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The convergence of the Sturrnian expansion (i.e., the Weinberg series) for the Coulomb t matrix at
negative energies is discussed. It is pointed out that the series for the full three-dimensional t matrix

diverges, and that the series for the partial-wave t matrix converges conditionally at best and sometimes

diverges because of the long range of the Coulomb potential. The t matrix is rigorously expressed as the
limit of a power series at a point on its circle of convergence, with the power series itself at that point being

just the Sturmian expansion. The possibility of finding alternative separable expansions with better
convergence behavior is discussed, the conclusion being reached that the poor convergence is an inevitable

result of the long range of the Coulomb potential.

I. INTRODUCTION

In a number of recent papers, ' the Coulomb
t matrix at negative energies has been written as
a Sturmian or Weinberg series, i.e. , as an in-
finite sum of Sturmian functions' for the Coulomb
potential. Some of these papers have been con-
cerned with the full three-dimensional t matrix, ' '
others with the partial-wave t matrix. ' 6 In the
partial-wave case the convergence of the expan-
sion has received some attention, including some
useful numerical calculations by Chen and Ishi-
hara, ' but for the three-dimensional case the con-
vergence seems to have received little discussion.

Most strikingly, it does not appear to have been
pointed out that the Sturmian expansion for the
three-dimensional t matrix' 3 (together with the
similar expansion for the three-dimensional Cou-
lomb Green's function '0) does not converge at
all. " We shall see that the lack of convergence
in this case is not at all a subtle matter: The
series does not converge because the terms in the
series do not approach zero. In the partial-wave
case the behavior is better, and here the conver-
gence question is more delicate. It appears, how-

ever, that even here the convergence is conditional
at best, and that in some cases (specifically, if the
two momenta are equal, or ii one of them is zero)
even the partial-wave series diverges.

The aim of this paper is to study the convergence
behavior of the Sturmian expansions for the nega-
tive-energy Coulomb problem, and to understand
the reason why this behavior is so bad. Also,
since the convergence difficulties cast doubt on
many of the manipulations that have been carried out
with the Sturmian expansions in the past, we ob-
tain an alternative expression for the t matrix
which avoids these convergence difficulties. In
this expression, the t matrix is given rigorously
as the limit of a power series at a point on its
circle of convergence, and the Sturmian expansion
is recognized as just the power series itself at

that point.
The recent interest in the Sturmian expansions

has been stimulated largely by interest in the
three-body problem for three charged particles,
for example, the problem of bound states and
resonances of the H ion, or of e'-H scattering
below the ionization threshold. 4 The terms in the
partial-wave Sturmian expansion are separable in
the momenta, thus making the Faddeev equations'~
for the three-body problem tractable if the Stur-
mian expansion is suitably truncated. The kernels
in the resulting equations involve an integration
over the two-body variable, and this can be ex-
pected4 to improve the convergence behavior over
that of the partial-wave Coulomb t matrix itself.
However, inpractice it has been found4' that the
convergence is still disappointing, and it has been
concluded' that the method is limited to describing
the qualitative features of the problem of three
char ged particles.

The question naturally arises, then, as to
whether it is possible to find another separable
expansion for the Coulomb t matrix with better
convergence properties. The reason for the poor
convergence of the 8«rmian expansion is, of
course, the long range of the Coulomb potential.
We shall look at the way the long range appears
in the mathematics, and it then becomes apparent
that the same essential problems must be expected
to occur with any separable expansion. At the
end of the paper we discuss an apparent counterex-
ample; namely the Coulomb wave-function expan-
sion of Chen and Ishihara. 5 The essential conclu-
sion is that the good convergence in this case is
achieved through an approximation that has the
effect of leaving out the long-range tail of the Cou-
lomb potential.

