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Analytic representation of the Efimov effect in the helium trimer
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Exact solutions for the low-temperature helium dimer and trirﬁdez and4He3, are derived, based on our
é function model for the interatomic potential. For the trimer, the Faddeev equations are shown to be separable
in hyperspherical coordinates, with tisewave alone giving an exact solution. The paramelgrandr, are
fitted to accurate computations on the dimer and trimer. Excited states of the trimer are shown to exhibit the
Efimov effect, whereby artificially reducing the strength of the two-body potential causes an infinite number of
weakly-bound levels to condense out of the continuum. All the features anticipated by Efimov are quantita-
tively reproduced within our model. Since short-range details of the intermolecular forces are not relevant, our
results can be considered to be universally applicable.
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I. INTRODUCTION tum, the relative motion of a pair of helium atoms can be

In 1970 Efimov[1] proposed that a three-body system "éPresented by
with short-range interactions can have an increasingly large > N
number of weakly-bound states if, for at least two of the —| =" ()= =g/ (1) = =80 —ro)ep(r) | =Ey(r) (1)
subsystems, the scattering length becomes much larger than  2u r lo
than the range of the two-body potential. In the limiting case .
of a resonant system, when the energies of the two-body/ith E=-«?/2u. The reduced masg=M/2, where M
interactions approach zero, the number of Efimov states can/296-293 atomic units for thite atom. For #ro, Eq.(1)
become infinite. has solutionsyy(r)=sinh(«r)/r and ¢,(r)=e™"/r, finite for
The Efimov effect has been extensively studied in nobler —0 andr— =, respectively. The complete wave function
gas trimers—notablfHe; [2—4]. The dimer*He; supports a must be continuous but kinked etr,, so that the first de-
single bound state with a miniscule binding energy corredivative is discontinuous there. The second derivative will
sponding of 1.310 mK. ThéHe; trimer is found neverthe- then contribute a term to match thdunction in the potential
less to have a bound state two orders of magnitude morenergy operator. Th@&innormalized solution to Eq.(1) can
stable. Accurate computations give a ground-state energy iaccordingly be written
the range 125-135 mK, plus a bound excited state of the
order of 1-2 mK, which is typically greater than the binding _ sinh(kro)e™"™>
energy of the the dimer. A number of workdg have char- ylr) = r o rars}ednro 2
acterized the excited level as an Efimov state. To confirm that
this is actually so, it is necessary to consider the behavior aBhe boundary condition at=r is satisfied by matching the
the two-body potentials are appropriately “tuned.” This hass(r—ry) contributions from the kinetic and potential ener-
been done computationally and might become possible exgies. This leads to the relation
perimentally by observing trimers in electric fields.
Several earlier studies have explored the effect of varying No= ko[ 1+ coth(krp)], (3)
the strength of the diatomic potential energy function on the )
stability of the helium trimer. Cornelius and Glock# used ~ Which determines the ground state energy. Accurate compu-
the HFDHE2 helium diatomic potential of Aziet al. [7]  tations by Gentry and co-workerf] predicted a“He,
scaled by a parameter to solve the Faddeev equations in ground-state energy of£=-1.310 mK. Energies in these
momentum space. The present authors have studied modédsv-temperature species are most conveniently expressed in
for low-temperature helium dimers and trimers based on apmillikelvins, with the conversion factor 1 mK=3.166 829
proximations of the interatomic potentials byunctions[8]. X 107° hartree. A deltafunction potential supports only a
Within these models, we have obtained exact solutions of thgingleJ=0 bound state, which makes it an appropriate model
Schrédinger equation for bottHe, and “Hes. In this paper for the actual*He, dimer. The parameteis, andr, can be
we will derive an explicit analytic account of the Efimov adjusted to agree with the ground-state energy. In earlier
effect. work, we found the best fit with\;=1.074 341,=13.15
Il HELIUM DIMER bohr. A small _readjust_ment of these parameters will optimize
agreement with the trimer as well.
For the dimer, the potential is idealized as a “Dirac bubble ~ A bound state for the dimer will exist only for values
potential.” Assuming a state of zero orbital angular momen-\ > 1. The limiting case\=1 represents a zero-energy reso-
nance. Such a hypothetical state is of particular importance
in connection with the Efimov effect in the trimer. Far
*Electronic address: llohr@umich.edu, sblinder@umich.edu =0, Eq.(3) is approximated by

