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Exact analytical expressions for scattering lengths for potentials with four-parameter long-range tails of the
form −Ar−2sr +rd−2−Br−nsr +rdn−4 are presented. Contributions due to a potential core, with the latter not
specified explicitly, are taken into account through a short-range scattering length and a core radius. For
nÞ2 andBÞ0 the derived expressions contain the Bessel functions; forn=2 or B=0 they contain elementary
functions.
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I. INTRODUCTION

When a charged particle collides with a neutral polariz-
able target, at low energies their interaction may be satisfac-
torily described by using suitably chosen long-range central
model potentials which for large separation distancesr are
attractive and fall asr−4. Such model potentials are called
polarization potentials. At very low energies, the most im-
portant parameter characterizing the collision process is a
scattering length. Exact or approximate analytical expres-
sions for scattering lengths are available for several polariza-
tion potentials[1–16].

It is the purpose of this Brief Report to show that exact
analytical expressions for the scattering length may be found
for a four-parameter polarization potential which beyond
some radial distance(core radius) rs is of the form

Vsrd = −
A

r2sr + rd2 −
B

rnsr + rd4−n sr ù rsd, s1.1d

with A, B, n real andr real non-negative. In our consider-
ations, we shall not specify the explicit form of the potential
coreVsrdHsrs−rd, whereHsrs−rd is the Heaviside unit step
function. We shall be assuming only that the core is nonab-
sorptive and that a due short-range scattering lengthas is
known.

II. METHOD

For any polarization potentialVsrd a physically acceptable
solution to the zero-energys-wave radial Schrödinger equa-
tion

−
"2

2m

d2fsrd
dr2 + Vsrdfsrd = 0 s2.1d

has the asymptotic form

fsrd ,
r→`

const3 fr − ag, s2.2d

wherea is the scattering length[17]. It is evident from Eq.
(2.2) that

a = lim
r→`

asrd, s2.3d

where the functionasrd is defined in terms of the logarithmic
derivative of fsrd,

Lsrd =
f8srd
fsrd

s2.4d

(here and hereafter the prime at a function denotes its deriva-
tive with respect to an argument), as

asrd = r −
1

Lsrd
. s2.5d

Assume now that the polarization potentialVsrd is such
that for r ù rs two linearly independent particular solutions
f1srd and f2srd to the Schrödinger equation(2.1) are known.
Then it holds that

fsrd = c1f1srd + c2f2srd sr ù rsd, s2.6d

wherec1 andc2 are constants, and consequently

Lsrd =
f18srd + bf28srd
f1srd + bf2srd

sr ù rsd, s2.7d

whereb=c2/c1. Setting in Eq.(2.7) r =rs and solving forb
yields

b = −
f18srsd − Lsrsdf1srsd
f28srsd − Lsrsdf2srsd

. s2.8d

Since Lsrsd is related to a short-range scattering lengthas

;asrsd through

as = rs −
1

Lsrsd
, s2.9d

in terms ofas Eq. (2.8) reads

b = −
srs − asdf18srsd − f1srsd
srs − asdf28srsd − f2srsd

. s2.10d

Combining Eqs.(2.5), (2.7), and(2.10), leads to*Corresponding author. Electronic address: radek@mif.pg.gda.pl
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asrd = r −
srs − asdff1srdf28srsd − f2srdf18srsdg − ff1srdf2srsd − f2srdf1srsdg
srs − asdff18srdf28srsd − f28srdf18srsdg − ff18srdf2srsd − f28srdf1srsdg

sr ù rsd. s2.11d

Once explicit forms of the particular solutionsf1srd and f2srd
are known, making the limiting passager →` in Eq. (2.11)
yields [cf. Eq. (2.3)] the scattering lengtha for the polariza-
tion potentialVsrd, expressed in terms of the core radiusrs

and the short-range scattering lengthas.

III. SCATTERING LENGTHS FOR POTENTIALS
WITH THE TAILS (1.1)

If we define

a =
2m

"2r2A, b =
2m

"2r2B, s3.1d

in the regionr ù rs the zero-energy radial Schrödinger equa-
tion (2.1) with the potential(1.1) may be written as

d2fsrd
dr2 +

ar2

r2sr + rd2 fsrd +
br2

rnsr + rd4−n fsrd = 0 sr ù rsd.

s3.2d

The following simultaneous transformations of the variable
and function,

j =
r

r + r
, s3.3d

fsrd = rFsjd, s3.4d

convert Eq.(3.2) into

j2d2Fsjd
dj2 + 2j

dFsjd
dj

+ fa + bj2−ngFsjd = 0. s3.5d

Below we shall exploit the fact that solutions to Eq.(3.5) are
known in analytical forms[18,19].