Though a good separable expansion of the t ma-
trix itself may not be possible, the situation is
much better for T —V, the difference of the t ma-
trix from the Coulomb potential, since, as pointed
out by Chen and Ishihara, the main convergence
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The Sturmian functions at a fixed negative en-
ergy E are the normalizable solutions of the eigen-
value equation

[eo —E+y,(E)V] lq, (E))=O, (2. 1)

difficulties in the series for the t matrix come
from the potential contribution. The present work
confirms the rapidity of the convergence of the
partial-wave Sturmian series for T —V, provided
the momenta are not too small, and proves rig-
orously that for nonzero momenta the series con-
verges to the correct value.

The Sturmian functions are defined and written
out explicitly in Sec. II, and in Sec. III the Stur-
mian expansion for the three-dimensional t matrix
is defined, its divergence is noted, and a rigor-
ous relation (described above) between the Stur-
mian expansion and the t matrix is established.
In Sec. IV the partial-wave expansions of the t
matrix T and of the difference T —V are studied.
Finally, in Sec. V we consider the question of
alternative separable expansions of the t matrix,
and discuss in particular the Coulomb wave-func-
tion expansion of Chen and Ishihara. '

II. STURMIAN FUNCTIONS

&(p', p) =e|eae'/2 'lP'-pl', (2. V)

and write the energy as

Po/2P (2. 8)

where p, is the reduced mass. It is also conve-
nient to replace X by the standard hydrogen-atom
quantum numbers n, l, and rn.

The eigenvalues y„, =y„are easily obtained by
noting from E(l. (2. 1) thaty„V is the potential that
causes the nth hydrogenic bound state to occur
at the energy E. In this way we obtain

y„=-n/q, n=1, 2, . . . ,

where

&=e/2e &/Po ~
2

(2. 9)

(2. 10)

Then the Sturmian function („,„(p;E) is simply the
corresponding solution of the momentum-space
Schrodinger equation with the potential y„V; i. e. ,
it is the solution of the bound-state Coulomb prob-
lem' '" for charge y„e,sate

—= -npo/p, .
In this way it is easily found that the Sturmian

functions defined by (2. 3) and by the normaliza-
tion condition (2. 5) are'

or equivalently, A.&.(p; E) = () v) "'y.,V; E)1',.(i),
(2. 11)

1 1 (2. 2)
l=0, 1, . . . , n —1, m lp ~ ~ ~ p l

p

where II0 is the kinetic energy and V is the poten-
tial. Both the eigenfunctions i)i),) and the eigen-
valuesy~' depend on the energy E.

It is sometimes convenient to work instead with
functions i Q~(E)) defined by

I e) = (E -if.) I &.) (2 3)

l 4x)
1 1

(2 4)

which are also called Sturmian functions and which
satisfy the eigenvalue equation

where 7, is the spherical harmonic,

1+3/2 2 2
Po P Cr+s Po P &2 12&

(p2+ pR) I+). tt-1-1 po p2

and C",. is the Gegenbauer polynomial, ' a polynomial
of degree i defined by

(1 —2he+h') "= Z C",(e)k',
)=0

(2. 13)

It follows from this equation that

(P),i i (E -Ho) 'i (t)~) vanishes if y ~i ey ~ so that on
adopting a convenient normalization we have

1
l4))= —

&) ) )
0

(2. 5)

V(x) = e,e,e'/x,

or, in momentum space,

(2. 6)

the minus sign coming from the negative definite
character of E -H0.

For the particular case of the Coulomb potential,
the Sturmian functions are known analytically, be-
cause they are simply related to the bound-state
wave functions of the hydrogen atom. We write
the Coulomb potential as

The original Sturmian functions that satisfy
(2. 1) are then givenby [see E(l. (2. 3)]

C...(p; E) = 2i V»+P-') 'y. ..(p; E) .
However, in the remainder of this paper the phrase
"Sturmian function" refers to the p functions of
(2. 11) rather than to these g functions. '~

