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was poor, since they were weak and situated on an
upward-sloping background. Although in the trans-
mission experiment structures 5 and 6 appeared to
belong to different series from band c, our five
resonances, to within experimental accuracy, could
belong to a single vibrational series, with an aver-
age spacing in excellent agreement with the 0. 23-eV'
spacing for the A II„state of N~'. InFig. 2 we have
sketched as a broken line a possible potential curve
for the resonant state of N2 . This has been drawn
on the assumption that it has the same shape as the
Na' grandparent A 0„, and that, as suggested by
Sanche and Schulz, ' the lowest vibrational resonance
is at 12. 6 eV. The relative intensities (see Table

1) of the observed series can be understood in terms
of Franck-Condon factors for excitation from the
ground X Z' state of N2, and the resonances would
then autoionize into appropriate vibrational levels
of metastable A 5'„and a 'II~.
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A multichannel semiclassical collision theory, based on Feynman's path-integral formulation of quantum
mechanics and developed by Pechukas, is discussed. The theory is applied to low-energy, elastic and
inelastic, collisions between He and Ne. The calculation involves the solution of a boundary-value problem,
and a numerical method for obtaining this solution is presented. The numerical results and the qualitative

interpretation of them are compared with the predictions of other available theories.

I. INTRODUCTION

One of the more serious problems encountered in
collision theory is that of finding experimental in-
formation of sufficient quality and detail to allow
one to critically evaluate a particular theoretical
interpretation. Not only must the experimental in-
formation be quantitatively reproducible, but it
should also, ideally, display qualitatively new fea-
tures. In the area of low-energy atomic scattering

this type of information has recently been produced
by Lorents and Aberth and has been given an ex-
tensive theoretical analysis by Smith and co-work-
ers. The present calculation is an attempt to
supplement the existing interpretation of some of
this information. We present the results of elastic
and inelastic scattering of He' off Ne, at an impact
energy of 70. 9 eV, using a two-state electronic
representation, together with a classical nuclear
model. The impact energy is sufficiently low so
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that the exact nature of the nuclear model is quite
important for both elastic and inelastic processes.
This therefore allows one to critically test the val-
ue of the nuclear model used here even though the
comparison with experimental results is only a
qualitative one.

The main experimental feature in which we are
interested is a perturbation. in the elastic scatter-
ing differential cross section which has been ob-
served for He'-Ne, as well as for other systems.
It has been associated with the onset of inelastic
processes due to a curve crossing of diabatic ener-

gy surfaces. A number of theoretical discussions
of this perturbation have already been given. 4 7

They have been successful in. qualitatively explain-
ing the fact that the perturbation is localized in the
threshold region where the classical turning point
is close to the point at which the energy 1.evels
cross. However, they suffer from the fact that the
interpretation is based on a Landau-Z ener-
Stueckelberg (SLZ)' 'o model of electronic behav-
ior. The present calculation is an attempt to find
out whether the same interpretation is obtained
when SLZ theory is not appealed to. In the course
of the calculation it was found that the precise na-
ture of the nuclear model was crucial in determin-
ing the form of this perturbation, and therefore the
theory presented here concentrates only on the nu-

clear motion, assuming that the electronic inter-
actions are known in some sense. The formal as-
pects of our nuclear model have been developed by
Pechukas using the Feynman path-integral for-
mulation of quantum mechanics. The classical
equations of motion are retrieved by performing a
stationary-phase approximation to a reduced"
Feynman propagator. As a result, one obtains an
interpretation of the electronic motion which is
qualitatively quite similar to the impact-parameter
interpretation, although the nuclear equations of
motion are quite different. In the present theory it
is found that the nuclear trajectory can only be de-
termined through the solution of a boundary-value
problem. The reason for this is that the force law

governing nuclear motion has a dependence on the
future behavior of the electrons, as well as their
past behavior. In special cases it has been
shown"' that this difficulty can be removed if one
is willing to make analytical approximations (such
as SLZ) in the electronic equations of motion. In

general, however, one is left with a boundary-value
problem whose numerical solution is nontrivial.

Before discussing this theory we will briefly
mention two other "classical" nuclear models
which at a first glance might seem to be applicable
to the He'-Ne system. It was found that neither of
these two models yielded worthwhile information
in the present case, but both were helpful in the
qualitative interpretation of the electronic motion.

