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Quantum-trajectory analysis of an optical Stern-Gerlach experiment
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We present a Monte Carlo simulation of a typical cavity-QED experiment on the optical Stern-Gerlach effect
in terms of the quantum trajectory method. We show that the phenomenon of wave packet splitting may be
experimentally observed even in a moderate coupling regime where the atomic and cavity damping rates are
comparable to the atom-field coupling strength.
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[. INTRODUCTION the OSGE as coherent processes dealing with ideal lossless
systems, mostly in the linear regime, we explored the role of
The mechanical interaction of light and matter has beertlecoherent processes in the OSGE, particularly in the non-
comprehensively studied since the pioneering work oflinear regime, which may be significant in the optical fre-
Kapitza and Dirac in 19381]. Much work has been done on duencies. For systems free of damping, decent analytic treat-
atomic beam deflection, diffraction, refraction, or interfer- ments may be available, but when the system is open to its
ence[2-8| by a standing-wave field, classical or quantized,environment so that the coherent dynamical evolution of the

and the recent achievement of optical cooling and trapping ofYStem is frequently interrupted by discontinuous processes
neutral atomg9] using the light pressure force may be said SUCh as atomic spontaneous decays or cavity emissions, etc.,

to have a root in these themes. On the other hand. there wef@@lYtic approaches may not be always possible. There are a

great experimental advances recently in the field of con—number of theoretical methods to deal with such open quan-

. ) . ¥ i ) . tum systems, but we resorted to the quantum trajectory

Hoeq single-atom or single-ion and few-photon INeractioNSyyeory (QTT) [26] with our 16-node PC clust¢CPU clock

9 puc L ' : eed 2.4 GHz/nogeAlong with the numerical work, we
One of the interesting issues that came up in the theme

i : 4 T X nalyzed as well the effect of damping in the dynamics of
atom-field mechanical interaction is the so-called Opt'calatomic wave packets in the quantum-trajectory point of view.
Stern-_GerIach effeo(tOSG.B. [13,_16]: It has begn explored In Sec. Il, we first provide our simple anad intuitive illus-
at various levels of sophistication since the mid-1970s wheg4tion [27] on the OSGE, based on the dressed-state picture
it was suggested that the trajectory of a two-state atom inter[Qg], and in Sec. Ill, we discuss the effect olf damping in the
aCting with an Optical field gradient can be Spllt into two |anguage of QTT In Sec. IV, we perform a numerical simu-
paths, each path containing atoms in one of the two orthoggation of a typical experiment one can practically set up.
nal dressed states, under certain circumstaficgsit is thus  Section V summarizes this work.
an optical analogy of the well-known magnetic Stern-

Gerlach effectMSGE) [17] in which the trajectory of a spin-

% particle is split into two paths in a magnetic field gradient. Il. OPTICAL STERN-GERLACH EFFECT
The OSGE was experimentally demonstrated in 1992 by . -
Sleator and others in the near-infrarél~1 um) with A. Wave packet “pulsation

metastable helium atom#ie*) [16]. The experimental re- Consid imol del i hich a G .
sult seems to be in agreement with semiclassical theories onsider a simple model In which a f>aussian wave
[13-185, but later it was also pointed out that the OSGE maypacket of a two-state atom |_n|t|aIIy in its _ground state is
show some additional peculiarities, sensitively depending orﬁ’la.‘ced on a node (.)f a standing-wave cawfcy, on the cgwty
the quantum nature of the fie[d8]. Not only incorporating axis, as illustrated in Fig. 1. In order to quickly appreciate
the quantum nature of light and the atomic center-of-mass

motion in the picture, recent works also take into consider- e

ation the finite spatial extent of the atomic wave packet T
[19-21, rather than treating an atom as a point ma&$or a ‘s}_}g

plane wave[13,14 in space. Referencg22,23 deal with
the OSGE on resonance with quantized light field, whereas
the Refs[24,2] treat the case of off resonance although the
wave packet is limited to quadratic and linear sections of the
optical potential. Particularly, the first reference[19] pre-
sents quite an elegant operator method in such a full FIG. 1. The model. The Gaussian wave packet of a two-state
quantum-physical description of the OSGE. atom initially in its ground state is placed on a node of a standing-
Noting, however, that the theories originally envisagedwave cavity, on the cavity axis.
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the essential physics, let us assume that the cavity field is
initially in a single-quantum Fock state, and the atom and
cavity are on resonance. We will neglect damping for the
time being. The interaction Hamiltonian is then simply writ-
ten as

