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Modified Hypernetted-Chain Equation for the Screened Coulomb Potential*
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A modified form of the hypernetted-chain (HNC) equation is found that is suitable for the
calculation of the pair-correlation function of a classical 'plasma. The changed equation in-
volves only the short-range screened Coulomb potential and uses no further approximations
than are involved in the ordinary HNC equation. The pair-correlation function is computed
for a variety of one-component classical plasmas in the region of a dense fluid.

INTRODUCTION

All the equilibrium and many of the nonequi-
librium properties of a classical system can be
derived from the pair-correlation function g(r).
In the intermediate region (dense gas to l.iquid) the
best methods for determining g involve integral
equations derived from classical statistical me-
chanics. One such method is the hypernetted-
chain (HNC) equation' derived from the Mayer
cluster expansion. ~ Although the more accurate
Monte Carlo (MC) method has now produced re-
sults for a single-component plasma, the HNC

equation may be used more easily to obtain results
for a multicomponent plasma.

For the classical one-component plasma an ad-
ditional difficulty arises. The long-range nature
of the Coulomb potential necessitates either ap-
proximate truncation schemes3'4 or complicated
iteration programs to force convergence to a so-
lution. These methods are difficult to extend to
the intermediate region, and the l.atter method
has not been applied there. ' Previous numerical
solutions of the Yvon-Born-Green equation have
indicated that oscillatory behavior shouM be seen
in the pair-correlation function in the dense-fluid
region. No such behavior has yet been seen in

solutions of the HNC equation. '
In the Mayer cluster expansion these difficulties

are overcome by an infinite summation of diagrams.
This l.eads to a replacement of the Coulomb po-
tential by a short-range screened Coulomb poten-
tial plus a modification of the rules for diagrams

in the cluster expansion. 7 The appropriate anal-
ogous modification for the HNC equation is derived
in the follorving sections. Mere replacment of
the Coulomb potential by the screened Coulomb
potential. leads to a severe underestimation of the
many-body effects in g(r).

HNC EQUATIONS FOR SHORT-RANGE POTENTIALS

%'e follow the standard derivation from the
Mayer cluster expansion. 8 Assume that the pair-
correlation function can be related to the series
function S(r) by

g(r) &-U(r)l AT+ s(r &

The many. -body corrections to the pair-correlation
function are contained in the term involving S(r).
This latter function can be related to the pair-cor-
relation function and the direct correlation func-
tion T(r) by the Ornstein-Zernicke relation, '
most conveniently expressed in Fourier-trans-
formed variables

S(X) =sr(n)G(u),

where n is the number density and

G(r)=g() —I,
rvith the direct correlation function obeying

r(r)=G(r)-S(r) .
Combining Eqs. (2)-(4) one obtains

S(I ) =n[~(~)l'/ll —n~(&)1 .
Note that the relation bebveen the series function
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FIG. 1. Diagrams in
the Abe nodal expansion.

ble as depicted zn Fsg. 1.
ln analogy to Eq. (5), S(k) does not contain the

factor t(k) to the first power. Thus the lowest-
order term is

S(k)+ t(k) = [1—npU, (k)] t(k) .
Note that this term contains the diagram of Fig.
l(a). To obtain higher-order diagrams insert be-
tween the bubble and the right-hand side of the
diagram either a bubble or a single potential line.
However, single potential lines may not touch each
other. Thus, single potential lines not at either
end of the diagram must be between two bubbles.
Thus, one inserts next to any bubble either another
bubble or a single potential line followed by a bub-
ble. This yields

S(r) and the direct correlation function T(x) [Eq.
(5)] is exact. The only approximation involved in
the HNC equation is that involved in Eq. (1). This
involves neglect of the bridge graphs. Equations
(1) and (3)-(5) constitute the HNC equation and can
be written as a single integral equation for g(r). '
In practice, however, the HNC equation is often
solved by using the four equations and solving them
iteratively using a computer to perform the ap-
propriate Fourier transf orms.

MODIFICATION FOR THE SCREENED COULOMB
POTENTIAL

The Abe nodal expansion' (valid for the screened
Coulomb potential) is more complicated than the
Mayer cluster expansion. The diagrams for the
pair-correlation function consist of two fixed
points, corresponding to the positions of the two
particl. es, plus points that are integrated over all
space. Between any two points one places any
number (zero allowed) of single potential lines,
represented by wavy lines, which have a value in
4 space of

—n pV, (k) = —4~n pe'/(k'+1/~', ),
where P is 1/kT as usual and &~ is the Debye
screening length defined by

X =(kT/4nne )"s .

[1 —nPV, (k)]'t(k)
1 —[1 —nPU, (k)]t(k) (10)

Again this result is exact. For a more detailed
derivation of an anal. ogous result with further ref-
erences to the diagrammatic expansion consult
Ref. 9.