III. STURMIAN EXPANSION OF T( p, p;E)

The t matrix T(p~, p; E) is the solution of the
Lippmann-Schwinger equation

TgP ~ E) @gal Q
~(p ) P ) (P 0 PP ) d fl

)Pi = )P + E pris/2~

(3.1)
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or, more concisely, of

r(z) = v+ v r(E) .1

0
(3.2)

Using Eqs. (2. 4) and (2. 5), and assuming that the
Sturmian functions form an appropriately com-
plete set for the purpose, it is a simple matter to
write down a formal solution in terms of Sturmian
functions,

from this it follows that the two zeros in the de-
nominator of the integrand in Eq. (3. 5) lie at com-
plex conjugate points on the unit circle, but never
at t=1 for energies in 0)E& —~, if p'4p. W'ith

the aid of (2. 13), we can express the denominator
part of the integrand as a power series,

,
= -t c„',(s+-) t

(3.9)

&(E)= —& i/~Ã)&- &y (E)ir~E —1

and a corresponding expansion for V,

(3.3) where

—1 & 1+ (2/s ) & 1 .
The power series does not converge at t = 1, since'

(3.4) C„',(cosa) = sinna/sina, (3. 10)

where

(po+p")(po+p')
p2 i

«1 «I 2

(3. 5)

which is obtained from Schwinger's representa-
tion~ of the Coulomb Green's function G(p', p; E)
through the identity

Q(E) = + T(Z)
1 1 1

0 0 0
(3.7)

Obviously the t matrix (like the potential) is sin-
gular at Il' =p, so that we can exclude this case
in the following discus'sion.

As it stands, Eq. (3. 5) is valid only for ri) —1,
but this restriction could be removed9 by replacing
the integral by a contour integral,

1dft"( )- „«dtt"(~ ~ ~ ),
"C

(3 6)

where C begins at t = 1+i0 with argt = 0, and termi-
nates at t= 1 —i0 after encircling the origin with-
in the unit circle. For the moment we retain the
restriction on g, in order to keep the argument
as transparent as possible.

It is easy to see from (3.6) that e & —1, and

However, since the completeness and convergence
properties are not obvious (indeed, our conten-
tion is that these series do not converge at all in
the pointwise sense), we prefer not to follow this
formal approach, but rather to begin again, start-
ing from an explicit expression for the Coulomb
t matrix.

A convenient starting point is the integral rep-
resentation'

2
Z 1Z2e

&(P ~pi ) —
2 ai~g ~i2

„1

xi 1+4II
i

t " dt),e I t —e-

which does not approach zero as g-~, and there-
fore we should be cautious about integrating the
series term by term up to t= 1.

I.et us instead write the integral in Eq. (3. 5)

1 1
e(I-f)'-4t, , ~, (s1- )f'-e

We know that this limit exists, because the inte-
grand is regular at t= 1 if jF'4p. Since the series
(3.9) is uniformly convergent in 0 & t & p & 1, we
can integrate term by term up to t = p, thus ob-
taining

ZZ2e 4 . ~ 1T(P, P, E) —
2 ~i~, ~ i2 1 ——lxm

(E)

xC„'., 1+ —p", (3. 11)

where y„(E) is given by Eq. (2. 9). It is easy to
check that the same result can be obtained for all
real values of rl by using Eq. (3.8), and then using
a similar limiting process, and therefore the
restriction q& —1 is no longer necessary.

A similar expression can be obtained for the
potential (2. V) by writing it as

2 2

v'(po+ p") (po+P'), - |.s(1 —p)' 4p '—
and then using Eq. (3. 9)' to obtain

2 2 40
2Z~Z 28 Po ~

V(p siR 2i g i2i I.R 2i lim ~ Cn-1 1+ p
& &Po+P J Vo+P j p 1- tt=1

(3.12)
Finally, on recognizing that the first term of Eq.
(3. 11) is just V(P, p), we can write the t matrix
as