D

H:p—2+iﬁg(x)(cr al-o.a) (1)
2M ) *’

wherep is the atomic momentum operator conjugate to the —
positionx on the cavity axisM the atomic mass, ang(x)
the atom-field coupling strength at positigrsuch that

ko,

g(x) = go Sinkx, (2

go being a constant arkithe field wave numbea' (a) is the (a)
creation(annihilation operator for the field, and,=|e)g|
=(o_)" is the atomic excitation operator, with(g) labeling

the atomic excitedground state.

We will focus only on a spatially well-localized wave
packet such that its initial widthx is much smaller than the
wavelengthA of the cavity field. We chooséx=\/40mr
which corresponds to the width in momentum spate,
=10ik [29]. Due to the finite spatial extent of the wave
packet, the atom-field coupling strength at the node is non-
zero, although very small compared to its peak vajgyeand -
the interaction slowly commences. Note that the initial effec- =
tive coupling strength is given by an overlap integral of the
mode function and the atomic spatial probability
distribution—i.e.,

e~
L e HS eSO

-

Gerr = f dxyp§(9|g(x)| (b)

% 1 FIG. 2. The evolution of an atomic wave packet placed on a
= f —_ node of the cavity field. The probability distributions in momentum
0 V2m(Ax)? space(a) and in coordinate spaa®). q=p/#k, £=x/\, and r=ggt.

5 For a typical atom withu=#k?/2Mgy~1.7X 107%. The atom is
exp[— —]90 sinkx dx initially in the ground state having a momentum spreguk- 104k
2(AX)2 while the field is prepared in a single-quantum Fock state. The inset
_/Ax is a lateral view of(b) into the time axis along with the céx
~ 2\’271.(_)90 curve.
A
~ 0.04,, ()

=kv,/2g, is the ratio of the Doppler shift by the single-
where (x) is the initial atomic wave packet and we put photon recoil to the single-photon Rabi frequency. Let us
sinkx~kx as Ax<<\. Thus the effective coupling strength take u=1.7x10* with M=100 a.u.,A=600 nm, andg,

would be only about 4% ofj initially. =200 MHz for a typical atom interacting with an optical
Let us first present our numerical results on the evolutiorfield in the strong coupling regime.
of the atomic wave packet in Figs(& and Zb). Precisely The figures show that the initial Gaussian packet evolves

speaking, the figures show the position and momentum dignto a double-peaked distribution and then back to its origi-
tributions which are nothing but the mod squares of the waveal shape, as time proceeds. The inset is a ground-level view
packet in the position and momentum representation, respeof the packet in the coordinate space along with theksos
tively. Details of the numerical work are given in Sec. Ill. curve, which clearly shows that the two split bumps make
Note that since the atomic makk field wave numbek, and  turns exactly at the neighboring nodes. Let us first note that
atom-field coupling constarmy, appear in the Hamiltonian at the two figures arenechanicallyconsistent in the following
the same time, one needs to specify these quantities somgense. Letr=ggt. In momentum space, the positiprof one
how, but the only system-dependent parameter is the dimerf the split peaks grows roughly linearly in time in the fash-
sionless factor u=%k?/2Mg,, which appears from the ion p(7)~ 0.9k until 7~ 100 and then bounces back to the
Schrédinger equation when we rescale time in unitggf original position. So the positior of a peak after one cycle
and the momentum inik. Note that u=k(fk/M)/2gy of motion in momentum space is roughly
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10040 E E_
X~ 2] Mdt ~(2.9% 103,u))\ =047 -0.5, (4)
0