The simplest model is obtained from impact-pa-
rameter theory where the nuclei follow a station-
ary, or local, energy surface (i. e. , the energy
surface has no velocity or time dependence). The
applicability of this theory to low-energy scatter-
ing has been discussed by Bates and Holt. ~4 They
conclude that it is properly applicable only when

the differences between the various possible nu-

clear trajectories, corresponding to different elec-
tronic eigenstates, can be ignored. In the present
case, therefore, the stationary-energy-surface-
impact-parameter (SESIP) theory is of no value.
We will use it in Sec. IV as a first approximation
in an iterative procedure and as an aid in the qual-
itative interpretation. of results, but not as a quan-
titatively reliable theory. Another theory which
could be used is obtained when an average" energy
surface replaces the stationary energy surface in
the impact-parameter theory. This energy sur-
face is obtained by averaging the Hamiltonian ma-
trix over the existing electronic state at any time
t. Intuitively, one would hope that this procedure
would allow the nuclei to respond correctly to any
particular electronic rearrangement. Formally,
however, if one attempts to motivate this nuclear
model using the method of Bates and Holt, it is
found that the average-energy-surface theory is
plagued by the same theoretical shortcomings as
SESIP theory. From a more practical point of
view it has recently been shown that this theory
is incapable of correctly predicting the energy de-
pendence of the rainbow-scattering angle for
O'-Kr and H'-Ar.

Both of the above theories suffer from the fault
that they employ nuclear models which do not fol-
low naturally from the fully quantum-mechanical
equations for low-energy scattering. The elec-
tronic behavior which they predict is clearly ac-
ceptable, but the nuclear equations of motion are
not generally valid. For inelastic processes this
can be most easily seen by noting that the post-
collision energy surfaces do not behave as they
should. If one is interested in the electronic tran-
sition o! P, one would expect the precollision and

post-collision energy surfaces to be given, re-
spectively, by the nth and Pth eigenenergies, re-
gardless of what the intermediate behavior is.
Neither of the above theories satisfies this require-
ment since the nuclear-force law does not explicit-
ly recognize the final state P. From this point of
view it is reasonable that a good classical nuclear
model should involve some kind of boundary-value
calculation.

In Sec. II we present the formal theory used in
this calculation together with a qualitative discus-
sion of the nuclear model. The interpretation used
here differs somewhat from existing interpreta-
tions, ' especially as it relates to the perturbation
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in the elastic scattering cross section, and these
differences will be mentioned.

—U(t, t') = —t [H(R(t), t) —E]U(t, t'), (2)

where H(R(t), t) is the diabatic Hamiltonian, E
= H(~, t), and the function R(t) is assumed to be de-
termined by some external criterion, such as a
stationary-phase constraint. U(t, t') satisfies the
identities

U(t', t') = 1, U(t", t') = U(t", t)U(t, t')

U-'(t, t ') = U'(t, t') = U(t', t) .
In order to obtain a classical nuclear model we per-
form a quadratic expansion of the full path integral
in Eq. (1) about "classical" paths, where each
classical path satisfies a stationary-phase con-
straint. The phase of the integrand of Eq. (1) is
given by

So[R(t)]+ Im inUq, (t", t') .
If this phase is extremized with respect to first-
order variations in the nuclear path, the following
equation of motion is obtained after some manipu-
lation:

This result is comparable to that obtained by
Pechukas'~ [E4. (3. 3)], after allowing for differ-
ences in notation. It is a force law governing
(classical) nuclear motion for a collision where the

II. MODEL

We define the reduced Feynman propagator"
for the scattering problem by the relation

RItl)J , eisoLR(f&3U (tii P)@R(t)
(1)

This can be regarded as a probability amplitude
that the state defined at t' (t'- —~) will lead to the
state defined at t" (t"-~). The state at time t'
is given by the relative nuclear position R' and the
electronic state &. At time t" it is defined anal-
ogously. (A general discussion of the reduced
propagator, in the context of formal scattering
theory, has already been given. ") The quantity
So[R(t)] is a functional of the nuclear trajectory

So[R(t)]= J —,'mR'dt .

The quantity P z= [Uz (t", t') I' is an electronic
transition probability from the state n (prepared
at t') to the state P (observed at t") and is also a
functional of the nuclear path. Within the diabat-
ic~'8 '0 representation the matrix U(t, t') satisfies
the equation

electrons are prepared in state n and observed in
state p.

