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Exchange potential via functional differentiation of the Dirac idempotent density matrix
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Following two illustrative examples, a quite general form for the functional derivative of the Dirac density
matrix y(rq,r,) with respect to the electron densipfr) is proposed. In turn, this functional derivative is
related to a further three-point object, which reduces to the linear response fuggtioir) whenr, tends to
r1. The main application is then to derive the exchange-only potential of density functional theory. To avoid
heavy numerical work in molecules and clusters, an approximation is suggested, with major calculational
simplifications as a probable consequence.
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Considerable current interest is being shown in the first- eZ y(r,ry) p(r2 12
principles treatment of the exchange-only potentiglr) of V(1) = f = 2
density functional theoryDFT). Thus, the work of Della 2
Sala and Goérling1-3], that of the present writerg!], and ezf ra,r) P(fl 1/2d 5
numerical calculations on atomic iorf§] using the opti- Ir=r4 1 6)

mized effective potentiglOEP) of Talman and Shadwicf6]
may be cited in the above context. In this Brief Report, weUsing againy from Eqg.(2) we find, almost immediately,
shall take as the starting point the Dirac exchange energy

[71—E,, say—in terms of the idempotent Dirac density ma- ;- _ e_zf p(rz) €& f P(rl) = 1 )
trix y(r,r’). Dirac’s result is Ir - r2| Ir - ¢
|f1‘f2| radre: A special case of this result is already given for the two-

electron Hookean atom by Kamst al. [9], who, however,
bypassed the functional derivative route emphasized here.
Turning to our second example—the Be atom or the
dimer—we follow Dawson and March10] in writing
Y(rq,r,) in terms of the density amplitudg'/? again, but

To gain insight into what follows, let us first consider a two-
electron spin-compensated system—say, He e its
ground state with electron densigyr).

Then the Dirac density matrix takes the elementary form

Iy, 5) = p(r ) 20(r )2 ) now including the phasé(r), which yields, for the density
' ’ matrix,
and we can immediately functionally differentiate to obtain a s "
prime focus of this article: namely, the functional deriva- 1) = p(r) = “p(ry)~“cog o(ry) — 6(ry)]. (8)

tive 5y(rq,r,)/ 8p(r). The result following by an elementary

calculation from Eq(2) is Employing the equation of motion for the density matrix, it

readily follows that the force &V/dr corresponding to the
Syryry) 1) p(ry) 172 1] p(ry) | M2 one-body potentiaV/(r) is related toy(r,r’) by
=5 Ary=r+7 8rp=r)

op(r) p(ry) p(ry) 2 2
V 'y—v ,'y ’ "
o ﬂzz[r_r}z-w-[;p_}w_
p

a or 2y
If we construct from Eq(1) the exchange potential,(r) . . , ' '3
as the functional derivative d&, [8]—namely, P PP _P P P (9)
2rp 202 2r%p  2rp?  4p°

OE,
Vi(r) = 3o(r)’ 4 or

then we find ﬂ/:__{ NW}Jr‘?_VA (10)

ar Sp(r) ar’
ra,rp) 5’)’(r1:rz)d d 5 ) ] _ S
Iri—ro p(r) r,dra. ®) whereT,y, is the von Weizsackedill] inhomogeneity kinetic
energy [(Vp)?/(8p)dr andV, is the “correction” to the po-
As a first, and elementary, application of this regél), we  tential contribution 9Ty/ 8p(r). Then it follows from Egs.
insert the two-electron resul8) to find (9) and(10) that

eZ
Vi(r)=-—
(==
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o " of E,, given for example by Pines and Noziefd$]. Their
20'¢" - o+ " 6. (11 result involves the frequency-dependent linear response
function xo(r4,r», ) and reads

Ny _
o

But following Dawson and MarcfiL0] one has the pendulum

equation relating density and phases: 1

5 Ex:_EJ['mXo(rer,w)+7Tp(r1)5(r1_r2)5(w)]

r !

+ %0’ = 2¢sin(20), (12) 2
r p dw

whereé=(e;—¢€,)/2, with €; and e, the 1s and X eigenval- 12 7

ues generated by(r). Integration of Eq(11) and use of the

pendulum equatiol?) plus its first derivative, then yields Whereas it is natural from EqL), but not of course unique,

to define an exchange energy densifyr) as the negative

92 g ¢ (2 o\ 12 o "2 definite quantity
VA(r)———+—+—(—+p—>——{—z—p—+%].
2 40 46 p 41 rc p p
(13) «N=-7 j = (20)
We note that the above allows an exact functional differen-
tiation of the single-particle kinetic energy, sincé  a possible definition from Eq19) would be
=-8T,/ 8p(r) to within an additive constant.
In connection with the study of Kleinmdi2] on Slater’s s 1
nonlocal potentia[13]—namely, &)=~ 5 | IMxo(r.ra,@) + mp(r) or - 1) d(w)]
&€ [ Arr? € | do
Vi) =—-—— | =—2dr,, (14) dr,—. 21
A0 ) = " 0

Holas and March[14] derived the exchange potential in
terms ofp(r) and 6(r), their result correcting the Slater po-
tential by a term

It is then clear thatsff(r) following from the expression of
Shaginyan[15] taken as starting point can differ from the
definition of €(r) in Eq. (20) only by a function—say,

V,(r) - Vf'(r) =F[o(n)], (15) A(r):ex(r)—efr(r)—which satisfies
without functional derivatives entering, which parallels the
above example of functional differentiation GfJp] for fA(r)dr = (22)

