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Following two illustrative examples, a quite general form for the functional derivative of the Dirac density
matrix gsr 1,r 2d with respect to the electron densityrsr d is proposed. In turn, this functional derivative is
related to a further three-point object, which reduces to the linear response functionx0sr 1,r d whenr 2 tends to
r 1. The main application is then to derive the exchange-only potential of density functional theory. To avoid
heavy numerical work in molecules and clusters, an approximation is suggested, with major calculational
simplifications as a probable consequence.
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Considerable current interest is being shown in the first-
principles treatment of the exchange-only potentialVxsr d of
density functional theory(DFT). Thus, the work of Della
Sala and Görling[1–3], that of the present writers[4], and
numerical calculations on atomic ions[5] using the opti-
mized effective potential(OEP) of Talman and Shadwick[6]
may be cited in the above context. In this Brief Report, we
shall take as the starting point the Dirac exchange energy
[7]—Ex, say—in terms of the idempotent Dirac density ma-
trix gsr ,r 8d. Dirac’s result is

Ex = −
e2

4
E gsr 1,r 2d2

ur 1 − r 2u
dr 1dr 2. s1d

To gain insight into what follows, let us first consider a two-
electron spin-compensated system—say, He or H2—in its
ground state with electron densityrsr d.

Then the Dirac density matrix takes the elementary form

gsr 1,r 2d = rsr 1d1/2rsr 2d1/2, s2d

and we can immediately functionally differentiate to obtain a
prime focus of this article: namely, the functional deriva-
tive dgsr 1,r 2d /drsr d. The result following by an elementary
calculation from Eq.(2) is

dgsr 1,r 2d
drsr d

=
1

2
Hrsr 2d

rsr 1dJ1/2

dsr 1 − r d +
1

2
Hrsr 1d

rsr 2dJ1/2

dsr 2 − r d.

s3d

If we construct from Eq.(1) the exchange potentialVxsr d
as the functional derivative ofEx [8]—namely,

Vxsr d =
dEx

drsr d
, s4d

then we find

Vxsr d = −
e2

2
E gsr 1,r 2d

ur 1 − r 2u
dgsr 1,r 2d

drsr d
dr 1dr 2. s5d

As a first, and elementary, application of this result(5), we
insert the two-electron result(3) to find

Vxsr d = −
e2

4
E gsr ,r 2d

ur − r 2u Hrsr 2d
rsr d J1/2

dr 2

−
e2

4
E gsr 1,r d

ur − r 1u Hrsr 1d
rsr d J1/2

dr 1. s6d

Using againg from Eq. (2) we find, almost immediately,

Vxsr d = −
e2

4
E rsr 2d

ur − r 2u
dr 2 −

e2

4
E rsr 1d

ur − r 1u
dr 1 = −

1

2
Velsr d.

s7d

A special case of this result is already given for the two-
electron Hookean atom by Kaiset al. [9], who, however,
bypassed the functional derivative route emphasized here.

Turning to our second example—the Be atom or theH2
dimer—we follow Dawson and March[10] in writing
gsr 1,r 2d in terms of the density amplituder1/2 again, but
now including the phaseusr d, which yields, for the density
matrix,

gsr 1,r 2d = rsr 1d1/2rsr 2d1/2cosfusr 1d − usr 2dg. s8d

Employing the equation of motion for the density matrix, it
readily follows that the force −]V/]r corresponding to the
one-body potentialVsrd is related togsr ,r 8d by

]V

]r
=

]

]r
F¹r

2g − ¹r8
2 g

2g
G = − 2u8u9 − F2

r
+

r8

r
Gu82 +

r-
4r

+
r9

2rr
−

r8r9

2r2 −
r8

2r2r
−

r82

2rr2 +
r83

4r3 s9d

or

]V

]r
= −

]

]r
F dTW

drsrdG +
]VD

]r
, s10d

whereTW is the von Weizsäcker[11] inhomogeneity kinetic
energyes¹rd2/ s8rddr andVD is the “correction” to the po-
tential contribution −dTW/drsrd. Then it follows from Eqs.
(9) and (10) that
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]VD

]r
= − 2u8u9 − F2

r
+

r8

r
Gu82. s11d

But following Dawson and March[10] one has the pendulum
equation relating densityr and phaseu:

u9 +
sr2rd8
r2r

u8 = 2j sins2ud, s12d

wherej=se1−e2d /2, with e1 ande2 the 1s and 2s eigenval-
ues generated byVsrd. Integration of Eq.(11) and use of the
pendulum equation(12) plus its first derivative, then yields

VDsrd = −
u82

2
+

u-
4u8

+
u9

4u8
S2

r
+

r8

r
D −

1

4
F 2

r2 −
r9

r
+

sr8d2

r2 G .

s13d

We note that the above allows an exact functional differen-
tiation of the single-particle kinetic energy, sinceV
=−dTs/drsrd to within an additive constant.

