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Exact solutions for the low-temperature helium dimer and trimer,4He2 and4He3, are derived, based on our
d function model for the interatomic potential. For the trimer, the Faddeev equations are shown to be separable
in hyperspherical coordinates, with theS-wave alone giving an exact solution. The parametersl0 and r0 are
fitted to accurate computations on the dimer and trimer. Excited states of the trimer are shown to exhibit the
Efimov effect, whereby artificially reducing the strength of the two-body potential causes an infinite number of
weakly-bound levels to condense out of the continuum. All the features anticipated by Efimov are quantita-
tively reproduced within our model. Since short-range details of the intermolecular forces are not relevant, our
results can be considered to be universally applicable.
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I. INTRODUCTION

In 1970 Efimov [1] proposed that a three-body system
with short-range interactions can have an increasingly large
number of weakly-bound states if, for at least two of the
subsystems, the scattering length becomes much larger than
than the range of the two-body potential. In the limiting case
of a resonant system, when the energies of the two-body
interactions approach zero, the number of Efimov states can
become infinite.

The Efimov effect has been extensively studied in noble-
gas trimers—notably4He3 [2–4]. The dimer4He3 supports a
single bound state with a miniscule binding energy corre-
sponding of 1.310 mK. The4He3 trimer is found neverthe-
less to have a bound state two orders of magnitude more
stable. Accurate computations give a ground-state energy in
the range 125–135 mK, plus a bound excited state of the
order of 1–2 mK, which is typically greater than the binding
energy of the the dimer. A number of workers[5] have char-
acterized the excited level as an Efimov state. To confirm that
this is actually so, it is necessary to consider the behavior as
the two-body potentials are appropriately “tuned.” This has
been done computationally and might become possible ex-
perimentally by observing trimers in electric fields.

Several earlier studies have explored the effect of varying
the strength of the diatomic potential energy function on the
stability of the helium trimer. Cornelius and Glöckle[6] used
the HFDHE2 helium diatomic potential of Azizet al. [7]
scaled by a parameterl to solve the Faddeev equations in
momentum space. The present authors have studied models
for low-temperature helium dimers and trimers based on ap-
proximations of the interatomic potentials byd functions[8].
Within these models, we have obtained exact solutions of the
Schrödinger equation for both4He2 and 4He3. In this paper
we will derive an explicit analytic account of the Efimov
effect.

II. HELIUM DIMER

For the dimer, the potential is idealized as a “Dirac bubble
potential.” Assuming a state of zero orbital angular momen-

tum, the relative motion of a pair of helium atoms can be
represented by

1

2m
F− c 9srd −

2

r
c8srd −

l

r0
d sr − r0dc srdG = Ec srd s1d

with E=−k2/2m. The reduced massm=M /2, where M
=7296.293 atomic units for the4He atom. Forr Þ r0, Eq. (1)
has solutionsc1srd=sinhskrd / r and c2srd=e−kr / r, finite for
r →0 and r →`, respectively. The complete wave function
must be continuous but kinked atr =r0, so that the first de-
rivative is discontinuous there. The second derivative will
then contribute a term to match thed function in the potential
energy operator. The(unnormalized) solution to Eq.(1) can
accordingly be written

csrd =
sinhskr,de−kr.

r
, hr,,r.j P hr,r0j. s2d

The boundary condition atr =r0 is satisfied by matching the
d sr −r0d contributions from the kinetic and potential ener-
gies. This leads to the relation

l0 = kr0f1 + cothskr0dg, s3d

which determines the ground state energy. Accurate compu-
tations by Gentry and co-workers[9] predicted a 4He2
ground-state energy of«=−1.310 mK. Energies in these
low-temperature species are most conveniently expressed in
millikelvins, with the conversion factor 1 mK=3.166 829
310−9 hartree. A deltafunction potential supports only a
singleJ=0 bound state, which makes it an appropriate model
for the actual4He2 dimer. The parametersl0 and r0 can be
adjusted to agree with the ground-state energy. In earlier
work, we found the best fit withl0=1.074 34,r0=13.15
bohr. A small readjustment of these parameters will optimize
agreement with the trimer as well.

