva-
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tives of the potential are large and where g(x) is
rising rapidly from zero and thus most subject to
uncertainties. For these reasons we have used
the molecular-dynamics value of the mean-square
force in evaluating T.,. However, there is the
difficulty that the densities and temperatures for
which the calculations have been done do not coincide
exactly with the temperature and density of the
experiment by Buyers et al.

Taking Verlet’s value of Q2 at 7=27.6 °K and
n=3.79%10 atoms/A® (T*=0.76 and »* =0. 85)
as closest to the experimental situation gives

n? - = . .
36MkBT2 (F- F>°1:8‘ 377K, Teff=35-97 K .
(3.3)

This quantum correction gives an increase of about
30% in the kinetic energy per particle. This value
for T, has been used in our calculations.

Buyers et al. have calculated the quantum cor-
rections at T and » appropriate for the triple point
(T, =24.56 °K and n,, = 3. 62 X102 atoms/A®) which
is at a somewhat lower temperature and density,
by evaluation of the integral in Eq. (2.9), using a
classical pair-correlation function also obtained
from the molecular-dynamics calculations by
Verlet.® They obtained

7% (V2V), /36 MEET=9.82 °K (3.4)

which is consistent with Eq. (3.3), since the quan-
tum correction should increase with decreasing
temperature.

For purposes of comparison the quantum correc-
tion can also be evaluated for the conditions of the
de Graaf-Mozer experiment.® Taking Verlet’s
value of Q2 at T=38.8 °K, and n=3.34%x107?
atoms/A® (7% =1.069 and »* = 0. 75) as being closest
to the conditions of that experiment gives

72 (F.F),/36MF T?=5.86 °K . (3.5)

Thus the quantum correction is less important for
this experiment.

The form of the O(%*) correction to x(p) is not
known. However, the correction to the free energy
of this order for conditions close to the triple point
has been calculated by Hansen and Weis?® and found
to be smaller than the 0(7z2) correction by a factor
of 40, It seems reasonable to assume that the
higher-order corrections to #n(p) are smaller by
the same amount and therefore the O(%#2) correction
gives an adequate account of the effects of the zero-
point motion on %(p).

2 Py(q)and S(q)

Both P4(g) and S(g) involve the pair-correlation
function g(x), and P4(g) also requires the potential
V(x). The Lennard-Jones potential in Eq. (3.1)
was used for V(x). It is then important to have a
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g(x) which is determined by the same potential,
since the main contribution to the integral defining
Pa(q) comes from the region around x=0, in a sim-
ilar way to the integral for the mean Laplacian
of the potential in Eq. (2.9). Calculations of Ps(q)
for liquid He* were found to vary as much as 25%,
depending on the pair-correlation function used
(see the Appendix of Ref. 4). For that reason we
chose to use a classical pair-correlation function
obtained from the molecular-dynamics calculations
of Verlet®>; among his tabulated functions the
closest one to the experimental conditions has
T=29.8°K and n=3.66x10"2 atoms/A%(T*= 0. 820
and #* =0, 824). It should be pointed out that Rowe
and Sk51d®” have tested the sensitivity of P;(g) to
different pair-correlation functions for liquid
argon and found variations of only 2% over the
wave-vector range 1.1<¢ =4.4 A"}; this is a
much smaller variation than was obtained in the
liquid-He? calculations,

For the special case of the Lennard-Jones po-
tential, the ¢g=0 value of B(q) is® (see the Ap-
pendix)

nPs(0)=11p/n+ 3 Q- B E, | (3.6)

where p is the pressure, @, is the average kinetic
energy per particle, and E, is the average total
energy per particle. Using the values obtained by
Verlet® for these latter quantities, good agree-
ment is obtained with the value obtained by inte-
grating Eq. (2.21). In principle, Eq. (3.6) could
be used to estimate the error in B(0) caused by
using a classical g(x) instead of a pair-correlation
function which includes quantum effects, since for-
mulas are known for the low-order quantum cor-
rections to the classical values of the pressure,
kinetic energy, and total energy.'V? However,
these formulas involve integrations over the three-
and four-particle static correlation functions, so
that at the present time no reliable estimate of
these corrections can be made.