Equation (1) is modified easily to

e BU~ ir)+s (r-&

Equations (3), (4), (10), and (11) together consti-
tute the modified HNC equation suitable for the
screened Coulomb potential. There are now no
l.onger any long-range terms involved in the prob-
lem.

DISCUSSION OF SOLUTIONS

No convergence difficulties were encountered in
solution of the modified HNC equations. A step
width of smaller than 0. 02 was used in the integra-
tions (Simpson's rule), and convergence was found
after 7 iterations except at the most dense fluid
where 15 iterations were required. The error in
computation was less than 0. 5%.

There are two further rules. Each integrated
point must be connected to at least two other points,
and no two single potential lines may be connected.
Thus the grapl. s of Figs. 1(a) and 1(b) are accept-
able, but the graph of Fig. 1(c) is not allowed.

This last rule modifies the Ornstein-Zernicke
relation and changes Eq. (5). One must distin-
guish in the diagrams for T between those involv-
ing a single potential line and the remainder
which is called t(x);

t(~) = r(~) + npv, (r) .
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These latter diagrams are represented by a bub- FIG. 2. Pair-correlation function (for I' =10).
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TABLE I. Pair-correlation function from HNC equation.

r/a

0, 05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
g. 45
0.50
0.55
0. 60
0.65
0.70
0.75
0. 80
0. 85
0.90
0. 95
1.00
1.05
1,10
1, 15
1.20
1.25
1,30
1.35
1.40
1,45
1,50
1,55
1,60
1,65
1.70
1.75
1, 80
1.85
1, 90
2. 00
2. 10
2, 20
2, 30
2.40
2. 50
2.75
3, 00

0. 00040
0, 00252
0. 0172
0.0471
0. 0880
0.136
0, 189
0.278
0.336
0.391
0.448
0, 501
0.552
0, 600
0.642
0.680
0. 715
0.746
0, 780
0. 803
0. 822
0. 846
0, 861
0. 877
0. 892
0. 901
0, 916
0. 925
O. 935
0, 943
0, 949
0, 955
0. 961
0. 964
0, 970
0, 973
0. 977
0, 981
0, 986
0. 989
0. 992
0.993
0.995
0.998

~
0.999

r=2
g(r)

0. 0044
0. 0060
,0. 0094
0. 0267
0. 0499
0. 0840
0, 129
0, 181
0, 237
0.299
0.358
0.423
0.481
0.541
0. 593
0. 642
0, 689
0. 733
0.770
0. 803
0. 833
0. 860
0. 882
0. 902
0. 915
0. 930
0.943
0.954
0. 963
0. 970
0. 976
0. 980
0. 986
0, 988
0. 990
0. 995
0, 998
0. 999
i.000

0, 001 04
0.00442
0, 0126
0. 0279
0. 0520
0.0860
0, 130
0.182
0, 240
0.303
0.3VO

0, 436
0.501
0.563
0.623
0, 678
0.728
0.772
0. 812
0.847
0. 877
0, 903
0.925
0, 943
0, 958
0.970
0, 980
0.987
0, 993
0, 998
1,001
l. 003
1.005
1.007
1,007
1.006
1.005
1.004
1,003
1,001
l. 000

0, 00014
0, 000 86
0. 003 25
0. 009 20
0.0215
0.0419
0.0720
0.112
0.161
0, 222
0.297
0, 356
0'. 430
Q. 498
0.578
0, 637
0.679
0.750
0. 803
0, 841
0. 877
0.907

g 0.935
0, 957
0. 974
0, 987
0.998
1, 006
1,010
1.014
1,017

1.017
l.016
l. 013
1,009
1,007
1.004
l. 003
1.0005
l.000

0.35
0.40
0.45
0, 50
0, 55
0.60
0, 65
0.70
0.75
0, 80
0. 85
0, 90
0.95
1, 00
1.05
1.10
1.15
l.20
1,25
l.30
1.35
1.40
1.45
1.50
1,55
1.60
1,65
1.70
1.75
1, 80
1.90
2. 00
2.10
2.20
2.30
2, 40
2.50

r=5
g(HNC)

0. 000 14
0. 000 83
0. 003 25
0. 009 03
0. 0213
0.0432
0. 0739
0.111
O. 162
0.224
0.292
0.368
0.445
0.530
0, 592
0.668
0.727
O. 785
0, 836
0. 877
0.916
0.950
0.973
0, 991
l. 006
1,017
1.024
1.028
1.031
1,031
1.030
1.023
1.018
1.012
1.007
1,004
1.000

r =10
g(HNC)