A bound state for the dimer will exist only for values
l.1. The limiting casel=1 represents a zero-energy reso-
nance. Such a hypothetical state is of particular importance
in connection with the Efimov effect in the trimer. Fork
<0, Eq. (3) is approximated by*Electronic address: llohr@umich.edu, sblinder@umich.edu
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kr0 < l − 1 <
r0

a
, s4d

wherea<1/k is an estimate of the scattering length.
Our d function model is particularly fortuitous for study-

ing the Efimov effect since details of the short-range poten-
tial are largely irrelevant[10].

III. FADDEEV EQUATIONS FOR TRIMER

Generalizing thed function model to the4He3 trimer, we
will assume that the three particles interact through pairwise
d function potentials of the same form:

Vsr ijd = −
l0

Mr0
d sr ij − r0d. s5d

For compactness of notation, we write the three interatomic
separations asr1; r23,r2; r31,r3; r12. The three-particle ki-
netic energy operator, expressed in terms of the relative in-
teratomic coordinates, is given byT=T0/M with

T0 = −
]2

] r1
2 −

2

r1

]

] r1
+

r3
2 − r1

2 − r2
2

4r1r2

]2

] r1 ] r2

+
r2

2 − r3
2 − r1

2

4r1r3

]2

] r1 ] r3
+ scyclic permutationsd. s6d

With a potential energy consisting entirely of pairwise
interactions, it is most convenient to use Faddeev’s method.
The Faddeev equations for this system can be written

sT − Edca + Vasr1dC = 0,

sT − Edcb + Vbsr2dC = 0,

sT − Edcc + Vcsr3dC = 0. s7d

These three equations add up to give the three-particle
Schrödinger equation

sH − EdC = 0 s8d

with

H = T + Va + Vb + Vc, C = ca + cb + cc. s9d

For the homonuclear helium trimer, each Faddeev equation
(7) has the identical form

sT0 + k2dca −
l0

r0
d sr1 − r0dC = 0. s10d

The advantage of the Faddeev equation(10) over the full
Schrödinger equation(8) is that only a singled function
boundary condition need be considered. The functionca can
be associated with the channel in which atoms 2 and 3 form
a diatomic molecule, with atom 1 as a spectator.

Equation(10) is separable in the hyperspherical coordi-
natesR,a1,b1. The hyperradius is defined by

R;Î2r1
2 + 2r2

2 + 2r3
2

3
, s11d

while

a1 ; arcsinsr1/Rd, 0 ø a1 ø p/2 s12d

and b1 is the angle between the Jacobi vectorsr 3−r 2 and
r 1− 1

2sr 3+r 2d. As we will show, an exact analytic solution to
the Faddeev equations can be obtained with a separable func-
tion

casR,a1,b1d = fsRdfsa1dPLscosb1d, s13d

where PLscosb1d is a Legendre polynomial. The quantum
numberL represents the internal angular momentum of atom
1 about the diatomic fragment 2-3.

For the helium trimer, the ground state and the Efimov
states all have total rotational angular momenta of zero. This
does not preclude contributions fromL.0 terms in a hyper-
spherical partial-wave expansion. For thed function model,
however, exact solutions exist with just theS partial-wave,
L=0. This is possible because of the wayd function factors
simplify the right-hand sides of the Faddeev equations. The
implication is that, in addition to the 2-3 diatomic being in an
S state, the orbit of atom 1 about the diatomic fragment is
also spherically symmetrical. Indeed solutions involving
higher partial waves do exist, but these almost certainly rep-
resent excited states of the model.(For more realistic poten-
tials, higher partial waves have been found to make small but
nonvanishing contributions to the ground state.)