In connection with the study of Kleinman[12] on Slater’s
nonlocal potential[13]—namely,

Vx
Slsr d = −

e2

2rsr d
E gsr ,r 2d2

ur − r 2u
dr 2, s14d

Holas and March[14] derived the exchange potential in
terms ofrsr d andusr d, their result correcting the Slater po-
tential by a term

Vxsr d − Vx
Slsr d = Ffusr dg, s15d

without functional derivatives entering, which parallels the
above example of functional differentiation ofTsfrg for
Exfrg. For the two-level atomic ion with atomic numberZ,
we may write

Vx = V +
Z

r
− Ves, s16d

where the electrostatic potentialVes is given by

Ves= −Er Qsr8d
r82 dr8:Qsrd = 4pE

0

r

r2rsrddr, s17d

so that the exchange potential may be determined as

srVxd8 =
]

] r
FrSVD −

dTW

dr
DG +

]

] r
FrEr Qsr8d

r82 dr8G .

s18d

Note, however, that we have here bypassed the functional
derivatives(4) and (5) by appealing directly to Eqs.(8) and
(9), a procedure so far carried out only for a two-level atomic
ion. We shall return, albeit briefly, to the two-level example
based on the density matrix(8) below.

To obtain a general formula for the functional derivatives
in Eqs. (4) and (5), following the above specific examples,
we next appeal to the exchange potential derived by Shagin-
yan[15]. His starting point is an alternative to the Dirac form

of Ex, given for example by Pines and Nozieres[16]. Their
result involves the frequency-dependent linear response
function x0sr 1,r 2,vd and reads

Ex = −
1

2
E fImx0sr 1,r 2,vd + prsr 1ddsr 1 − r 2ddsvdg

3
e2

ur 1 − r 2u
dr 1dr 2

dv

p
. s19d

Whereas it is natural from Eq.(1), but not of course unique,
to define an exchange energy densityexsr d as the negative
definite quantity

exsr d = −
e2

4
E gsr ,r 8d2

ur − r 8u
dr 8, s20d

a possible definition from Eq.(19) would be

ex
Shsr d = −

1

2
E fImx0sr ,r 2,vd + prsr ddsr − r 2ddsvdg

3
e2

ur − r 2u
dr 2

dv

p
. s21d

It is then clear thatex
Shsr d following from the expression of

Shaginyan[15] taken as starting point can differ from the
definition of exsr d in Eq. (20) only by a function—say,
Dsr d=exsr d−ex

Shsr d—which satisfies

E Dsr ddr = 0, s22d

since Eqs.(20) and (21) are both constructed to yield, by
volume integration, the same total exchange energyEx. The
Slater potential given in Eq.(14) is equivalently written us-
ing Eq. (20) as

Vx
Slsr d =

2exsr d
rsr d

, s23d

or as

Vx
Slsr d =

2ex
Shsr d

rsr d
+

2Dsr d
rsr d

. s24d

While Vx
Slsr d given by Eq.(23) is clearly finite everywhere, it

may be that singularities appear in the two pieces separately
in Eq. (24), though then these must of course cancel in the
sum. The merit of Eq.(21) is, as shown by Shaginyan[15],
that the functional differentiation involved in Eq.(4) can be
carried out using Eq.(21).

Let us then return to the functional derivative
dgsr 1,r 2d /drsr d focused on earlier in Eqs.(3) and (5). We
can extract a proposed form for this from Eq.(9) of the study
of Shaginyan[15]. This may be expressed as

BRIEF REPORTS PHYSICAL REVIEW A69, 064101(2004)

064101-2



dgsr 1,r 2d
drsr d

=E dr 8x0
−1sr ,r 8do

i

ffisr 8dwi
*sr 1dGsr 2,r 8,eid

+ fi
*sr 8dfisr 1dG * sr 2,r 8,eidg

=E dr 8x0
−1sr ,r 8dFsr 8,r 1,r 2d, s25d

wherefisr d andei denote Kohn-Sham orbitals and eigenval-
ues whileG is the single-particle Green function defined by
Gsr ,r 8d=ofisr dfi