In order to complete the theory one should at this
point calculate the effect of the second-order vari-
ation about classical paths. Instead we will appeal
to an approximate result obtained by Pechukas. In
Sec. V, Ref. 11, the statement is made: "The
cross section for scattering in a given direction
and with a given quantum transition is simply the
classical cross section for scattering of the atoms
in that direction times the probability for the quan-
tum transition. " This statement is quantitatively
reliable only if the magnitude of U~, (t", t') varies
much more slowly than its phase as the nuclear
path is varied about the classical path (see Eqs.
3. 5-3. 7 in Ref. 11). However, we will use this
result since it seems to be qualitatively quite rea-
sonable and since we are interested predominantly
in the nuclear paths themselves, not in quantitative
accuracy. This completes the formal theory.

Two problems which must be dealt with before
the numerical results can be understood are how

to interpret the force law obtained above and how to
numerically solve the boundary-value problem rep-
resented by Eqs. (2) and (4). The numerical meth-
od will be discussed in Sec. III. The discussion of
the force law centers around this question: How

many trajectories contribute to any particular ex-
perimental event and how are they interrelated' ?

We mention here three ways in which multiple nu-
clear trajectories can occur in the present model.
The first way can be seen by noting that the trajec-
tory for the n- n (elastic) electronic event is in
general not the same as that for the u P (inelastic)
event. It is at this point that the present calculation
differs from both the stationary- and the average-
energy-surface theories since they do not make
this distinction. An example of the second type of
multiplicity is the rainbow-scattering phenomenon,
where two or more trajectories with different im-
pact parameters lead to the same scattering angle.
This type of multiplicity did not occur in the pres-
ent calculation, although it could have, if the ma-
trix elements and impact energy had been different.
As a result, our interpretation of the perturbation
in the elastic cross section states that it is not a
rainbow-scattering effect, in contrast to the inter-
pretation given by other workers. ' In order to
understand the rainbow- scattering interpretation,
one must consider a third type of multiplicity of
trajectories. This occurs when the same impact
parameter leads to two different scattering angles.
For a two- state curve- crossing problem, if SLZ

theory is used, it occurs for the following reason:
It is assumed that the electronic transition occurs
instantaneously. Once this assumption is made it
is natural to treat the region inside the crossing
point separately from the outside region. In the
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simultaneously with Eq. (6). The labeln refers to the
nth initial-value collision. The force law for the
nth collision recognizes the future electronic be-
havior through the matrix U" '(f", f'), obtained from
the previous collision. The first question which
must be answered is the following: Does the fact
that two successive estimates of U(t", t') agree
necessarily imply that we have converged to a true
solution of the boundary-value problem represented
by Eqs. (2) and (4)? This can be quickly answered
by setting n=n —I in Eq. (6). We might also ask
whether this algorithm necessarily converges or
how quickly it converges, or even whether it con-
verges to a unique solution. None of these ques-
tions have been given a general answer here, but
they will be partially answered in Secs. IV and V.

It is of some interest to note the behavior of the
potential energy, both exact and approximate, be-
fore and after the collision. First of all, we note
that if convergence has been obtained, then an en-
ergy conservation law can be proven, in the sense
that

inside region the nuclear motion is decomposed
into two components, each following a different di-
abatic energy surface. These two components are
regarded as representing two distinct physical
situations, whose relative probability is given by
SLZ theory. As a result of this decomposition one
finds a single impact parameter leading to two dif-
ferent scattering angles. In special cases~ this
decomposition incidentally leads one to conclude
that rainbow scattering will occur. (Note that the
numerical results obtained by Olson and Smith do
not depend on this assumption, although their in-
terpretation does. ) An interestingformal motivation
for this procedure has been given by Pechukas.
However, we emphasize that this procedure is
valid only if one is willing to make the (SLZ) as-
sumption that the transition at the crossing point
occurs instantaneously. In the present calculation
we have not made this assumption and therefore
observe only one trajectory corresponding to any
particular impact parameter.

A close1y re1ated problem, which also can dis-
play two scattering angles at a common impact pa-
rameter, is resonant charge exchange. In this
case we feel that the decomposition procedure (into
gerade and ungerade modes of scattering) is valid
since it does not involve any additional assumptions
about the electronic motion; it merely appeals to
a symmetry argument which is equally applicable
to all systems displaying resonant charge exchange.