With L=0, PLscosb1d=1, and the requisite solutions to
the Faddeev equations become separable functions of justR
and a1. For r1Þ r0, the Faddeev equation(10) describes a
free-particle state:

sT0 + k2dfsRdfsa1d = 0. s14d

The other two Faddeev component equations are analogous,
with a1 replaced bya2 and a3, respectively. Equation(14)
reduces to two ordinary differential equations

f 9sRd +
5

R
f8sRd +

s2 + 4

R2 fsRd = k2fsRd s15d

and

f9sad + 4 cots2adf8sad − ss2 + 4df8sad = 0, s16d

wheres2+4 is a convenient separation constant. Integration
over the domain ofR anda involves the differential element
R5sins2addRda.

Solutions to Eq.(15), for real s, involve modified Bessel
functions of imaginary order,KisskRd and I isskRd. These are
oscillatory functions with exponentially increasing frequency
askR→0. The solutionfsRd=R−2KisskRd is a real function,
well-behaved at bothR→0 andR→`. The second solution
R−2I isskRd is well behaved only for 0øR&R0.
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Equation(16) has solutionsfsad=cscs2adsinhssad finite
at a=0 andfsad=cscs2adsinhfssp /2−adg finite at a=p /2.
A continuous solutionca to the Faddeev equation(17), with
the requisite kink atr1=r0, can thus be constructed as fol-
lows:

ca = R−2I isskR,dKisskR.dcscs2ad

3 sinhssa,dsinhFsSp

2
− a.DG , s17d

wherea=arcsinsr1/Rd, a0=arcsinsr0/Rd andR0=Î2 r0.
The solution to the Faddeev equation is obtained by

matching thed function contributions from the kinetic- and
potential-energy operators.After evaluating the derivatives,
we set r1=r2=r3=r0, which represents the instantaneous
equilateral-triangle configuration of the trimer, with hyperra-
dius R0.

IV. TRIMER GROUND STATE

Efimov [1] concluded that the trimer has not only an in-
finite number states with real values of the parameters, but
also a single deep bound state with a pure imaginary value of
s. We will show that the appropriate value for the latter state
is s=−1

2 i. The Faddeev componentca in Eq. (17) can be
reduced to

ca = R−3sinhskR,de−kR.cscs2adsinSa,

2
DsinSp

4
−

a.

2
D ,

s18d

making use of the simple analytic forms forI1/2sxd and
K1/2sxd in terms of spherical Bessel functions. By virtue of
the d -function-bubble potential, each pair of helium atoms
has zero interaction energy whenr ij , r0. Thus the dimer can
hypothetically be obtained from the trimer simply by merg-
ing two of the helium atoms(do not try this with a more
realistic potential function). This is accomplished by setting
r1=r2=r and r3=0. Correspondingly, we haveR=2r /Î3,
R0=2r0/Î3 and a=a0=p /4. The trimer function then re-
duces to the form

casrd = r−3sinhskr,de−kr. s19d

identical to Eq.(2), apart from a factor ofr from the change
in coordinate system. Because all interatomic potentials van-
ish whenr ij =0 for our delta-shell model, the three-body sin-
gularity (“Thomas collapse”) is avoided.

Using Eq.(18) in the Faddeev equation(10), we find, for
the ground state of the trimer,

l0 =
1

3
cotSp

8
D +

1

9
kR0e

kR0cschskR0d. s20d

The parametersl0 and r0 can be fitted to the accurately-
calculated energies of the dimer and trimer ground states:
«dimer=−1.31 mK and«0

trimer<−130 mK. Energy on the mil-
likelvin scale is given by«=−3.15773108 k2/M mK. The
values consistent with Eqs.(3) and (20) are l0
=1.080 44,r0=14.2486 bohr. In agreement with Efimov, we

find no other bound states with imaginary values ofs. As we
shall show in the following section, real values ofs give the
Efimov states.

The Thomas effect also follows easily from Eq.(20). Tho-
mas[11] showed that as therange r0 of the two-body poten-
tial is decreased, the three-body binding energy can become
very large. Sincel0 determines the quantitykR0 and k is
proportional toÎ−«, it follows that«=−const/r0

2 and thus its
magnitude increases without limit asr0→0. Thomas was
able to estimate the range of nuclear forces by relating the
energies of two- and three-nucleon systems.