8o

80

which is in a good agreement with Fig(. Although this
wave packet motion can be said to have essentially &
guantum-mechanical origin in the sense thatanishes iff
does, the motion conforms at the same time to classical me ,,
chanics. We will get back to this apparently trivial observa-
tion when we include damping in the system in Sec. Il and
will point out some interesting features in connection to this
issue.
Thus we have seen an exotic phenomenowafe packet  (a) N
pulsation on a nodeNotice that since the atom and cavity [+)
are on exact resonance, thera@net dipole forcg28] as it E «— . — E
is proportional to the atom-cavity detuning. So this phenom- :
enon does not seem to be explained in terms of the dipole v
force. For a quick comparison, Rdf30], for instance, dis- 1 N P 20
cusses the atomic dynamics in the large detuning limit. In E E v
this limit, the atom will stay essentially in its ground state all
the time, and consequently there will be no significant wave +)
packet dispersion. Thus the atomic motion can be well ap-%o
proximated to that of a classical oscillator moving iman-
zero dipole force field and is conceptually easy to under-
stand.
Note also that the analytic approaches suchl& based :
upon the linear approximation did not predict tpislsation (b) A N A N A
The descriptions are mostly limited to the wave packet split-
ting in an early stage of the atom-field interaction. If the FIG. 3. Spatial modulation of the dressed energfes1) and
atoms are let to leave the interaction region at some point ghotion of the dressed states starting from a n@jeand from an
time, the emerging wave packet will have a pair of distin-antinode(b). A andN, respectively, denote antinode and node.
guishably separated probability density peaks. This phenom-
enon of wave packet splitting is the very optical Stern-
Gerlach effect mentioned in the Introduction. In theright, resulting in the splitting of the packet into two pieces.
following, let us provide a simple intuitive account for the when the two split bumps of wave packets hit the turning
physical origin of the wave packet pulsation that we haveygints at the neighboring nodes, they return just like a pair
just seen, in the viewpoint of the dressed-state piclR&.  he of classical particles. This is the essential explanation as
) to why we have such a pulsation of the wave packet as in
B. Dressed-state picture, on resonance Figs. 4a) and 2b). We can do a very simple Newtonian
Dressed states are the eigenstates of the atom-cavity cormechanics here again. One of the two components of the
bined system which form a manifold of infinite hierarchy wave packet will receive from the energy slope a force of
called the Jaynes-Cummings ladder. Since only one quantusize F=7%kg, coskx. In the early stage of time where a linear
is in the system, we need only to consider up to the firsapproximation is validF ~ kg, and the peak will gain the
couplet such that momentum growing ap~ #ikr initially. But the overall be-
havior is rather close to our eye estimationpdf) ~ 0.9%kr

8o

> X

|£)=(1N2)(0.e £ilL9), ®) in Eq.(4). One can easily show that the periggof the wave

which have Rabi-split eigenenergies given by packet pulsation in coordinate space is exactly givenrpy
=(2/\p)J§?ds/ Vsins=400; cf. Fig. 2b).
E. (0 = Ao £ go SINkK)], OIS St iy

In this fashion, the dressed-energy gradient created by the
where 0 and 1 count the number of quanta in the field. Figur@onuniform spatial structure of the cavity field plays as a
3(a) shows the spatial variation d&.(x) on the cavity aris dressed-state selector, splitting the atomic wave packet into
around a node. In the figure, one can immediately see that tfvo distinct groups of orthogonal dressed states,and|—),

the system is in statler), it will start to slide down the slope which is the very OSGE. Let us add that, on an antinode, on
of its energy curve and move to the left, and|if), to the  the other hand, the+) component of the wave packet tends
right. However, as one can easily show, the state function ofo be pulled out to both sides of the antinode while thé

the system at an arbitrary time turns out to be always a 50-500mponent tends to be squashed toward the antinode as il-
superposition of+) and|—) when the system starts out in an lustrated in Fig. &), giving the net effect of distorting the
energy eigenstate—e.dl,g). Thus, half of the wave packet initial Gaussian packet into a wing-broadened, peak-
sitting on a node is pushed to the left and the other half to theharpened feature.
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E, R whereas on the right-hand side, the levels are reversed. Sec-

g ond, in the region near the node, on the other hand, we have
— -y 6/2g(x)— +. When g(x) approaches the node from the
-4 positive side,#— m/2 and when it approaches from the