2Z 1Z28 Po
2 2' ""="( ")(.p)

xlim Q " C„', 1+—p" . (3. 13)
p" 1- nal ytl
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On using Eqs. (3. 10) and (2. 9), it is very ob-
vious that the power series in Eqs. (3. 12) and

(3.13) certainly do not converge at p= 1, since the
terms in the series do not approach zero. But
these divergent series with p = 1 are just the Stur-
mian expansions (3. 3) and (3.4), as we shall now

show. '9

For this purpose we need the identity

C' 1+ — —Q 4 '(2l+1)
,.0 (n+ I)!

p l+1 Po —P
(f 2+~iI) (f 2+f 2) n-&-& Ps+f ia

p'- p'
xC„",', ,', I,g' P), (3. 14)

o+

which is easily obtained from (3.6) and the addi-
tion theorem for Gegenbauer polynomials. ' Then,
on using this and Eqs. (2. 9)-(2.12) in (3. 13), we
obtain

T('p, p; E)= —limZ Z Q P„,„(P;E)
P- S- ~=1 l=O m=-l

x, , yn, „(p;E)p" . (3. 15)
'Yn&&)

Similarly, from (3. 12) we obtain

l

V(P, p)= —limZ Q Q P„,„(p';E)
p» 1- @=1 /~0 m~ l

x, yn', (p;E)p" . (3. 16)
y ni&

These expressions would be just the Sturmian
expansions (3.3) and (3.4), if only it were valid
to take the limit p 1 in each term of the sums;
but that of course would not be valid, because,
as noted before, the resulting series diverge.
We conclude that the Sturmian expansion of the
three-dimensional t matrix does not converge,
and that the formula (3. 15) is as close as we can
come to the Sturmian expansion with a rigorously
correct expression for the t matrix.

Formally, the power series in (3.15) with p= 1

agrees with the expansions of T(p', p; E) written
down by previous authors, ' ' if we use Eqs. (3.7)
and (3. 14) and the relation

d"'
)(cos~) = ) —, , )q~ (costi@)

2 lan djcosnj '
which follows from Eq. 3. 15(30) of Ref. 16 and
from Kq. (3. 10), to establish the connections.
In the case of Rajagopal and Shastry, ~ however,
it is perhaps worth observing that, although their
Sturmian functions are essentially correct, the in-
tegral equation that defines them [their equation
(3. 1)] is not, since it is just the Sturmian equa-

tion (2. 4), but with the eigenvalue missing. That
is perhaps the reason for their incorrect assertion
that for the case of a repulsive potential the Stur-
mian functions do not satisfy the corresponding
eigenvalue problem. On the contrary, it is en-
tirely clear that if a Sturmian function satisfies
(2. 4) for a Coulomb potential with a particular
charge, then it also satisfies (2.4) for any value
of the charge, positive or negative, but of course
with an eigenvalue y~' that is proportional to the
charge.

Finally, we note that Eq. (3. 13) suggests a way
of numerically calculating the three-dimensional
t matrix, in spite of the obvious unsuitability of
(3. 13) as it stands. The suggestion is to replace
the truncated power series by diagonal Pads ap-
proximants of increasing order, evaluated at
p = 1. The Pade approximants provide an explicit
analytic continuation in the variable p of the power
series, and might be expected to be rather effec-
tive in this case, because the continuation has
only to be carried as far as the circle of conver-
gence. A slight variant of this scheme would
actually be rather more sensible, namely, to ap-
ply the Pade technique to the difference T —V,
since it is obvious from (3. 12) and (3.13) that the
power series for the difference converges much
faster than the series for T and 'V separately.