V. EFIMOV STATES

For real values of the parameters, the Bessel function
KisskRd is an acceptable solution to the hyperradial equation
(15) over the entire range ofR. The discontinuous derivative
necessary to produce a deltafunction can be obtained from
the dependence ona alone, such that

ca = R−2KisskRdcscs2adsinhssa,dsinhFsSp

2
− a.DG .

s21d

Solution of the Faddeev equation fulfilling the deltafunction
boundary condition can be obtained with

l =
2

3
s cothSsp

4
D s22d

and

KisskR0d = 0. s23d

We are no longer restrictingl to l0, its optimal value in
4He3, in order to demonstrate the most general aspects of the
Efimov effect. Using the trimer parametersl0 and r0 deter-
mined above, Eq.(22) gives s0=1.184. The lowest energy
root of Eq.(23) corresponds then to the first excited state of
the trimer with«1=−1.34 mK, of the right general magnitude
and below the dimer energy of −1.31 mK.

Equation(23) has an infinite number of roots. For values
of lø1, these correspond, in principle, to trimer energy lev-
els which arenot absorbed into the dimer+monomer con-
tinuum. These can be quite accurately determined from the
x→0 asymptotic form of the Bessel function

Kissxd <
Gs− isd

2
S x

2
Dis

+
Gsisd

2
S x

2
D−is

. s24d

The recursive relationkn+1=kn e−p/s is implied for the roots
xn=knR0 of Eq. (23). This leads to Efimov’s exponential se-
quence of energy levels

«n+1 = «ne
−2p/s, n = 1,2,3 . . . , s25d

with a point of accumulation at«=0 asn→`.
In representing the trimer ground state,is= 1

2 is assumed
only for lù1, so the hypothetical alchemy to a bound dimer
described above can be carried out. Forl,1, the parameter
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is is chosen to minimize the energy. In accordance with Eq.
(20), the parameteris decreases from1

2 to 0 asl is reduced
to 8/3p<0.8488.

VI. SUMMARY OF RESULTS

Figure 1 represents the dependence of dimer and trimer
energies as functions ofl. This is a quantitative version,
based on our deltafunction model, of the schematic energy
diagrams given in Efimov’s papers. Asl is increased to ap-
proximately 0.8488, an infinite number of trimer bound

states«0,«1,«2. . . condense out of the continuum. According
to Eq. (25), the energy levels are exponentially spaced, with
a point of accumulation at«=0. This is the essence of the
famous “Efimov effect.” These bound levels persist up tol
=1, which corresponds to the zero-energy resonance of the
dimer. It is unlikely that more than two or three Efimov
levels are experimentally accessible, since higher levels in-
volve energies in the nanokelvin range. Asl is further in-
creased above 1, the discrete states are successively absorbed
into the continuum—the shaded region in Fig. 1—as the tri-
mer fragments into a dimer+monomer. The model is consis-
tent with the survival of just two bound states at the empiri-
cal value ofl0.

For l slightly greater than 1, the highest bound state«N
must have an energy comparable to that of the dimer for the
same value ofl. Equation(4) implies, to logarithmic accu-
racy, that

ln«N < lnsl − 1d < lnS r0

a
D , s26d

so that the number of Efimov levels is approximated by

N <
s

p
lnS a

r0
D , s27d

wherea/ r0 is the ratio of the scattering length to the range of
the interatomic potential.

Our model for the Efimov effect agrees with results de-
duced by other workers using more realistic potentials. See,
for example, the detailed studies of three-body systems with
short range interactions by Federov, Jensen and co-workers
[12,13]. Efimov states are exhibited in the limiting behavior
of real resonant systems. By contrast, our results follow from
exactsolutions for an idealized model of the trimer.
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FIG. 1. Quantitative version of Efimov diagram based on thed
function potential. The energy levels of the helium dimer and trimer
are plotted as functions of the pairwise interaction strength. The
shaded region represents the dimer1monomer continuum. Note the
logarithmic energy scale. For 0.8488&lø1, there is an infinite
number of bound Efimov states, with a point of accumulation at«
=0.
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