B negative sidef— 0. Thus the behavior of the first couplet is
summarized as

gx) <0 gx)>0

Ey: [d)—I1,9) |]d)— 1,9, (11)
| : ! : : Ey: [d)—1[0.e) ||d)—10e),
¥ H H ! H :; X
N A N A N What it means is the following: if the system is|ih,g), for

instance, the system is placed in a potential well defined by
E;(x) in this region, and when it is ifD,e), it is sitting on a
potential hill defined byE;(x). Thus, if the system starts
from |1,g), the portion of the wave packet in this region
tends to be trapped in the potential well Bf(x) while the
wings of the packet outside this central region will slide
In the actual experiments, however, it is not practicallydown the slopes oE;(x) on both sides of the node, since
possible to keep thexactresonance indefinitely. So let us outside the region|1,g) is a combination ofd,)=~|+) as a
consider the case in which the atom and cavity are slightlyaforementioned. Note that the overall state of the system at
detuned. Leb= wc—w, denote the detuning, whetgyc)is  arbitrary time is no longer a 50-50 combinationaf). Nev-
the atomic transition(cavity resonance frequency. The ertheless, the packet motion occurs always in a symmetric
atom-cavity detuning causes an anticrossing of the energfashion about the node, as a matter of course. To see this,
levels which makes the picture slightly complicated. The firstwrite the internal state algl)=C,|0,e)+C,|1,g) with com-

FIG. 4. Spatial modulation of the dressed energfesl) in the
presence of nonzero atom-field detuning'=wy+46/2 and g’
— [21(s/0)2
= VgO+ (5/2) .

C. Off-resonant case

couplet is now designated by plex coefficientsC; and C,. Then, at a positionx=x; (with
o respect to the origin at a nogat is written as|y)=A,|d,)

|d,)=cos#|0,e) +i sind|1,9), (78 +A_|d_) where A,=C;cosf#-iC,sing and A_=C,siné

+iC, cosf, whereas atx=-xy, it is given by |¢)=B,|d,)

|d_)=sin6|0,e) —i cosd|1,9), (7 +B_|d_) where B,=C,;sin#-iC,cosf and B_=C, cosf

—-iC,sin 6. But since|A,|=|B=|, the portions of the wave

where packet in the upper energy state on both sides are the same.
tan6=[8/2g9(x)] + V[29(x) >+ 1, (8) Thus the symmetry arises around the node. The ratio of the
. . . ) ) portions in the upper and lower energy states, however, is
with the associated eigenenergies given by changing in time. As a result, we will have the initial single-
EX(x) = filwp + (82)] ﬁV'W, 9) bumped wave packet evolving intoti@dple-peaked structure

on a node in the presence of finite atom cavity detuning
as depicted in Fig. 428]. One has to be careful about the instead of the double-peaked shape in case of the exact reso-
association of the eigenenergies to the eigenstates. In tH@&nCe.

region whereX= 8/2g(x) is positive,|d.) are associated with ~ Our expectation is nicely confirmed by a numerical cal-
EZ, but in the negativeX region, these are associated with culation as shown in Fig. 5 where we talg,=0.1, for

E,. This is simply because sifl.x=cos6|-x (due to the instance, with other parameters thg same as before. Of course
mutually symmetric behavior of sit and cosd aroundg  due to the small effective coupling constant, the system
=m/4), and the eigenenergies are determined by the mo8lowly evolves from[1,g) to |0,e), and the portion of the

squares of the coefficients—i.e., wave packet in the central region will also gradually migrate
into both sides of the node. The volume of the central region
E. =[cost*hw, +[sin 7w, for X=0 is confined by|(2gy/ 8)sin(kx)| <1 or |X|/\ < (1/4m)(5/gp).