0.0

0, 00011
0, 00067
0.002 19
0. 006 78
0.0180
0, 0344
0.0693
0, 109
0.168
0„240
0.328
0.421
0.537
0.620
0, 715
0, 795
0.878
0, 942
0.994
1.030
1, 066
l. 087
l. 099
1.105
1,104
1.100
1.091
1.073
1,052
1.028
1.012
1,000
0, 992
0, 988

Z =10
g(MC)

0. 005
0. 020
0.050
Q. 100
0.160
0.230
0.300
0.380
0.475
0.580
0.680
0. 770
0. 850
O. 925
0.995
l. 055
1.090
1.105
1.120
l. 125
l. 125
l. 120
1.110
1.085
1.060
1, 025
l. 005
0, 990
0, 980
0. 975

One defines a parameter I' for the strength of the
interaction which is~Pe~/a, where a is the average
interparticle spacing (3/4')"3. The results are
shown in Table I and in the graph of Fig. 2, where
the most dense-fluid system results are compared
to those obtained from the MC procedure. '

Two major qualitative features emerge from
this comparison. The HNC results rise from zero
at smaller values of x/a than the MC results. The

oscillations that appear in the pair-correlation
function for dense fluids are larger for the MC re-
sults than for the HNC results. Both of these fea-
tures are also found in comparisons of HNC and
MC results for other potentials. ' Qscillations
in the pair-correlation function have not been
found in previous calculations using the unmodified
form of the HNC equation' because of the difficulty
of solution in the region of 1 greater than 2.
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Phase-Amplitude Method in Atomic Physics. II.Z Dependence of Spin-Orbit Coupling
J. I.. Dehmer

Departments of Phv~~cs and Chemistry, The University of Chicago, Chicago, Illinois 60637
and Argonne National L aboratory, ~ Argonne, Icrsnoss oocyte

The spin-orbit interaction for p electrons is shown to occur in the E shell for all atoms and

to vary with atomic number Z according to 4p ~Ha (0, Z)/Z, where hp is the difference in
quantum defect between the fine-structure levels evaluated at the series limit, n(0, Z) is the
amplitude function for a nonrelativistic zero-energy p wave at r = 0, and H is a relativistic
correction factor. The quantity bp is evaluated and found to vary as Z '3, which is in re-
markable agreement with experiment. In addition to this gross behavior, the variation of
0.' (0, Z)/Z exhibits a structure tied to the Periodic Table. This structure derives from the in-
fluence of the valence region of the atomic potential, which affects the spin-orbit interaction
through the normalization factor a(0, Z). Neither inner screening effects, embodied in
Casimir's 0(Z) parameter, nor deviations of the atomic potential from Zr ~ in the interaction
region appear very relevant to this problem.

I. INTRODUCTION

The study of spin-orbit (SO) interaction is a
very old subject, historically dealing with the anal-
ysis of the optical spectra of particular atomic
configurations. A recent advance' employing
quantum-defect theory (QDT) has led to an empiri-
cal law by which the strength of SO interaction of

p electrons for all atoms can be expressed approxi-
mately as a power law in Z, the atomic number.
In the present paper, the phase-amplitude method
(PAN)~ is used to show that the SO interaction for
p electrons can be expressed as the product of two
factors. One factor originates from a pm. ely
hyChogenic interaction that takes place within the
atomic K shell in the field of the unscxeened
nucleus and the other factor depends on the spin-
independent potential outside the K shell. This
latter factor is the amplitude function of the PAM
and constitutes an electron optical transmission
function that connects the amplitude of a radial
wave function at &= 0 to that in the ionic field beyond
the valence region of the atom. This application
of PAN to the Z dependence of SO interaction is a
prototype for applications to other inner-shell

phenomena, such as K-shell photoabsorption, which
can be usefully separated into a factor arising from
interactions localized near the nucleus and a nor-
malization factor that depends on transmission
properties of the entire atomic field.

Before proceeding, we will review briefly the
aspect of the PAM to be exploited here. As shown
in an earlier paper, hereafter referred to as I,
the radial wave function P(r) for an electron in the
field of an ion can be conveniently expressed in
terms of an amplitude function o.(x) and a phase
function S (r):

P(r) = n(r)[fcos[5(~)] gsin[5b)]}, - (l)
where (f, g) are independent Coulomb functions
defined in I. The utility of the amplitude function
derives from the fact that S(x) depends solely on
the range [0, r] whereas a(z) depends on the entire
range [r, ~]. Hence, for an interaction taking
place at small x, the part of Eq. (1) in braces is
characteristic of a purely Coulomb field and should
scale with atomic number in a simple way. There-
fore, all nonhydrogenic behavior is isolated in the
factor o(z), which we will show depends strongly on
the field in the valence shells of atoms. This