Second, it can be shown that even if convergence
has not been obtained, one still has the identity

[ U" '(t", t')U"'(I, t )Ht tt)tU" (t, t )')t )'
U8,' (t", t')

(6)
III. NUMERICAL METHOD

= const.
The numerical method used in this calculation

consists of changing the boundary-vaLue problem
into a sequence of initial-value problems which ul-
timately converge to a boundary-value solution.
This is done by isolating all of the dependence on
the future within a single constant matrix U(t", t').
Given Eq. (3), the force law [Eq. (4)] is rewritten

[U(t", t')U'(t, t')tt, U(tt, t)U(tt )],),'.
U[) (f",f')

(5)
The form of this force law suggests the following
procedure: Guess an energy surface and perform
a SESIP calculation, using it to obtain an approxi-
mate estimate of U(t", t'). Given this estimate one
can then calculate an improved force law using Eq.
(5) and eventually an improved value of U(t", t').
In this way a sequence of initial-value problems is
solved until two estimates of U(f", f') agree. The
specific form of the force law which was used was,
therefore,

U" (t", t' U" t, t' 7'„H(B, t U"{t,t'
Ug-1(f t )

(6)
Equation (2), which determines U"(f, t'), is solved

This last identity is very useful in practice since it
provides one with a sensible criterion with which
to determine the time interval in the Runge-Kutta-
Gill 5 procedure used to solve the initial-value
problem. Equation (r) is of formal interest but is
of no value in the actual numerical calculation.
Formally, Eq. (7) shows that at time f' the poten-
tial energy is given by H (~, f) and at time f" it is
given by H[)[)(~, t), as was anticipated in Sec. I.
Equation (6), on the other hand, shows that at time
t' the potential energy is given by H„(~, t), and at
time t" the potential energy could be anything, de-
pending on how close one is to convergence. When
convergence is obtained Eq. (6) reduces to Eq. (7).

The program used to solve this problem is a
modified version of one developed for use with the
average-energy-surface theory. The main differ-
ence is the presence of a new force law [Eq. (6)].
In addition, the original program was modified so
that it automatically performed a whole series of
collisions with the same initial conditions but with
a revised estimate of U(t", f'). The calculation was
initiallized by choosing the diabatic energy surface
H~q(A) and performing one SESIP calculation. The
succeeding collisions at that impact parameter were
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FIG. 2. Difference between the
dynamic energy surface E(R, t) ob-
tained from the boundary-value cal-
culation and the diabatic surface
Hgg(R), plotted as a function of inter-
nuclear separation, for elastic col-
lisions at impact parameters 1,42,
1.50, 1.60, and l. 70 a. u. The dashed
lines are the corresponding adiabatic
surfaces.

the crossing point and is therefore in the ' subex-
citation" region. It can be qualitatively understood

by noting that the nuclei display a tendency to fol-
low the bottom adiabatic, not the diabatic, surface
in this region. For collisions where l & 322, this
initial tendency towards adiabatic behavior is quick-
ly replaced by a tendency to follow the diabatic pre-
diction instead. The interpretation of the scatter-
ing angle can best be done by an inspection of the
energy surfaces for these collisions. Figure 2

shows the energy surfaces for collisions at impact
parameters 1.42, 1.50, 1.60, and 1.70 a. u. The
quantity E (R, t)-H»(R) has been plotted vs R, where
E (R, f) is the potential energy obtained in the boun-
dary-value calculation. For comparison, the
adiabatic surfaces, which display an avoided cross-
ing, have also been shown. The impact param-
eters 1.50 and 1.70 correspond to the first two
maxima in Fig. 1. The other two impact param-
eters generate minima in Fig. 1. One can see that
the energy surface for any particular collision is
very smooth (nonoscillatory), but that the surface
as a whole displays an oscillatory dependence on
b. It is this dependence on b which generates the
oscillatory behavior in the function 8av/8n«a. The
fact that this oscillation is correlated with P» can
be analytically understood by an inspection of Eq.
(7). However, we have not been able to analytical-
ly explain why it is that the energy surfaces at b
= 1.50 and 1.70 are above instead of below the other
two surfaces (i.e. , the existence of the correlation
is reasonable but there is a plus or minus ambigu-
ity as to which way it should affect the energy sur-
face). Another feature seen in Fig. 2 is the fact
that the surfaces corresponding to a zero in P»
fall completely between the two adiabatic limits,
whereas those corresponding to P» &0 do not. This
can be easily understood by setting P» = 0 in Eq.
(7) and making use of the unitarity of U(t, t'). A