The results for nP;(q)/% are shown in Fig. 1.
It falls rapidly from its ¢=0 value, has some
slight oscillations extending out to ¢=10 A}, and
then decays proportionally to ¢~2 for larger g val-
ues,

Having chosen a g(x) to calculate P;(g), the same
g(x) was then transformed according to Eq. (2.15)
to obtain S(g). The result is shown in Fig. 2. It
is in good agreement with the x-ray diffraction re-
sults of Stirpe and Tompson, ® except for ¢ <1.6
A-l, where the calculated S(q) shows effects of
termination error.

The structure factor for liquid neon is quite sim-
ilar to that for liquid argon, as measured by
Skéld et al.? and by Yarnell et al., ® if the ¢ values
are scaled according t0 gy Oye.= ¢a0sr, Where o is
the lengthparameter in the Lennard-Jones potential.
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" FIG. 1. Potential part of third moment, nP;(q)/%, as
defined by Eq. (2.21), vs magnitude of the wave vector
q. The integral was evaluated using the pair-correlation
function from Ref. 25. (Note that the left-hand scale is
to be used for ¢=2 and the right-hand scale for ¢ >2.)

3. Some Calculational Details

Having determined values for all the input func-
tions and parameters, the functions listed at the
end of Sec. II were programed and an iterative
procedure was set up to integrate S(q, w), compare
the result with the correct value of S(g), calculate
a new ¥(g) and T'(g) always satisfying Eq. (2.20),
integrate S(g, w) again, and repeat until the correct
value for S(q) was obtained. Having obtained y(q)
and I'(g), line shapes for S(g, w), position of its
maximum, its maximum value, and its full width
at half-maximum were then obtained. Also, we
had available the resolution function for the experi-
ments of Buyers et al.® so we convoluted that with
the theoretical S(g, w) and obtained quantities which
should correspond precisely to what is measured
experimentally. These results are described in
Sec. IIB.

B. Results

S(g, w) for liquid neon, considered as a function
of frequency for ¢=1.8 fk'l, is a smooth single-
maximum curve. The line shapes are slightly
asymmetrical, as will be shown further on, but a
convenient way to summarize a large amount of
data and calculations is to plot the position of the
maximum, the full width at half-maximum, and
the height of the maximum as functions of q.

In Fig. 3(a) the position of the maximum in S(g, w)
is plotted, both for the case when the quantum cor-
rections to the momentum-distribution function are
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taken into account (curve 2) and for the case when
these corrections are ignored (curve 3). Also
plotted is the free-particle dispersion relation

We = ig%/2M (curve 1), which is where the maximum’
of S(g, w) is predicted to be by the impulse approxi-
mation [cf. Eq. (2.28)]. Experimentally it is
easier to locate the points at which S(g, w) drops

to half of its maximum value than it is to locate the
position of the maximum. For this reason Buyers
et al. have plotted w,,(g), which is the average of
the half-maximum points. Because of the slight
asymmetry of the line shapes, w,,(g) and wy,lq)

do not quite coincide. The experimental and the-
oretical values for w,,(g) are shown in Fig. 3(b).
The theoretical numbers in both parts of Fig. 3
have not been corrected for the effects of the res-
olution function. Incorporating that causes a very
slight shift of wy,,(g) and w,,(g) to higher frequen-
cies.

These are several things to be noted from the
curves in Fig. 3. For g<2.75A"! the maximum in
S(g, w) is very close to =0 and in that ¢ range
most of the spectral weight of S(g, ) satisfies the
condition 7w < kzT; thus the scattering in this re-

gion is very much like that from liquid argon,2which
is essentially a classical liquid. As g becomes

larger than 2,75 f&'l, the maximum shifts to posi-
tive values of w, as is required by detailed balance,
and for sufficiently large ¢ it approaches the free-
particle recoil value w,=%g?/2M. In this ¢ range
the scattering is more like that observed for liquid
helium, ! although the condition 7y > % ,T for most
of the spectral weight is satisfied only at the larg-
est g values.