1050-2947/2004/68)/0641024)/$22.50 69 064102-1 ©2004 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW A9, 064102(2004)

r 24 24 o2
ap=r-1=", @ RE\/%, (11)

wherea= 1/« is an estimate of the scattering length.

Our & function model is particularly fortuitous for study-
ing the Efimov effect since details of the short-range poten-
tial are largely irrelevanf10].

while
ap = arcsinry/R), 0< a; < 7/2 (12

and B; is the angle between the Jacobi vectogsr, and
lIl. FADDEEV EQUATIONS FOR TRIMER rl—%(r3+r2). As we will show, an exact analytic solution to

Generalizing thes function model to théHe, trimer, we the Faddeev equations can be obtained with a separable func-

. . : -~ . tion
will assume that the three particles interact through pairwise

6 function potentials of the same form: Uu(R, g, 1) = F(R) b(ay) PL(COS By), (13)

V(rij) =—’\2—05(rij —Tp). (55 whereP (cospB;) is a Legendre polynomial. The quantum
fo numberL represents the internal angular momentum of atom
For compactness of notation, we write the three interatomid about the du_attomlq fragment 2-3. .
Separations as =3, F,=ray,Fs=I1,. The three-particle ki- For the helium trimer, the ground state and the Efimov
netic energy operator, expressed in terms of the relative ipstates all have total rota'tlon'al angular momenta of zero. This
teratomic coordinates, is given BET,/M with does not preclude contributions frdo® 0 terms in a hyper-

spherical partial-wave expansion. For théunction model,

P29 r%— ri_ r% P however, exact solutions exist with just tisepartial-wave,
To=——5————+ L=0. This is possible because of the wéyunction factors

Iry Tidh REEINCAETIE: simplify the right-hand sides of the Faddeev equations. The

ri-ri-r2 & implication is that, in addition to the 2-3 diatomic being in an

+(cyclic permutations  (6) S state, the orbit of atom 1 about the diatomic fragment is
also spherically symmetrical. Indeed solutions involving
With a potential energy consisting entirely of pairwise higher partial waves do exist, but these almost certainly rep-
interactions, it is most convenient to use Faddeev's methodesent excited states of the modé&or more realistic poten-
The Faddeev equations for this system can be written tials, higher partial waves have been found to make small but
nonvanishing contributions to the ground state.

Arirs  Jrqdra

(T=BE)gha+ Va(rg¥ =0, With L=0, P (cos3;)=1, and the requisite solutions to
the Faddeev equations become separable functions oRjust
(T-E)iy+ Vy(r)) ¥ =0, and a;. Forry#r, the Faddeev equatiofl0) describes a

free-particle state:

(T=BE)he+ Ve(ra) ¥ =0, @) (To+ KO)F(R)(ay) = 0. (14)

These three equations add up to give the three-particle )
Schrodinger equation The other two Faddeev component equations are analogous,
with «; replaced by, and a3, respectively. Equatioiil4)
(H-E)¥=0 (8)  reduces to two ordinary differential equations

ith
wit f(R) + gf'(R) + %‘f(R) =K*f(R) (15)
H=T+Va+Vy+V,, WVY=uyo+ i+ . ©)

For the homonuclear helium trimer, each Faddeev equatioﬁnd
(7) has the identical form

¢'(a) + 4 col2a)¢'(a) - (S +4)¢' () =0,  (16)