IV. PARTIAL-WAVE STURMIAN EXPANSIONS

We can also write down a formula similar to
(3. 15) for the partial-wave f matrix, defined by

T@',p;E)=
4

~ ($+1)T ~', ~;E)P (P P47fP)o
(4. 1)

In fact, it follows immediately from (3.15) and
(2. 11) that

x E, 4„,(f;E)p". (4. 2)
1

re& —1

Similarly, from (3. 16) the partial-wave potential
Vg(P', P) is

V, Q', P) = - lim Z P„,(P';E) — Pn, (P;E)Pn .
n 1- n=l+1 Yn

(4. 3)

If we were to replace p by 1 in each term of the
sum then (4. 2) would become exactly the same as
the partial-wave Sturmian expansion written down

by Ball et al.
We are of course interested in the convergence

of the Sturmian expansions. The behavior for
large values of n follows from the asymptotic
formula for the Qegenbauer polynomials~':
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j" ' cos[((j+t/)8 ——,
'

vm]
C, (cos8);.„2, ,F( ) (

. 8)„

x[1+0(j ')], (4.4)

gggpe p p +pVr(p' p)= 'pip Q~ 2prp
(4 S)

which follows from (2. 7). Here Q, (z) is the Le-
gendre function of the second kind. ' There is a
logarithmic singularity in V, (p', p) at p'=p, be-
cause of the logarithmic singularity in Q, (z) at
8 ~ 0

The physical origin of the singularity in V, (p, p)
at p' =p, and hence of the divergence of the Stur-
mian expansions at p' =p, is the long range of the
Coulomb force. The logarithmic singularity in the
partial-wave potential is a remnant of the much

uniformly for e in 0 & 5 & 8 & z —p & z. From this
and Eq. (2. 12) it follows that for p + 0:

1/8

y„,(p;E)„:„' sin(n8 ——,'Em) [1+0(n ')],
p

(4. 5)
uniformly for p in any closed interval that excludes

p = 0, with 0 being given by

cos8=(po —p )/(po+p ), 0& 8(p . (4. 6)

Hence for large values of n the terms of (4. 2)
[or of (4. 3), since both behave the same way for
large n] with p replaced by 1 have the asymptotic
for mula

2z,z~')/, sin(n8' --,' lm) sin(n8 ——,
' hr)

[ ( ))j
p'p 'n

(4. V)

provided that P 40, PAO. The quantity 8 ls de-
fined by (4. 6) with p replaced by p'.

%e see from Eq. (4. 7) that the partial-wave
Sturmian expansions are much better behaved than
the three-dimensional expansions, since the terms
of the partial-wave expansions do at least approach
zero as n- ~. (For the present we exclude the
case p= 0 or p'= 0. ) However, since they approach
zero only like n multiplied by oscillating func-
tions, it appears that the convergence cannot be
absolute, and that if the series converge at all,
they can do so only because of the sign fluctuations
produced by the sine functions in the numerator of
(4. 7). (The conditional convergence of the series
has not been proved, however; nor has it been
proved, if the conditional convergence exists, that
the series converge to the correct values. )

For the yarticular case p' =p we observe that
there are no sign fluctuations in the numerator of
(4. 7), and the partial-wave Sturmian expansions
diverge logarithmically. This is no surprise, be-
cause the potential V,(p', p) itself is singular at
p' =p. This is apparent from the explicit formula

—,sin(n8/)[I+0(s ')], I =0, p=o, p'Wo. (4. 9)

We observe therefore that the 5-wave Sturmian
expansions certainly do not converge for the p =0
case, because the terms of the expansions do not
even approach zero. The strong divergence occurs
in spite of the fact that the Coulomb potential it-
self certainly exists in this limit. This is per-
haps seen most clearly by noting that if one of
the momenta is zero then the 8-wave part of the
potential (apart from a constant factor) is just the
full three-dimensional potential. Specifically, we
have

Vo(p', o) = 2ziz&s'~/p" . (4. 1o)

As before, the convergence difficulty is asso-
ciated with the long range of the Coulomb potential.
This time it shows up in the strong singularity
in Eq. (4. 10) at'. p'=0. The Sturmian expansion
for the p = 0 case is faced with the problem of re-
producing this singularity by means of a linear
combination of Sturmian functions, each of which
is finite at p'=0.

