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Exact analytical scattering lengths for a class of long-range potentials witih™* asymptotics
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Exact analytical expressions for scattering lengths for potentials with four-parameter long-range tails of the
form —Ar-(r+p)2-Br ¥(r+p)"* are presented. Contributions due to a potential core, with the latter not
specified explicitly, are taken into account through a short-range scattering length and a core radius. For
v# 2 andB # 0 the derived expressions contain the Bessel functions;$@& or B=0 they contain elementary

functions.

DOI: 10.1103/PhysRevA.69.064701

I. INTRODUCTION

When a charged particle collides with a neutral polariz-

PACS nuniber03.65.Nk, 34.10tx

a=lima(r),

r—o

(2.3

able target, at low energies their interaction may be satisfasvhere the functiora(r) is defined in terms of the logarithmic
torily described by using suitably chosen long-range centratlerivative off(r),

model potentials which for large separation distancese

attractive and fall as™*. Such model potentials are called

polarization potentialsAt very low energies, the most im-

L(r)= o

0 (2.9

portant parameter characterizing the collision process is a ) ) _ )
scattering length. Exact or approximate analytical expresthere and hereafter the prime at a function denotes its deriva-

sions for scattering lengths are available for several polarizaive With respect to an argumenas

tion potentialg/1-16.

It is the purpose of this Brief Report to show that exact
analytical expressions for the scattering length may be found

a(r):r—m. (2.5

for a four-parameter polarization potential which beyond aAssume now that the polarization potenti&r) is such

some radial distanceore radiugrg is of the form

A B
rA(r+p)? r'(r+p)*”

V(r) = (r=ry, (1.1

with A, B, v real andp real non-negative. In our consider-

ations, we shall not specify the explicit form of the potential

coreV(r)H(rs—r), whereH(rs-r) is the Heaviside unit step

function. We shall be assuming only that the core is nonab-

sorptive and that a due short-range scattering lergtis
known.

IIl. METHOD

For any polarization potentiadd(r) a physically acceptable
solution to the zero-energywave radial Schrddinger equa-
tion

72 d?f(r)
T om dr? +V(r)f(r)=0 (2.1
has the asymptotic form
r—o
f(r) ~ constX [r —a], (2.2

wherea is the scattering lengtfil7]. It is evident from Eq.
(2.2) that

that forr =rg two linearly independent particular solutions
f1(r) andf,(r) to the Schrédinger equatiq.1) are known.
Then it holds that

f(r)y=cif4(r) +cofo(r) (r=ry), (2.6)
wherec; andc, are constants, and consequently
f1(r) +bfy(r)
L(r)= r=ry), 2.
(r) (1) + bhy(r) (r=ry 2.7)

whereb=c,/c;. Setting in Eq.(2.7) r=rg and solving forb
yields

) - L(f(ry
15(rd = L(rdto(ry)

SinceL(ry) is related to a short-range scattering length
=a(ry through

(2.9

1
as=Ts Ly’ (2.9
in terms ofag Eq. (2.8) reads
oo (s adfi(r) = fy(ry .10

(rs=adfy(r) —fo(ry

*Corresponding author. Electronic address: radek@mif.pg.gda.pbombining Eqs(2.5), (2.7), and(2.10), leads to
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s~ as)[fl(r)fé(rs) - fz(r)fi(rs)] —[f1(r)fa(rg) = fo(r)fy(ry)]
(re—ag[f1(nfa(rd — fo(Nfi(rg]—[F1(fa(re = f(r)f4(ry)]

a(ry=r- =ry). (2.11

Once explicit forms of the particular solutiofigr) andf,(r) Eqg. (3.5 may be expressed in terms of the Bessel and Neu-
are known, making the limiting passage-« in Eq.(2.1)  mann functions in the following way:
yields [cf. Eg. (2.3)] the scattering length for the polariza-