=|sin 0%iw, + [cosB2hw, for X<0,  (10) For Ax/\=1/40r we ha\{e |>§|/A>§<10(5/go). If o/g,
~0.01, ther{x|/Ax< 0.1, which implies, though loosely, that

etc. It is sufficient to consider the solution of E&) in the by far the largest part of the wave packet resides outside this
range G<260<. Let us first consider two limiting cases. region and the central peak wil not be significant\ifg,
First, in the regions relatively far from the node whéX¢  <0.01.
<1, we havefd— /4, and thereforgd,) respectively ap- Let us leave a brief note regarding the dependence on the
proximate to|*). Thus, in these regions, the wave packetfield state. If the field state includes a nonzero amplitude of
behaves just like in the case of exact resonance discusséite vacuum stat¢0) as in the case of a coherent state, this
above, as expected. Note that, on the left-hand side of thportion of field will tend to leave the atomic wave packet
node, |d,) has the lower energ¥;(x), which approaches intact in time. So there will be always some portion of the
E.(x) in Eq. (6), and|d-) the higher energyE;(x)~ E_(x), packet standing still at its original position. This will show
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norm-conserving process, arhﬁ) represents amnnormal-
izedwave function. When the collapse probability
{ o

wicie v
rdt< IciC|¥)

— (13
(W)

'
\
;
\

is greater than a random numkRe [0, 1) taken during the
time interval[t,t+dt), a quantum jump occurs in the fashion

= / = N [W) — G ). (14)

Otherwise, the system dynamics follows EtR). For further
details of the theory, see, e.§26].

Now let us return to the original problem in which an
o _ , atomic wave packet in its ground state is placed at a node of
FIG. 5. Wave packet evolution in coordinate space in the Presihe cavity field mode, on the axis of the cavity. The cavity
ence of nonzero atom-field detuning/go=0.1, while other param- ...\ " tain any photonic state of light, and let us neglect
eters are the same as in Fig.&x/\. cavity damping «=0) for the time being in order to focus on

up as a peak at the center between the two separate peakstgﬁ ef_“fect of_atomlc damping. For algebraic convenience, let
us writeg(x) =go cogkx) and assume a very massive atom so

both sides, making the overall look of the wave packet some: o
what similar to the case of nonzero detuning aforementionec}.hat th(.a k|n.et|c energy term can pe ryeglec(_Rdiman.—Nath
This fact is most easily seen in the Schrodinger picture. Wi pproximatiom. The.n the Hamiltonian in the interaction pic-
will get back to this point at an appropriate place in the nex ure becomes as simple as

section since we will explicitly deal with the Schrddinger
equations there.

11l. OSGE IN THE PRESENCE OF DAMPING We expand the wave function in the fashion

The picture given so far in the dressed-state formalism
W=

H =gy cogkx)(o_a’ - o,a). (19

provided a qualitative but intuitive understanding of the phe-
nomenon. Nevertheless, the real systems are aftespaih
quantum systems subject to damping, and the dynamical ef-
fects of such decoherent processes are yet to be discussed. +Eg(0,q)|0,q,g> , (16)
The open systems can be dealt with in a number of ways—

e.g., master equatiorj26,31], quantum Langevin equations

[31], or Fokker-Planck equatiori81,32 in appropriate situ- wheren is the field quantum number argdthe atomic mo-
ations. In this work, we deal with the system in the viewpointmentum quantum number scaled in unitidé The coherent
of the quantum-trajectory theor26], doing the numerical evolution is then given by the following set of dynamical
work with our 16-node PC cluster of clock speed 2.4 GHz.equations:

Below, we will analyze rather in detail how QTT describes
the time evolution of an atomic wave packet, particularly at d Vn — —

the events of spontaneous emissions as the atom is moving E_Ce(nvCI) =" ?[Cg(”’q‘ 1 +Cy(nq+1)]
through a node of the field.