I et us summarize the convergence behavior that
we have found for the partial-wave Sturmian ex-
pansions of T and P: If P'=p the expansions di-
verge logarithmically. If p'=0 or p=0 the terms
in the expansions for I & 1 all vanish, but the terms
in the 8-wave expansions do not even approach
zero. For other values of p' and p the convergence
is conditional at best, since the nth term in the

stronger singularity in the three-dimensional po-
tential [Eq. (2. 7)] at p' =p, which in turn is easily

en'5 to be caused by the long range. For exam-
ple, it can be noted that the screened Coulomb
(Yukawa) potential in momentum space' is regular
for all finite screening lengths R, but becomes
singular at p' =p in the limit R

So far we have excluded the case p = 0 or p' = 0,
because the asymptotic form (4. 5) does not hold
for p =0. However, it is easy to consider this as
a special case. For / & 1 all terms of the Stur-
mian expansions vanish, because in this case
P„,( 0; E) vanishes [see Eq. (2. 12)]. But for I =0
the terms do not vanish, and in fact the behavior
of the Sturmian expansions for the p= 0 case is
rather bad: In this case it follows from Eq. (3. 10)
that

C„',(1)=n,

and therefore the value of the Sturmian function
at p=G is

y„,(0;Z) = 2M' P;"'s;
thus the asymptotic formula for the nth term of
the Sturmian expansions is not (4. 7), but instead
ls
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series behaves asymptotically as in Eq. (4. 7),
i. e. , as n multiplied by trigonometric functions
that fluctuate in sign.

Chen and Ishihara have carried out very useful
numerical calculations with the partial-wave
Sturmian expansions which emphasize how bad the
behavior shown in Eq. (4. 7) really is. They f ind

large oscillations in the partial sums even at the
largest values of n they considered (n =40 or 50).
It is also worth noting from Eq. (4. 7) that the
size of these oscillations will only be halved, even
if twice as many terms are retained.

An interesting aspect of their numerical calcu-
lations is that the oscillations in the calculated
partial sums, as the maximum value of m is in-
creased, show very clearly the two periods im-
plied by the numerator of Eq. (4. 7), namely, a
short period 2rr/(8'+ 8) and a longperiod 2rr/ ~

8' —8 ~.

The latter approaches infinity as p'-p, and turns
out in fact to be so large in one of the cases con-
sidered numerically3~ that the first node of the
slow oscillation happens to occur at the point
where the calculations stopped, thus creating a
false impression of convergence in this case.

Chen and Ishihara' also observed in their numer-
ical calculations that the partial-wave Sturmian
expansion for T —V, quite unlike the separate ex-
pansions for T and P, converges quite rapidly.
This is easily understood by writing down T —V
explicitly: With the aid of (4. 2) and (4. 3) we get

T, (P', P; E) —V, (P', P) = —lim Q rjr „r(P'; E)
p 1- n=$+1

1

(E)[ „(E)—1]
rpnr(paE)p" . (4. 11)

Clearly, the Sturmian expansion for T —V (i. e. ,
the series obtained by putting p= 1) has an extra
power of n in the denominator [coming from the
factor y „(E), Eq. (2. 9)], compared with the Stur-
mian expansion of T. Thus we see from Eq. (4. 7)
that the Sturmian expansion for T —V can be dom-
inated by a series of the form pan~, and is there-
fore absolutely convergent, provided that p' and

p are not zero. It follows that in this case we
can take the limit p-1 term by term in Eq. (4. 11),
thus obtaining

T (p', p;E)- V, (p', p)
ocr 1= — & 4.r(p';E)

(E)[ (E) 1)
f.r(p'E)

if p'rr 0, pe 0 . (4. 12)

The present argument allows us to say not only
that the Sturmian expansion (4. 12) converges for
all p', p 0, but also to say with certainty that it
does indeed converge to the desired value T —V.

so that in this extreme case the Sturmian expan-
sion for the difference does not converge absolute-
ly. Even in this case, however, it should be easy
to sum the expansion numerically, with the Pade-
approximant technique mentioned at the end of
Sec. III.