— ¢-1/2 — -1
tion potentialV(r), expressed in terms of the core radiys Fi(§) =&, FAO=¢ ZYu(g)' (3.6
and the short-range scattering length where
lll. SCATTERING LENGTHS FOR POTENTIALS (=087 (3.7
WITH THE TAILS (1.1) .
with
If we define 2842
(= (38
2m 2m lv-2
a= 7 —5A  B= 72 — 5B, 3.1 and
in the regionr =r¢ the zero-energy radial Schrédinger equa- 27y
tion (2.1) with the potential1.1) may be written as m= -2 (3.9
d*f(r) ap? Bp° i
+ f(r) + fr)=0 (r=ry. with
dr2  r?(r +p)? ") rU(r+p)* ) (r=ry .
1
(3.2 7]=<Z—a> . (3.10
The following simultaneous transformations of the variable
and function, Consequently, if in Eq(2.11) we choose
r f,()=reY23,(0), f(r)=re Y2y (9, (3.1
o T 33 (N=rE2,0, HO=re,Q), (311
r+p exploit the recurrence relation
f(r) =rF (&), (3.9 {Z,(0) + pZ,(0) = {Z,-1(0) (3.12
convert Eq.(3.2) into obeyed both by, () andY,({), and pass subsequently to
the limit r — oo, we obtain
d2F(§) dF(é) '
S +la+BEIF(H=0. (3.9 1
a=p| sgriv=2)(y- D)~ 7 |, (3.13
Below we shall exploit the fact that solutions to £§.5) are
known in analytical formg18,19. where
A. CaseB#0 and v#2 D= J,-1(¢) +bY,_1(Z.) , (3.14
When the constraint8+ 0 (i.e.,B#0) andv # 2 are sat-
isfied simultaneously, two linearly independent solutions towith
|
b= {lu(v=2) = 1]p(rs— a9 = 2ay(rs+ p)}J, (&) = (v = 2)p(rs— a9 {J,-1(Ls) (3.1
{lu(v=2) - 1]p(rs—ay — 2a4(rs+ P)}Y,u(gs) - (v=2)p(rs— as)ng;L—l(gs) ,
O R __TIs
Lo 6= (3.16

The result(3.13—3.16 simplifies considerably whea and v are such thap=1/2. Then it holds
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2 1/2 i ,
311/2(0:(—) X{sm{

wl cos¢, .17
2 1/2 _ ,
Yﬂ,z(z):(w—g) x{ s‘ifz{ (3.19

and Eq.(3.13 reduces to
1
a=2pl(v=4) - 4sgiv-2)p% cotls. ~ &+ D],
(3.19

where

2(v=2){p(rs—ay
vp(rs—a) —4rg(as+p)’
In particular, the conditionu=1/2 is satisfied whene=0

(i.e., A=0) and v=4; i.e., when the potential tafll.1) is the
inverse-fourth-power potential:

¢ = arctan (3.20

B
V(r)=—r—4 (r=ry. (3.21)
In this case Eq(3.19 simplifies to
a= Pﬁllz adfs— ﬁllzp(rs - as)tar(ﬁllzp/rs) (3.22)

ﬁllzp(rs_ ag) +ads tar(Bl/ZP/rs) ’
which agrees with our earlier finding6,7,11.

= 1 4nayrs+p) +[(2ads+ap + rep) = 47°p(rs— a)Jtant(5 In &)
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B. CasesB=0 and »=2

It remains to consider the ca®=0 and the case=2.
Since it is evident from Eq(1.1) that these two cases are
essentially equivalent, below we shall consider in details
only the caseéB=0.

For B=0 we haveB=0 and Eq.3.5 becomes

d*F(9)
dé&?

dF(§)
d¢

& +2¢ +aF (¢ =0. (3.23

This is the Euler equation and fer+ 1/4 its two linearly
independent solutions may be chosen as

Fi(§ =& 2sinh(nIn &), (3.29
Fo(8) = €2 cosl(nIn &), (3.29
with # defined in Eq(3.10. Hence, we have
fi(r)=ré&Y2sinh(yln &), (3.26)
fo(r)=r& Y2 coslinIn &), (3.27

and substitution of Eqs(3.26) and (3.27) into Eq. (2.11),
followed by performing the limiting passage— o, yields
the scattering length in the form

2P 27p(rs—ag) — (284 s+ agp + rep)tant(z In &)

(3.28

Formula(3.28) is valid independently of whethey is real or imaginary. Still, fory imaginary, which corresponds to>1/4,

it is suitable to rewrite Eq(3.28 as

_ 1 A7lalrs+ p) +[(2a4s+ agp + rep) + 4| 5fp(rs — ag Jtan(| 7]in &)

2P 2/ 7lp(rs— ag) — (284 s + agp + rep)tant| 7in &)

(3.29

The scattering length for the caae=1/4, which corresponds tg=0, may be found either by observing that then linearly

independent solutions to E¢B3.23 are

Fi(§)=¢712,

Fa9) =¢7%In ¢,

(3.30

or by making the limiting passage— 0 in Eq.(3.28. Whatever procedure is adopted, at its end one arrives at the following

expression for the scattering length:

_ } day(rs+p) +(2ads+ap +rsp)in &

- szp(rs_ ag) — (2asrs+agp +rgp)in gs.

(3.3)
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