final feature of Fig. 2 is the fact that the energy
surface is a unique function of B, i.e. , the incom-
ing and outgoing surfaces are reflections of each
other. This reflection symmetry is presumably a
consequence of the fact that the formal theory satis-
fies the detailed balance" requirement. Computa-

tionally, it provides a nontrivial test of numerical
accuracy, since the symmetry exists only after
good convergence to a boundary-value solution has
been obtained.

As has already been pointed out, " it is diffi-
cult to obtain mathematical assurance that any par-
ticular solution at a given b is unique. We have
numerically searched for other possible solutions
by using an initial estimate different from the one
given above. The collisions at b=1.16, 1.22, 1.60,
1.70, and 1.86 a. u. were recalculated using the
bottom adiabatic, instead of the diabatic, surface
as an initial estimate. In every case it was found
that the final solution obtained was the same as the
one shown above, even for those values of b where
the adiabatic and diabatic predictions of 8 differ
grea. tly. We therefore feel justified in regarding
the above solution as unique.

Having rationalized the behavior of 0 in terms of
the energy surfaces one can now consider the effect
that this behavior of 8 will have on the cross sec-
tion. The reduced differential cross section is
given by the quantity b 6 (db/d 8 ) P„. If this were
calculated using SESIP theory then the quantity
b6(db/d6) would be a monotonic function of 6 and
the only source of oscillations would be the term
P&&. In the boundary-value calculation, however,
both terms can now contribute oscillations since
Fig. l(a) implies that db/d8 is an oscillatory func-
tion of 6. Figure 3 shows the results of a SESIP
calculation of the cross section, as well as the
boundary-value result. Both are compared to the
DW result. The DW result shows two major fea-
tures, an isolated peak at 1450 eVdeg and a smooth
series of oscillations between 3000 and 5000 eVdeg.
Essentially the same features are seen experimen-
tally [Fig. 3(c) and Ref. 2]. The SESIP result does
not display any peaks in the threshold region, al-
though it does qualitatively reproduce the smooth
oscillations at large 6). The boundary-value calcu-
lation shows the same oscillations at large 8, but

they are strongly accentuated due to the fact that
db/d8 is also oscillatory. The main new feature of
the boundary-value result is that the peaks in the
differential cross section rise above the single-
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PIG, 3. Comparison of three theoretical calculations
of the reduced differential cross section for elastic scat-
tering at 70. 9 eV. The long dashed lines are the single-
channel (diabatic) predictions. The theories used are
(a) SESIP, (b) boundary-value, and (c) distorted-wave
(Ref. 6). The short dashed line in (c) is the experimen-
tal result at 83.5 eV, raisedby 0.2 units (Refs. 2 and 6).

channel prediction. These peaks are predominant-
ly due to peaks in the function db/d6 and can be
easily understood if one considers the behavior of
eev in Fig. 1(a). It can be seen that the boundary-
value theory used here generates a perturbation in
the elastic cross section which looks quite differ-
ent from the perturbation that one would expect if
the rainbow-scattering interpretation were used.
In particular, the numerical results presented here
are not compatible with those obtained by Kotova
and Ovchinnikova. On the basis of the comparison
with experimental results it would appear that their
results are superior to ours, at least for elastic
processes. This is presumably due to the fact that
the decomposition procedure, which leads to rain-
bow scattering, yields a more detailed picture of
nuclear motion inside the crossing region than our
approach does. The relative merits of the two in-
terpretations, for those systems where SLZ theory
is not necessarily reliable, "remain to be seen.

A feature of the elastic cross section, which has
not been mentioned above, is a shallow isolated
peak occurring at 1600 eV deg in Fig. 3(b). This
peak is situated in the subexcitation region (I &322)
and is due to a, maximum in db/de which is gener-

ated by the tail shown in Fig. 1(a) for l &334. It
serves as a reference point defining the onset of
the elastic perturbation. Had this peak been more
pronounced, it would have provided an ideal inter-
pretation of the experimental results, since it is
isolated and is definite1. y a threshold effect, not a
member of a continuing series of oscillations.
However, it is too small to be of any experimental
interest in the present case.