The approach of w,,(g) to w, is not monotonic
but oscillatory, which is also like the behavior ob-
served in liquid helium.! The minima in o, (g)
occur at the maxima of the structure factor S(g).
This oscillatory behavior is produced in the theory
by requiring that the scattering law satisfy the low-
order-moment relations. Finally, although both
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FIG. 2. Static-structure factor S(g) vs ¢, calculated
from the pair-correlation function of Ref. 25.
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FIG 3. (a) Position of the maximum
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in S(g, w). Curve 1 is the free-particle
dispersion curve w, =7g?/2M and is the
position of the maximum in the impulse
approximation, Eq. (2.28). Curve 2 is
the position of the maximum in the pres-
ent theory when the quantum correction
is not taken into account (Te=T). Curve
3 is the prediction of the present theory
when the quantum correction is taken
into account (Tegs >7). (b) Average of
the half-maximum points of S(g, w).
Curve 1 is the result of the present the-
ory when the quantum correction is not
taken into account (Tes=T). Curve 2

is the result of the present theory when
the quantum correction is taken into ac-
count (Tye >T). The dotted line joins
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curves with and without the quantum correction
approach the free-particle recoil curve at large

g, it appears that one of the results of the quantum
effects is to shift that approach out to larger ¢ val-
ues,

The agreement between the theoretical and ex-
perimental values for w,,(q) is good over the whole
range of g values. It is somewhat unfortunate that
the results both with and without the quantum cor-
rection lie within the error bars on the data. It
appears that this measurement cannot be used to
obtain an accurate value for T,,; however, this is
to be expected for this particular quantity since
both curves have the same large-q limit. The
curve including the quantum correction lies closer
to the center of the error bars, except at the

the experimental points which are taken
from Ref. 3. For 1.0=¢=3.2 A the
experimental maxima are at w=0.

smallest ¢ values, so to this extent taking the quan-
tum corrections into account improves the agree-
ment with experiment,

Results for the full width at half-maximum are
shown in Fig. 4(a) for four cases. Curves 1 and 2
are the present theory and the impulse approxima-
tion, respectively, including the quantum correc-
tion; curves 3 and 4 are the same but without the
quantum correction. The results in Fig.4(a) do not
include the effects of the resolution function. We
have also convoluted our theoretical results for
S(g, w) with the experimental resolution function
for the experiments of Buyers ef al. and deter-
mined the widths of the resulting line shapes.
These results are compared with the experimental
values in Fig. 4(b).* The discontinuities at ¢ =4 and

FIG. 4. Full width at half-maxi-
mum of S(g, w). (a) Curve 1 is the -
result of the present theory with the
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quantum correction. Curve 2 is the
impulse approximation witk the quan-
tum correction. Curve 3 is the pre-
sent theory without the quantum cor-
rection. Curve 4 is the impulse ap-
proximation without the quantum cor-
rection. These curves do znot include
the effect of the resolution corrections.
(b) Result of the present theory with
the quantum correction and with the
experimental resolution function taken
into account. The discontinuities are
due to changes in the resolution func-
tion at those points. The dotted curve
joins the experimental points which
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1o 12 are from Ref. 3 (also, see Ref. 31).

The circles, squares, and triangles
are to distinguish among the experi-
mental points taken with different re-
solution functions.
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10 A-! are due to discontinuities in the resolution
function at these points.,

The agreement between theory and experiment
for the width is good for g<9 A", For larger ¢
values the calculated width is too large and seems
to have less structure than the measured width.
Inaccurate input values for S(q) at these large-¢
values is one possible reason for this discrepancy.
The calculated value of ¥(g) in this region is quite
sensitive to the deviations of S(g) from unity. Also,
as pointed out in Ref. 3, the measured widths are
less accurate in this region because the instrumen-
tal width is appreciable and the scattered intensity
is small,

The width shows oscillations similar to those
which have been observed in liquid helium! and in
liquid argon.? These oscillations are also corre-
lated with the oscillations in S(g). Thus these
oscillations are the manifestations in a slightly
quantum system of the narrowing of S(g, w) which
was predicted for classical systems by de Gennes
many years ago. 32

It is useful to compare the present calculations
with those for liquid argon using the classical
limit of this theory.*? In doing so, the values of
the wave vector should be scaled according to the
prescription g,,0,,= gy Oxe (0ar=3.41 A). In argon
the width has maxima at ¢,,=1 and 2.78 A"}, which
should scale to ¢=1.21 and 3.36 A! for neon. The
first value is below the range of the present calcu-
lations, but the second agrees well with the posi-
tion of the first peak in Fig. 4. However, the the-
oretical width in argon is about 70% larger than the
experimental value at this maximum, whereas in
the present neon case the agreement of theory and
experiment is much better. It is not understood
why this is so.