dqy > [Cn,a)In-1,0,6) + Cy(n,q)[n,q,0)]

n=1

—

y—
A. Quantum trajectory formulation - 5Cdn,g) (n=1), (173

2
A quantum trajectory consists of piecewise continuous co-

herent evolution and discontinuous jumps such as the atomic ‘
and cavity decays which randomly interrupt the coherent d— _, Vyn— _ =
evolution. Letl’; (i=1,2,..) denote the various decay rates dTCg(n,q) =t 2 [Ce(na=1)+Cng+1] (n=0),
in the system andC; the corresponding “collapse” (17b)
operators—e.g.¢g_ for the atomic emission and for the
cavity transmission. Then the coherent evolution of the sySyhere we used the relations k") =(1/2)[explikx)
tem is given by the following Schrédinger-like equation: +exp—ikx)] and exptikx)|q)=|g+1) with r=get and y

d = N O =val gy the atomic decay rate scaledgp So thenth Jaynes-

'ﬁd_t|‘1’> - (H - 2 "}"‘ECi Ci) v). (12) Cummings couplet is decoupled in dynamics from the rest of

' the infinite hierarchy of couplets.

Thus the Schrédinger process is slightly modified by the The state of the cavity fieldk)s) can be expressed as a
damping terms. Because of the damping terms, it is not éinear combination of the number states—i.e.,

—
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|y = 2 F(n)[n). (18)

Let the initial atomic positiorx=¢,A and the momentum

spreadAp=(Aq)%k. Then the initial wave packet is given by

2

|¥(0)) = f qu exp — }exp(— 2miqé&y)F(n)|n,q,9),

4(Ag)?
(19)

whereF(n) denotes the normalized coefficients such that

() = e, (20)
The initial values are therefore
CAn,g)=0 (n=1), (21a

2

—q
4(Ag)?

Cy(n.) = F(n)exp{ }exp(— 2mqéy).  (21b)

Now at a nodeg&y=1/4, and Eq(21b) is written as

CS(n,a) = F(me e, (22

where 8=1/4(Aq)?, being the width parameter of the initial

wave packet. With this initial value, we solve E@$7g and
(17b) in the Eulerian fashion such that

VdT(n q) C(V 1)d'r(n q) dTC(V_l)dT(n,q),

Ceio (23

where timer is divided by small discrete steps do thatr

=vd7 with an integer. We obtain the behavior of the system

at an early timer given by

Clng) ~ - iCS(m)(%n)

x[eB20D) — B2/ (= 1),

(243
~\2
— 3( m'n
T 0
Cy(n.g) ~ Cg(n,Q){ 1+ 5(7)
x[e 4B(20-1) _ o +e—4,8(q+1)] (n=0),
(24b)

keeping terms up to the order @i7)2. Note that by compar-

PHYSICAL REVIEW A 69, 063817(2004)

such a decay happened now. The wave packet then under-
goes a quantum jump such that

W) — exp(~ ikxy)o | W), (25)
where exf—-ikxz) describes the momentum recoil that the
atom gets from the emission, projected onxreis, andp is

a random number in the randel,1]. Here|¥) represents
an unnormalized wave function. In the coefficients, this pro-
cess is written as

Clin,g) -0, (26a)

Cin,g) — Cin+1,g+ n) = F(n+1)
X[gha+n-1%_ gpa+n+ D27,
(26b)

Since then, the entire wave packet is determinegg(yl,q),
yielding the probability distribution in momentum space
such that

P(q) = E |Cg(n,q)|2 o [e‘ﬁ(q +p+ D2 _ B+ - 1)2]2.
n

(27)