V. ALTERNATIVE EXPANSIONS

Is it possible to find alternative separable ex-
pansions for the Coulomb potential or t matrix,
with better convergence properties than the Stur-
mian expansions '? We believe that essentially
the answer is no, because the poor convergence
behavior is directly linked to the long range of the
Coulomb potential.

Any such expansion of V', (p', p) could be written
in the form

Vr(p', p) = ~ X"r(p')X. r(p) (5. 1)

for some choice of functions X and y'. If such an
expansion is to be valid for all p', P, then it must
diverge when p'=p, because, as noted in Sec. IV,
V,(p, p) itself has a logarithmic singularity at
p' =p, the singularity being a direct result of the
long range of the Coulomb potential. But if the
series diverges when p' =p, then it seems that
the only way it can converge for other values of
p', p is if there is cancellation between different
terms; in other words, the convergence could
only be conditional at best. Similar remarks also
apply to the difficulty faced by any separable ex-
pansion when one of the momenta is zero.

We conclude with a brief examination of an ex-
pansion that at first sight contradicts the above
claim, namely, the Coulomb wave-function ex-
pansion proposed by Chen and Ishihara. For con-
venience we now consider the specific case of the
hydrogen atom; i.e. , in atomic units we put z,
= —gp=e= p = 1.

Furthermore, it is easy to see from the discussion
given previously that the convergence is uniform
for p' and p in 0&& &p, p' &P&~, thus allowing us
to deduce that T, (p', p; E) —V, (p', p) is continuous
at p'=p. In other words, the singularity in the
exact f matrix Tr(p', p; E) at p' = p is just the sin-
gularity that comes from the potential term.

The worst behavior of the Sturmian expansion
for T, (p', p; E) —V, (p', p) occurs, naturally, when
p' =0 or p = 0, since we recall that in this case
the terms of the Sturmian expansions for T,(p', p; E)
and V, (p', p) separately [given by the asymptotic
formula (4.9)] do not even approach zero. The
corresponding asymptotic formula for the zth
term of the difference T,(p', 0;E) —Vr(p', 0) is

const& [1+O(n ')], l=0, p=0, p'rr0sin(n8')



IAN H. SLOAN

This expansion is obtained by expanding the po-
tential in the form

v(P' P)= ++ &. (P')(. (P) (5 2)

where the („,(p) are hydrogen wave functions, nor-
malized in the discrete case to

J, 0:,(p)4.,(p)p'dp=5:. ,

and with a similar g-function normalization for
the continuum states.

With the aid of the orthogonality relation, we
get an explicit expression for the coefficients
A„,(p') in Eq. (5. 2),

~., (P') = j, I, (P', P)C., (P)P'dP,

and then using the Schrodinger equation we obtain

&.i(p') = v(e. - l p")(.i(p'),
where s„ is the energy of the state P„,. For the
discrete part of the spectrum we have, of course,
e„=—(2na) '. Thus the Coulomb wave-function ex-
pansion of V, (p', p) is

Vi(p', p) =v &+ S.i(p') (e. -2 p")4.,(p) . (5.3)
n

[Alternatively, since the expansion is not explicitly
symmetric, one can use an explicitly symmetrized
expansion' instead of (5. 3). The following argu-
ments apply equally to the symmetrized expan-
sion. ]

In practical applications2' of the Coulomb wave-
function expansion, the expansion is approximated
by omitting the continuum contribution to (5. 3).
Chen and Ishihara studied the remaining discrete
part of the expansion numerically and found that
it converged rapidly for all values of p' and p con-
sidered.