A. CaseBÅ0 and nÅ2

When the constraintsbÞ0 (i.e., BÞ0) andnÞ2 are sat-
isfied simultaneously, two linearly independent solutions to

Eq. (3.5) may be expressed in terms of the Bessel and Neu-
mann functions in the following way:

F1sjd = j −1/2Jmszd, F2sjd = j −1/2Ymszd, s3.6d

where

z = z`j1−n/2, s3.7d

with

z` =
2b1/2

un − 2u
s3.8d

and

m =
2h

un − 2u
, s3.9d

with

h = S1

4
− aD1/2

. s3.10d

Consequently, if in Eq.(2.11) we choose

f1srd = rj −1/2Jmszd, f2srd = rj −1/2Ymszd, s3.11d

exploit the recurrence relation

zZm8 szd + mZmszd = zZm−1szd s3.12d

obeyed both byJmszd and Ymszd, and pass subsequently to
the limit r →`, we obtain

a = rFsgnsn − 2dsh − b1/2Dd −
1

2
G , s3.13d

where

D =
Jm−1sz`d + bYm−1sz`d

Jmsz`d + bYmsz`d
, s3.14d

with

b = −
hfmsn − 2d − 1grsrs − asd − 2assrs + rdjJmszsd − sn − 2drsrs − asdzsJm−1szsd
hfmsn − 2d − 1grsrs − asd − 2assrs + rdjYmszsd − sn − 2drsrs − asdzsYm−1szsd

, s3.15d

zs = z`js
1−n/2, js =

rs

rs + r
. s3.16d

The result(3.13)–(3.16) simplifies considerably whena andn are such thatm=1/2. Then it holds

BRIEF REPORTS PHYSICAL REVIEW A69, 064701(2004)

064701-2



J±1/2szd = S 2

pz
D1/2

3 Hsinz,

cosz,
s3.17d

Y±1/2szd = S 2

pz
D1/2

3 H− cosz,

sinz,
s3.18d

and Eq.(3.13) reduces to

a =
1

4
rfsn − 4d − 4 sgnsn − 2db1/2 cotsz` − zs + fdg,

s3.19d

where

f = arctan
2sn − 2dzsrsrs − asd

nrsrs − asd − 4rssas + rd
. s3.20d

In particular, the conditionm=1/2 is satisfied whena=0
(i.e., A=0) andn=4; i.e., when the potential tail(1.1) is the
inverse-fourth-power potential:

Vsrd = −
B

r4 sr ù rsd. s3.21d

In this case Eq.(3.19) simplifies to

a = rb1/2 asrs − b1/2rsrs − asdtansb1/2r/rsd
b1/2rsrs − asd + asrs tansb1/2r/rsd

, s3.22d

which agrees with our earlier findings[6,7,11].

B. CasesB=0 and n=2

It remains to consider the caseB=0 and the casen=2.
Since it is evident from Eq.(1.1) that these two cases are
essentially equivalent, below we shall consider in details
only the caseB=0.

For B=0 we haveb=0 and Eq.(3.5) becomes

j2d2Fsjd
dj2 + 2j

dFsjd
dj

+ aFsjd = 0. s3.23d

This is the Euler equation and foraÞ1/4 its two linearly
independent solutions may be chosen as

F1sjd = j −1/2 sinhsh ln jd, s3.24d

F2sjd = j −1/2 coshsh ln jd, s3.25d

with h defined in Eq.(3.10). Hence, we have

f1srd = rj −1/2 sinhsh ln jd, s3.26d

f2srd = rj −1/2 coshsh ln jd, s3.27d

and substitution of Eqs.(3.26) and (3.27) into Eq. (2.11),
followed by performing the limiting passager →`, yields
the scattering length in the form

a =
1

2
r

4hassrs + rd + fs2asrs + asr + rsrd − 4h2rsrs − asdgtanhsh ln jsd
2hrsrs − asd − s2asrs + asr + rsrdtanhsh ln jsd

. s3.28d

Formula(3.28) is valid independently of whetherh is real or imaginary. Still, forh imaginary, which corresponds toa.1/4,
it is suitable to rewrite Eq.(3.28) as

a =
1

2
r

4uhuassrs + rd + fs2asrs + asr + rsrd + 4uhu2rsrs − asdgtansuhuln jsd
2uhursrs − asd − s2asrs + asr + rsrdtansuhuln jsd

. s3.29d

The scattering length for the casea=1/4, which corresponds toh=0, may be found either by observing that then linearly
independent solutions to Eq.(3.23) are

F1sjd = j −1/2, F2sjd = j −1/2 ln j, s3.30d

or by making the limiting passageh→0 in Eq. (3.28). Whatever procedure is adopted, at its end one arrives at the following
expression for the scattering length:

a =
1

2
r

4assrs + rd + s2asrs + asr + rsrdln js

2rsrs − asd − s2asrs + asr + rsrdln js
. s3.31d
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