It is simply the square of the difference of two Gaussians
which are slightly shifted from each other. So obviously it
will show a doublepeaked structure. The locations of the
extrema ofP(q) are easily found in the limit of smaB. Note
that we are considering a spatially well-localized atomic
wave packet(Ax<<\) to which the smallg limit applies.
Then the locations of the two bumps 7(q) are given by
g~ *2(Aq)(|7|<Aq). Thus the initial momentum spread
somehow determines the locations of the peaks in the split
wave packet in the early stage of the atom-field interaction.
Figures 6a) and gb) show the shapes of the wave packet
(again, the probability distribution, indeedf an atom sitting
on a node right after an atomic jump that is arranged to occur
at a few different times, in the early stage of the atom-field
interaction: (a) in momentum space ang) in coordinate
space, at various times of the atomic jump,1, 2,..., 5, 10,
and 20, with the same set of parameters as in Figs.ahd
2(b). The Gaussian curve is the initial packet. Note that the
curves are independent trajectories. The figures show that
our simple argument reaching E@7) is quite valid up to
7~5. It is seen that in coordinate space, the longer the co-
herent evolution time elapsed before the jump, the narrower
both the widths of and the separation between the split peaks
become, whereas in momentum space, the wider both be-

ing with the numerical solutions, we find that these expreseome.

sions are valid up te~ 5. If the damping is weak, there will

In fact, one can extract two separate dynamical mecha-

be little difference in the coherent evolution in early timesnisms at work in these pictures. First, the packet splitting in
such that exp-y7/2) = 1. But what it does in the jump pro- coordinate space—or in other words, the fact the§) =0 at
cess is quite remarkable. Since now there is a small probabik node—right after an atomic jump has the following physi-
ity built up that the atom is in the excited state, there is acal grounds. The event of an atomic jump implies that the
probability that the atom will decay. Let us just assume thaatom was in the excited state before the jump. For the atom
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! ' ' ! L ' ! the atomic mass is infinite, but simply because

0.04 =0 - )
0.03- i lya(0)[? = i i dpe(p = pyexpipx/f)
_ 2
S I = i dpe(p)explipx/fi)
o] [ =[x, (28)
0.001 - regardless of the size of the recoil momentym or the
. . — T atomic mass—for the dual wave functioggx) and ¢(p).
60 40 20 0 20 40 60 The physical reason for this is that the atomic jump has been
(a) q assumed to occunstantaneouslyi.e., no time has elapsed
60 | | ! before and after the jump. Hence no displacement before and

after the momentum kick. However, the absence of motion in
the coordinate spadeetweerthe atomic jumps is due to the

L infinity of the atomic mass. As a matter of course, when the
atomic mass is finite, the system will evolve in coordinate

g spaceafter an atomic jump according to the momentum kick
L that it has gained. Anyhow, we see that there is some “inter-
nal motion,” if we may, i.e., splitting, spreading, and separa-
tion, of the wave packet even for amfinitely massive atom
- in an optical cavity although there is no center-of-mass mo-
T T T tion. This interesting feature seems to deserve some further
) 0.21 0.23 0?5 027 0.29 discussion. The following subsection is devoted to this
purpose.
FIG. 6. The shapes of the wave packet sitting on a node right
after an atomic jump arranged to occurratl, ...,5,10, and 2(g) B. “Dynamics” of an infinite mass
in momentum space an®) in coordinate spacej=p/#k, £=x/\. Although an atom with infinite mass is entirely a fictitious

object, it deserves a consideration at this moment as it pro-
to be lifted from its initial ground state to the excited State,vides a deeper understanding of the quantum_traiectory point
the atom-field interaction must be nonzero. So an event Oéf view. We iust see that the wave packet of an |nf|n|te|y
the atomic jump tells us that the probablllty for the atom toheavy atom interacting with the Caviw fieid does ShOW dy_
be at the node was indeed zero, and our initial GaussiaRamics in momentum space, which is of course due to the
wave packet has been accordingly modified through thenomentum exchanges with the field. In coordinate space,
backaction of the measurement. Second, the reason that thgwever, nothing happemsovidedthat the system is free of
separation of the two split peaks in coordinate space bejampingno matter what happens to the wave packet in mo-
comes smaller and smaller as the advent of the atomic jumgentum spaces shown in Figs.(@ and 7b). In the figure,
is delayed is explained in the same context. That is, if thehe inset is a lateral view of the three-dimensional-plot on the
atomic jump has not occurred after all, we have to concludgottom from the time axis which clearly shows the time in-
that actually the atom has not gone through the Rabi intelyariance ofP(¢), the probability distribution in coordinate
action with the cavity field and has stayed in the groundspace. From the viewpoint of mechanics, it appears rather
state. This means that the wave packet becomes narrowghderstandable as the atomic mass is assumed to be infinite,
and narrower around a node as time goes by before agy is still quite interesting in the sense taté) is essen-
atomic jump really occurs. When a jump occurs, the packefi|ly (though not exactlya Fourier-type transform oP(q).
is split into two through the first mechanism, but since theSO, if P(q) changes so radically as shown in Figaj7 one