It is easy to see theoretically that the conver-
gence is indeed rapid, at least for values of p'
and p not too near zero, by using the explicit ex-
pression for g„,(p) (Ref. 15),

$24/+5(n I 1) )
1IR nl+8 tp(.i(P) =I( ( I) )

E l („ap2, 1)r.a

l+1 S p —12 2

X Cfl-l-1 2 2

Since the argument of the Gegenbauer polynomial
lies between —1 and 1, the value of the Gegenbauer
polynomial is bounded2 by its value at 1,

n'p' 1 I "-'-' t (n- /-1)l(2l+1)l

It follows that if p' and P are nonzero, the terms
in the discrete part of the Coulomb wave-function
expansion ultimately decrease with increasing n
like n, and the sum over n converges absolutely
and uniformly for all p' and p in 0 & 5 &p', p. (How-
ever, the convergence is very nonuniform in the
neighborhood of p= 0 or p'=0, and if either p or
p' is actually equal to zero, it is easy to see that
the S-wave series does not converge at all. )

Given that the discrete part of (5. 3) converges,
the important question then is what is the value it
converges to? Or equivalently, what is the error
in leaving out the continuum contribution to (5. 3) P

Chen and Ishihara' found numerically that the error
depended sensitively on p' and p but was generally
small. This conclusion may be to some degree
misleading, however, since the fact is that the
error can be arbitrarily large, if P' and p are
chosen sufficiently close. This follows from
the fact noted in Sec. IV that V, (p', p) has a
logarithmic singularity at p'=p, whereas we can
see that the discrete part of the Coulomb wave-
function expansion does not, since the uniform
convergence implies that it is continuous at
p-p

We conclude, therefore, that within the frame-
work of the Coulomb wave-function expansion the
logarithmic singularity in the potential comes
entirely from the part of the expansion that is
omitted in practice, namely, the continuum part
of (5.3). But in Sec. IV it was pointed out that
the logarithmic singularity is a direct consequence
of the long range of the Coulomb potential. We
conclude, therefore, that by omitting the continu-
um contribution to the Coulomb wave-function ex-
pansion we are in some sense omitting the effect
of the long-range tail of the Coulomb potential.
This might well be a good approximation in some
applications, but in practice the errors introduced
by this approximation would seem very difficult
to assess.
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The cross section 0 for the elastic momentum transfer of electrons with helium atoms at ultralow

energies has been deduced from measurements of the microwave absorptivity of a transient cryogenic
afterglow plasma. The electrons were selectively heated by an adjustable-microwave electromagnetic field.
This cross section can be approximated as a function of the incident electron kinetic energy u, between

2)&10 ' and 10 ' eV by c~T{cm')=5.15)&10 ' Iu, (eV)/2 X10 "] '

I. INTRODUCTION

There has been considerable recent theoretical
interest in the energy dependence of the cross sec-
tion for elastic scattering between low-energy
electrons and helium atoms. ' However, owing
to many technical difficulties, most measurements
at very low energies are not completely satisfac-
tory. Following the pioneering works of Ramsauer
and Kollath, of Brode, and of Normand, e Golden
and Handel~ have made, in 1965, a very detailed
direct measurement of the total electron-helium
scattering cross section with electron-beam tech-
niques. But these methods are difficult to extend
to energies lower than 0. 3 eV. In this low-energy
range, elastic scattering cross sections are usually
deduced from electron transport-coefficient mea-

surements by dc or ac swarm methods; the corre-
sponding analysis techniques have been consider-
ably refined throughout the years. Measurements
have been made down to electron temperatures of
about 7V 'K, yielding useful experimental data
down to about 10" e7. '

Direct-current smarm techniques have been
used recently by a variety of workers, down to
gas temperatures near VV 'K. Extensive discussions
of these techniques have been given in papers by
Phelps and co-workerse' and by Crompton et
a~ "'a Recent measurements by various groups
are in good agreement with each other, and rep-
resent a consistent set of data down to 10 eV. '

Microwave methods —which are essentially ac
swarm techniques-have been also used by many
authors, following the pioneering morks of Gold-