A
(To+ k) a = 705“1 ~ro)¥ =0, (10 wheres?+4 is a convenient separation constant. Integration
0 over the domain oR and « involves the differential element
The advantage of the Faddeev equati@f) over the full  R°sin(2a)dRdu.
Schrédinger equatioii8) is that only a singles function Solutions to Eq(15), for reals, involve modified Bessel
boundary condition need be considered. The funciigean  functions of imaginary ordek;s(kR) andls(kR). These are
be associated with the channel in which atoms 2 and 3 fornoscillatory functions with exponentially increasing frequency

a diatomic molecule, with atom 1 as a spectator. askR— 0. The solutionf(R)=R?K(kR) is a real function,
Equation(10) is separable in the hyperspherical coordi- well-behaved at botliR— 0 andR— «. The second solution
natesR, aq, 8;. The hyperradius is defined by R2ls(kR) is well behaved only for & R<R,.
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Equation(16) has solutionsh(a)=csd2a)sinh(sa) finite  find no other bound states with imaginary values.ohs we
at =0 and¢(a)=csd2a)sinfs(w/2—-a)] finite ata==/2.  shall show in the following section, real valuesgive the
A continuous solutiony, to the Faddeev equatiad7), with  Efimov states.
the requisite kink at,=rg, can thus be constructed as fol-  The Thomas effect also follows easily from Eg0). Tho-

lows: mas[11] showed that as theainge r, of the two-body poten-
_2 tial is decreased, the three-body binding energy can become
tha = R™is(kR)Kis(kR- )csq2a) very large. Since\, determines the quantityR, and k is
- proportional toy—e, it follows that.sa——const/r2 and thus its
X sinr’(3a<)sinh[s<z— a>)] (17)  magnitude increases without limit ag— 0. Thomas was
_ able to estimate the range of nuclear forces by relating the
where a=arcsir(r;/R), ag=arcsiriro/R) andRy=12 ry,. energies of two- and three-nucleon systems.
The solution to the Faddeev equation is obtained by
matching thes function contributions from the kinetic- and V. EFIMOV STATES

potential-energy operatoréfter evaluating the derivatives,

we setr;=r,=rz=r,, which represents the instantaneous For real values of the parametsrthe Bessel function

equilateral-triangle configuration of the trimer, with hyperra- Kis(kKR) is an acceptable solution to the hyperradial equation

dius R,. (15) over the entire range d®. The discontinuous derivative
necessary to produce a deltafunction can be obtained from

the dependence om alone, such that
IV. TRIMER GROUND STATE

Efimov [1] concluded that the trimer has not only an in- o= R‘ZKiS(kR)csdza)sinI~(sa<)sinh[s(E - a>):|_
finite number states with real values of the paramstdaut 2

also a single deep bound state with a pure imaginary value of (21
s. We WI|| show that the appropriate value for the latter state
is s=-2 i. The Faddeev component, in Eq. (17) can be Solution of the Faddeev equation fulfilling the deltafunction
reduced to boundary condition can be obtained with
R |'(k ) kR-. C(2 ) ( ) E — & A= gS COt"(S_W) (22)
i, = R 3sinh(kR.)e*R>cs asm25|n4 5 ) 3 4
(18 and

making use of the simple analytic forms fdy,(x) and K (kRo) = 0 (23)
Ky2(X) in terms of spherical Bessel functions. By virtue of s '
the §-function-bubble potential, each pair of helium atoms\wwe are no |0nger restricting to )\0' its optima| value in
has zero interaction energy whep<r,. Thus the dimer can  “He,, in order to demonstrate the most general aspects of the
hypothetically be obtained from the trimer simply by merg- Efimov effect. Using the trimer parametexs andr, deter-
ing two of the helium atomgdo not try this with a more  mined above, Eq(22) gives s,=1.184. The lowest energy
realistic potential function This is accomplished by setting root of Eq.(23) corresponds then to the first excited state of
ry=rp=r and rz=0. Correspondingly, we hav&= 2r/\3,  the trimer withe;=-1.34 mK, of the right general magnitude
Ry=2r¢/\3 and a=ay=m/4. The trimer function then re- and below the dimer energy of —1.31 mK.
duces to the form Equation(23) has an infinite number of roots. For values
3. "y of A<1, these correspond, in principle, to trimer energy lev-
Yalr) =1 sinh(r )& (19 els which arenot absorbed into the dimer+monomer con-
identical to Eq.(2), apart from a factor of from the change tinuum. These can be quite accurately determined from the
in coordinate system. Because all interatomic potentials var¥— 0 asymptotic form of the Bessel function
ish whenr;; =0 for our delta-shell model, the three-body sin- is ) s
gularity (“Thomas collapse)’is avoided. Kig(X) = e 'S)( ) + @<§) (24
Using Eq.(18) in the Faddeev equatiai0), we find, for s 2 2 \2) °
the ground state of the trimer,