V. INELASTIC SCATTERING

The inelastic scattering calculation was per-
formed using the same set of impact parameters
and initiallization procedure as for elastic scatter-
ing. The only difference was that the force law
was altered to correspond to the 1-2 electronic
event. From a qualitative point of view the results
are not particularly exciting since the behavior of
the differential cross section is very similar to the
DW prediction. The main difference between the
boundary-value and SESIP calculations for inelastic
scattering is that the angular threshold predicted
by the boundary-value calculation is considerably
lower than the SESIP prediction since the final en-
ergy surface is 16.8 eV higher than the initial en-
ergy surface. From a numerical point of view
some interesting problems were encountered in the
inelastic calculation. The main one was that of
initiallizing the iterative procedure reasonably.
The present calculation used the elastic diabatic
surface as an initial estimate, even though this sur-
face does not possess the correct long-range be-
havior after the collision. For strongly inelastic
collisions a more sophisticated procedure would

probably be required. Another difficulty was en-
countered for those collisions which display a tran-
sition probability P&z which is close to zero. In
this case the force law [Eq. (6)] consists of a ratio
of two arbitrarily small terms and the calculation
is numerically ill conditioned. The main effect of
these two problems was simply to decrease the ef-
ficiency of the calculation. It was found that ten
iterations were normally required to obtain conver-
gence to a boundary-value solution.

We begin the discussion of the inelastic results
by considering P&q as a function of l. As expected,
the qualitative behavior is the same as for elastic
scattering, although significant quantitative differ-
ences were observed since the trajectories are dif-
ferent. When P» for inelastic scattering was com-
pared to the DW prediction (Ref. 6, Fig. 4), it was
found that the agreement was so close that the dif-
ferences could probably be attributed to plotting er-
rors. This is quite encouraging since it implies
that a single trajectory calculation may be capable
of providing a quantitatively, as well as qualitative-
ly, reasonable account of inelastic processes.

The next feature of the inelastic collisions is the
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compared to the DW result. This shift is not
enough to seriously affect the comparison with the
experimental results. A certain amount of am-
biguity as to the exact behavior of the differential
cross section near the minima exists in the present
calculation. This is because of the zero-over-zero
problem mentioned earlier. It is possible that
these minima may not rigorously approach zero al-
though we know them to be quite small. This am-
biguity was not felt to be of any great importance
in the present calculation and was ignored.

VI. CONCLUSIONS

The present calculation is an attempt to develop
a three-dimensional classical nuclear model ap-
plicable to low-energy multichannel atomic colli-
sions. In particular, we have attempted to show
what happens in a two-state curve-crossing calcu-
lation, if one does not make the usual SLZ approx-
imations. The emphasis has been on those features
which are experimentally observable and which are
due to the effect of the electronic rearrangement
on the nuclear motion. It was found that a realistic
account of this effect requires the solution of a
boundary-value problem. The comparison of the
present results with a distorted-wave calculation
indicates that our theory is capable of producing
reasonable inela, stic scattering information. For
elastic scattering, the interpretation obtained here
differs from that obtained in the classical model
develpped by Smith and co-workers, ' especially
as it relates to the perturbation' induced in elastic
scattering caused by inelastic events. It is not

completely clear which of these two interpretations
is the better one, although possibly a fully quantal
calculation would display a combination of both
types of 'classical" perturbation.

As presented above, the theory we have used has
some limitations which will be mentioned here.
For example, we have assumed throughout that the
calculation is being done within the diabatic repre-
sentation. The equations of motion, as given above,
are not valid within any other representation. They
can, however, be easily generalized to other rep-
resentations simply by making use of the known
transfprma, tipn prpperties ' ' pf the varipus ma-
trices which enter into a general derivation. It is
clear that the theory is not restricted to two-state
calculations, nor is it restricted to curve-crossing
problems. However, it could easily become an
impractical theory if applied indiscriminately to a
multistate calculation. In this case it would prob-
ably be necessary to develop a more sophisticated
algorithm to solve the numerical problem. Another
shortcoming of the present calculation is the as-
sumption (Sec. II) that the classical expression for
the differential cross section can be used directly.
This assumption would have to be carefully re-
examined before the theory could be expected to
yield quantitatively reliable results.
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