*sr 8d / se−ei + idd [15]. Together with Eq.
(5), this equation(25) is one of the central results of this
Brief Report. A further important result follows almost im-
mediately from the definition of the functionFsr 8 ,r 1,r 2d in
Eq. (25). Taking the limit r 2→ r 1, it is easy to show thatF
has the attractive property that

Fsr 8,r 1,r 2dr 2=r 1
= x0sr 8,r 1d, s26d

where we recall thatx0 is the linear response function. This
is especially significant because(a) x0

−1sr ,r 8d also enters Eq.
(25) and (b) one has the property[15]

E dr 8x0
−1sr ,r 8ddr 8x0sr 8,r 1d = dsr − r 1d. s27d

These results(25)–(27) lead us to what seems a natural
enough step: namely, to the approximate factorization em-
bodied by writing

Fsr 8,r 1,r 2d = x0sr 8,r 1dfsr 1,r 2d, s28d

where

fsr 1,r 1d = 1. s29d

Inserting Eq.(28) into Eq. (25) allows integration overr 8 to
be accomplished using Eq.(27) to yield

dgsr 1,r 2d
drsr d

= dsr − r 1dfsr 1,r 2d. s30d

However, there exists one defect of the factorization(28). If
one takes the functional derivative of the Dirac density ma-
trix with respect to the density on both sides of the idempo-
tency identity, everything is of course valid still if one uses
the exact result(25). In contrast, if one employs Eq.(30), the
precise identity is sacrificed. Notwithstanding this, though
fsr 1,r 2d should eventually be chosen to minimize departures
from idempotency requirements, we deem it still worthwhile,
motivated by the first example, particularly in Eq.(3), to
“symmetrize” Eq.(30) to propose the following form for the
approximate functional derivative:

dgsr 1,r 2d
drsr d

=
1

2
dsr − r 1dfsr 1,r 2d +

1

2
dsr − r 2dfsr 2,r 1d.

s31d

It is tempting, from the two-electron example in Eq.(3), to
assume thatfsr 1,r 2d may be modelled in terms ofgsr 1,r 2d
andrsr 1d. Thus Eq.(3) is readily rewritten by employing Eq.
(2) as

dgsr 1,r 2d
drsr d

=
1

2

gsr 1,r 2d
rsr 1d

dsr 1 − r d +
1

2

gsr 2,r 1d
rsr 2d

dsr 2 − r d,

s32d

and evidently in this example therefore Eq.(31) corresponds
to the exact form(32) if fsr 1,r 2d=gsr 1,r 2d /rsr 1d.

In fact, this form offsr 1,r 2d leads back quite generally to
the Slater potentialVx

Slsr d in Eq. (14), which Kleinman has
stressed is a “partial” functional derivative ofEx in Eq. (1)
with respect torsr d. As Holas and March[14] point out, in
the two-level case one must include in the functional deriva-
tive of Eq. (1) the phase angleusr d, which then yields cal-
culable corrections to the Slater potential, which is, however,
already a very useful starting approximation forVxsrd for the
two-level case of the Be atom. A “correction” to the approxi-
mation fsr 1,r 2d,gsr 1,r 2d /rsr 1d which preserves Eq.(29)
and has the formlsNdur 1−r 2uVxsr 1dgsr 1,r 2d /rsr 1d suggests
itself; this can be shown to establish then approximate con-
tact with Refs.[1–4]. However,lsNd, with N the number of
occupied levels, would need to be found by some “least
squares” minimization of the departure from idempotency
requirements, but it would take us too far from our main
theme to go into further details along these lines.

In summary, the main results of this Brief Report are em-
bodied in Eq.(25) for the functional derivative of the Dirac
density matrixgsr 1,r 2d with respect to the electron density
rsr d and Eq.(5) for the exchange potential. The function
Fsr 8 ,r 1,r 2d thereby introduced reduces on the diagonalr 2

=r 1 to the linear response functionx0sr 8 ,r 1d, which is ap-
pealing since its inverse in the formx0

−1sr ,r 8d also enters Eq.
(25). Further work on the off-diagonal properties of the
three-point functionF may be instructive for the future, by
both analytical and numerical routes. It could be especially
important if useful approximations toF could be found
which involved only occupied Kohn-Sham orbitals in con-
trast to the present form defined in Eq.(25).
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