The recursive relatiok,,;=k, €™ is implied for the roots
Xn=knRg of Eq. (23). This leads to Efimov’s exponential se-
guence of energy levels

No= %co(< 8) + =kRyeRocschkRy). (20)
The parameters, and ry can be fitted to the accurately- Ene1= EnE ~27s  n=1,2,3..., (25)
calculated energies of the dimer and trimer ground states:

gdimer=—1.31 mK ands§ ™"~ -130 mK. Energy on the mil- with a point of accumulation at=0 asn— c.

likelvin scale is given bye=-3.1577< 10° k*/M mK. The In representing the trimer ground staiE,:% is assumed
values consistent with Eqgs(3) and (20) are \g only for =1, so the hypothetical alchemy to a bound dimer
=1.080 441,=14.2486 bohr. In agreement with Efimov, we described above can be carried out. ket 1, the parameter
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-10°¢ stateseg, €1, €,... condense out of the continuum. According
to Eq.(25), the energy levels are exponentially spaced, with
a point of accumulation a¢=0. This is the essence of the
famous “Efimov effect.” These bound levels persist up\to
=1, which corresponds to the zero-energy resonance of the
dimer. It is unlikely that more than two or three Efimov
levels are experimentally accessible, since higher levels in-
volve energies in the nanokelvin range. Ags further in-
creased above 1, the discrete states are successively absorbed
into the continuum—the shaded region in Fig. 1—as the tri-
mer fragments into a dimer+monomer. The model is consis-
tent with the survival of just two bound states at the empiri-
03 s 1 11 12 cal value ofA,.
A For \ slightly greater than 1, the highest bound state
must have an energy comparable to that of the dimer for the
FIG. 1. Quantitative version of Efimov diagram based ondhe Same value oh. Equation(4) implies, to logarithmic accu-
function potential. The energy levels of the helium dimer and trimerfacy, that
are plotted as functions of the pairwise interaction strength. The "
shadgd rggion represents the difagronomer continl_Jum. Note _the Iney =~ IN(A - 1) = |n<_0), (26)
logarithmic energy scale. For 0.8488\<1, there is an infinite a
number of bound Efimov states, with a point of accumulation at
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so that the number of Efimov levels is approximated by

=0.
s [a
is is chosen to minimize the energy. In accordance with Eq. N= ;In(E)), (27)
(20), the parameteis decreases froré to 0 as\ is reduced ) ) )
to 8/3m~0.8488. whereal/r is the ratio of the scattering length to the range of

the interatomic potential.

Our model for the Efimov effect agrees with results de-
duced by other workers using more realistic potentials. See,

Figure 1 represents the dependence of dimer and trimdor example, the detailed studies of three-body systems with
energies as functions of. This is a quantitative version, short range interactions by Federov, Jensen and co-workers
based on our deltafunction model, of the schematic energ}l2,13. Efimov states are exhibited in the limiting behavior
diagrams given in Efimov’s papers. Asis increased to ap- of real resonant systems. By contrast, our results follow from
proximately 0.8488, an infinite number of trimer bound exactsolutions for an idealized model of the trimer.
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