The present calculations can also be scaled to
compare with the liquid-helium results!'* using
0x.=2.56 A. One would then expect maxima in the
width at ¢y, =3.7 and 6.2 A"'. The theoretical
results for helium* do not show maxima at these
positions. One reason for this could be that the
momentum-distribution function used in those he-
lium calculations, which was obtained from a Jas-
trow-type wave function by McMillan, * is consid-
erably different from the Maxwell-Boltzmann func-
tion used here. Another could be that S(q) for
liquid helium has considerably less structure than
the liquid-neon structure factor. However, it is
interesting to note that the experimental results
for liquid He* do show maxima at ¢ values which
are quite close to those suggested by this simple
scaling argument. Since the theory predicts the
position of these maxima fairly accurately for both
argon and neon, but fails to do so for helium, this
_causes us to believe that better values of S(g) and
n(p) than hitherto available for liquid helium would

produce improved agreement in that case also.,

The measurement of the width in the asymptotic
g region, where the impulse approximation applies,
in principle provides a determination of T,,,. It
can be seen from Eq. (2.28) that in this region the
width is a linear function of ¢ with a slope which is
proportional to 742, This approach to different
straight lines is reasonably evident from Fig. 4(a).
However, it can be seen from Fig. 7 that I'(¢) has
not yet become constant and ¥(q) is not yet zero.
Thus even at g=13 A the regime of validity of the
impulse approximation has not yet been reached.

The oscillations in the position of the maximum
and in the width of S(g, w) are now clearly estab-
lished in liquid neon and in liquid helium both above
and below the superfluid transition. They are
present in the theory because the approximate
formula for the scattering law is required to exactly
satisfy the low-order-moment relations, and it is
seen from Figs. 1 and 2 that these functions have
oscillations extending out to fairly large-q values.
These oscillations are a characteristic of dense
systems with a strongly repulsive core in the inter-
atomic potential, as has been emphasized by
Verlet, 2

The magnitude of S(g, w) at its maximum is
shown in Fig. 5, both with and without the resolu-

6 o
q (A7) _
FIG. 5. Maximum value of S(g, w), i.e., S(g, Wny(@)).

The upper curve does not have resolution corrections.
The lower curve does have resolution corrections. The
discontinuity in the lower curve at g=4 Al is due to a
change in the resolution function at that point. The dis-
continuity in both curves at ¢=5 A1 results from multi-
plying the calculated values by 10 for ¢g=5 A! in order
to display them more clearly.
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FIG. 6. Line shapes of S{g, w) for selected values of
q. The curves with the higher maxima do not include
the resolution function. The curves with the lower maxi-
ma have been corrected for the resolution. The data
points are from the experiment of Ref. 3.

tion correction. The position of the four maxima
which can be discerned for this function are the
same as the positions of the maxima in S(g).

Some selected line shapes are shown in Fig. 6.
The curves with the larger maxima have not been
corrected for the resolution function, whereas
the curves with the lower maxima have been so
corrected. The data points are from the experi-
ment of Ref. 3; background corrections have been
made on them. The curves of relative intensity
from the experiment have been adjusted to the ab-
solute values of the theoretical curves by multipli-
cation with the same constant factor within each of
the three ranges of the resolution function (1-3. 8,
3.6~10, and 10.0-12.5 A™Y),

The calculated line shapes are generally in good
agreement with the data although there are sys-
tematic discrepancies. For the smaller values of
q the theoretical maxima are too high, whereas at
the larger ¢ values the theoretical maxima are too
low. A similar situation was found for liquid
argon, %" The worst disagreement for the maxi-
mum height occurs at g=2.4 A, at the peak of the
structure factor. However, the resolution correc-
tions are seen to be large there, so that slight un-
certainties in the resolution could produce fairly
large uncertainties in the calculated line shape.