E,[p]. For the two-level atomic ion with atomic numbzr

we may write since EQs.(20) and (21) are both constructed to yield, by

z volume integration, the same total exchange en&gyrhe
V,=V+— =V (16)  Slater potential given in Eq14) is equivalently written us-
r ing Eq.(20) as
where the electrostatic potentil is given by
2¢,(r)

r Va(r) = , 23
JQ(,Z dr’:Q(r) 477J r’p(r)dr, (17 ") p(r) 23
0
so that the exchange potential may be determined as oras
=9 _STw Q(r’ Sy 2 250 | 2A(0) 04
(" _&rHVA p” 6r{f r'? } “O0= 70 0 (24

(18) While Vf'(r) given by Eq.(23) is clearly finite everywhere, it
Note, however, that we have here bypassed the functionanay be that singularities appear in the two pieces separately
derivatives(4) and(5) by appealing directly to Eqg8) and  in Eq. (24), though then these must of course cancel in the
(9), a procedure so far carried out only for a two-level atomicsum. The merit of Eq(21) is, as shown by Shaginydi5],
ion. We shall return, albeit briefly, to the two-level example that the functional differentiation involved in E¢}) can be
based on the density matri8) below. carried out using Eqi21).

To obtain a general formula for the functional derivatives Let us then return to the functional derivative

in Egs. (4) and (5), following the above specific examples, 6y(r1,r2)/8,(r) focused on earlier in Eqg3) and (5). We
we next appeal to the exchange potential derived by Shagirean extract a proposed form for this from E§) of the study
yan[15]. His starting point is an alternative to the Dirac form of Shaginyan15]. This may be expressed as

064101-2



BRIEF REPORTS

oy(ry,rp) _

3p(r) fdr'XBl(f'f’)g[¢i(r’)<pi*(r1)e(r2,r',ei)

+ (1 (r)G* (rar',€)]

=fdr’Xgl(r,r’)F(r’,rl,rz), (25)
where ¢;(r) ande; denote Kohn-Sham orbitals and eigenval-
ues whileG is the single-particle Green function defined by
G(r,r")=3S¢(r) ¢ (r')/ (e-€+id) [15]. Together with Eq.
(5), this equation(25) is one of the central results of this
Brief Report. A further important result follows almost im-
mediately from the definition of the functioR(r’,rq,r,) in
Eq. (25). Taking the limitr,—r4, it is easy to show thaf
has the attractive property that
F(r'.r,r2e=r, = xo(r',r), (26)

where we recall thak, is the linear response function. This
is especially significant becau&s x,(r,r’) also enters Eq.
(25) and(b) one has the propertji 5]

f dr’ xgH(r,r)dr’ xo(r',ry) = 8(r =ry). (27)

These resultg25)<27) lead us to what seems a natural
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CSo(r) (‘)Ep(lr;Z)__Z&r—rj)l(rl,rz) 25(| 2)|(I’2,r1)-

It is tempting, from the two-electron example in E§), to
assume thaf(r,r,) may be modelled in terms of(r,r»)
andp(r;). Thus Eq(3) is readily rewritten by employing Eq.
(2) as

oy(ry,rp) _ 1pry,ry)
p(r) 2 p(ry

1y(rary)
2 p(ry)

ory-r)+ Aro—r),

(32

and evidently in this example therefore E§1) corresponds
to the exact form(32) if f(rq,ro)=y(rq1,ro)/p(ry).

In fact, this form off(r,r,) leads back quite generally to
the Slater potentiaV/$\(r) in Eq. (14), which Kleinman has
stressed is a “partial” functional derivative Bf in Eq. (1)
with respect top(r). As Holas and March14] point out, in
the two-level case one must include in the functional deriva-
tive of Eq. (1) the phase anglé(r), which then yields cal-
culable corrections to the Slater potential, which is, however,
already a very useful starting approximation ¥4(r) for the
two-level case of the Be atom. A “correction” to the approxi-

enough step: namely, to the approximate factorization emmation f(ry,ra)~¥(ry,r)/p(r;y) which preserves Eq(29)

bodied by writing
F(rrvrl!rZ):XO(rlarl)f(rlarZ)v (28)
where
f(rq,rqy) =1. (29)

Inserting Eq.(28) into Eq.(25) allows integration over’ to
be accomplished using EQ7) to yield

oy(r,rp)
op(r)

However, there exists one defect of the factorizati@®). If

=8(r —rf(rqy,ry). (30)

and has the form\(N)|r;—=r,|V,(r1)¢1(ry,r,)/p(r,) suggests
itself; this can be shown to establish then approximate con-
tact with Refs[1-4]. However,\(N), with N the number of
occupied levels, would need to be found by some “least
squares” minimization of the departure from idempotency
requirements, but it would take us too far from our main
theme to go into further details along these lines.

In summary, the main results of this Brief Report are em-
bodied in Eq.(25) for the functional derivative of the Dirac
density matrixy(rq,r,) with respect to the electron density
p(r) and Eq.(5) for the exchange potential. The function
F(r’,rq,r,) thereby introduced reduces on the diagonal
=r, to the linear response functigg(r’,r4), which is ap-

one takes the functional derivative of the Dirac density Mapealing since its inverse in the forml(r ,r') also enters Eq.

trix with respect to the density on both sides of the idempo
tency identity, everything is of course valid still
the exact resul25). In contrast, if one employs E¢30), the

precise identity is sacrificed. Notwithstanding this, though

(25). Further work on the off-diagonal properties of the

if One USes ihree_noint functiorF may be instructive for the future, by

both analytical and numerical routes. It could be especially
important if useful approximations t& could be found

f(ry,r) should eventually be chosen to minimize departures,hich involved only occupied Kohn-Sham orbitals in con-

from idempotency requirements, we deem it still worthwhile,

motivated by the first example, particularly in E@), to
“symmetrize” Eq.(30) to propose the following form for the
approximate functional derivative:

trast to the present form defined in Eg5).
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