Finally, the values of n(q)/% and [I'(¢)]*/2 are

shown in Fig. 7. ¥(q) is negative over the whole
g range of interest here, and its magnitude is such
that there is no tendency for the first term in the
denominator of Eq. (2.22) to vanish. Thus, there
are no well-defined collective modes at these ¢
values. It is interesting to note that P(q), while
certainly not constant, has somewhat milder oscil-
lations for liquid neon than were found for liquid
argon, ®

Buyers ef al.® have compared their results with
theoretical predictions by Sears.3 % For the
smaller values of g, Sears’s theory uses a mem-
ory function approach which gives the correct
hydrodynamic limit and also satisfies the same
low-order sum rules as the present theory. For
the larger values of g, Sears’s theory is an expan-
sion of the scattering law in inverse powers of ¢
using a Gram-Charlier series where the coeffi-
cients are determined by the same low-order-mo-
ment relations. For the position of the maximum,
Sears’s: theory and the present theory agree equally
well with the experimental values. For the width,
Sears’s memory-function approach gives oscilla-
tions with the correct period and phase but the
magnitudes of the calculated width are too small,
whereas the Gram-Charlier expansion gives widths
which are too large and have less of an oscillatory
character than the experimental results. Thus the
results for the width from the present theory are in
better agreement with experiment. The other ad-
vantage of the present theory is that it covers the
whole range of g values used in the experiment,

T
8 n¥(q)/h
-

q (A-1)

FIG. 7. Width function I'(g) and the polarization po-
tential ¥(g) obtained by satisfying the moment relations.
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IV. SUMMARY

The numerical results presented in Sec. III show
that the theory used here gives good agreement
with the experimental results on liquid neon. The
theory is based on three main ideas: (i) assuming
a mean-field form for the density response func-
tion; (ii) using a nearly free-particle approxima-
tion for the screened response function; (iii) re-
quiring exact satisfaction of the low-order-moment
relations.

Variations of the present theory have now been
applied to several systems?® %38 and the conclusion
can be reached that this is a useful theory for de-
scribing the scattering law for liquids. There are
several reasons for this.

The first reason is that minimal outside informa-
tion is required to be put into the theory, namely,
the interparticle potential, the static-structure
factor, and the momentum-distribution function.
This latter function is just the Maxwell-Boltzmann
distribution for a classical system. For the pres-
ent case it has been found adequate to use the low-
est-order quantum correction to the classical dis-
tribution. For the quantum case of liquid helium,
the momentum distribution must be obtained from
some other theory.

The second reason making this a useful theory
is that it can be used over the whole range of tem-
peratures from quantum liquids to classical liquids.
The detailed balance condition is satisfied, and the
quantum-mechanical forms of the moment relations
are satisfied when the correct momentum-distribu-
tion function is used.

The third reason is that the description of the
scattering law given by this theory is in good agree-
ment with experiment for a variety of systems in-
cluding helium, * neon, argon, ® and sodium.3® The
agreement is not perfect but it is better than is
obtained with any other theory which has the same
general properties of satisfying the low-order mo-
ments, reducing to the impulse approximation at
large-q values, and having no adjustable param-
eters. This has been shown recently in a detailed
comparison of several theories with argon-scat-
tering data by Rowe and Skéld. 27

Since the theory has been applied to a variety of
systems, it is useful to compare the results between
the different systems, as was done in Sec. III.

A significant conclusion resulting from that com-
parison is that there is need for better values of
the momentum-distribution function and the struc-
ture factor used in liquid-helium calculations in
Ref. 4. Another general result is that the region
of validity of the impulse approximation has not
been reached for ¢ values as large as 13 A%,
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Despite its successes, there are several short-
comings of this theory which ought to be clarified.
The important formulas of the theory have not been
derived from basic considerations. They have
rather been based on more intuitive and physical
considerations. This is particularly true for the
screened response function.
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APPENDIX

The steps leading to Eq. (3.6) will be outlined
here. Starting from Eq. (2.21), taking the ¢=0
limit, and carrying out the angular integrations
gives

Py(0)= & nfow dx Pg(x) 322V (x)+2xV'(x)] .
(A1)
For the Lennard-Jones potential in Eq. (3.1),
32V (x) +2xV' (x) = — 216 V(x) - 55xV'(x) ,

A2
so that (a2)

nPy(0) =~ % 1n [~ dx 2 g(x) V' (x)

4oy [ eV . (43)

These integrals also appear in the virial theorem
for the pressure,

b =3nQr = 3w [ dx x*g(x)V'(x) , (A4)

and the expression for the average energy per par-
ticle,

Ep=Q+2mn [, dxx2g(x) V(x) (A5)

Solving Egs. (A4) and (A5) for their respective in-
tegrals and substituting into Eq. (A3), gives Eq.
(3.8).
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