- packet idth ofy 510 naivel t h lso, whatever it
the packet before the jump, it is narrower also. Thus one mai(n(;l; (ijjgalve y expect some changeti¢) also, whatever i

add that the theory of the quantum trajectory Is noqe other If we write the wave packet in the same fashion as Eq.

than the process of a continuous correction of our “lack of 16), P(&) at timet is given b

knowledge” about the state of the system, based upon th(e ' 9 y

information provided from the measurements. The measure- _ j2mq¢ 2

ments here are of course made by the environment—i.e., the P&)= Ponza [dae"™Ca(n. )%, (29)

vacuum field which is continuously monitoring the atomic

damping. wherea labels the atomic internal states aRg a normaliz-
The irregular shifts of the packets in momentum space arég constant. The coefficientS,(n,q) continuously evolve

due to the random momentum recoils from the atomic sponin time with the Hamiltonian, Eq(15), but only in such a

taneous emissions, whereas no such shifts are shown in ctashion thatP(¢§) remains invariant in time. This is in fact

ordinate space. Note, however, that the lattemdsbecause easily proved by looking at the time derivative Bf¢)—i.e.,
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FIG. 7. The time evolution of the atomic wave packet of an
infinitely heavy atom free of damping located at a ngadein mo-
mentum space angb) in coordinate space. The insets are ground-

level views into the time axis.

d A ! " *
e Po>, | dadge?m g Cy(n,q)C,(n,q")
n,a

+C,(n,a)C,(n,a")]. (30)

Now from the dynamical equatior{47a and(17b), without

the damping term, we have

f

Cun.aCyna") == T [Cyna- 1Cin.a)

+Cy(n,g+1Cyn,qg)], (313

[

Cma)Cyna') =+ S IC,naCin.a" - 1

+Cy(n,q)Ce(n,q’ +1)],

etc., and simply because

(31b
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FIG. 8. The dynamics of a wave packet in the presence of damp-
ing in which an atomic jump has occurréa) in momentum space
and (b) in coordinate spacey=0.1 andAq=10, for aninfinitely
heavy atominitially in the ground state placed at a node, with the
cavity field in a one-quantum coherent state. The insets are ground-
level views along the time axis.

f dgdd €279~ Cy(n,q - 1)Cy(n,q")

+Cy(n,g)Cy(n,g’ +1)] =0, (32)
etc., we find
d
&P(é) =0. (33

Nevertheless, even more interesting things happen when
the atom is subject to damping. Then the wave packet of an
infinitely massive atom does show dynamical evolutions in
coordinatespace as well both through the coherent decay
during the continuous evolution and by atomic jumps. Fig-
ures &a) and 8b) show a typical time evolution of a wave
packet which has gone through a single atomic jump in mo-
mentum spacéa) and in coordinate spage) wherey=0.1,
Ag=10 andM =% for an atom initially in the ground state
and the field in a one-quantum coherent state in a lossless
cavity. In Fig. 8b), we clearly see the actual evolution of the
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016 ‘ ' the exponential-type factor dictates so that the atomic upper-
5, state probability quickly decays to zero, having no time to
grow up to an appreciable value. Thus no atomic jumps are
likely, and the system follows only the coherent decay. While
damping tends to put the system back to its initial internal
energy state in this fashion, the atom-field momentum ex-
change process rapidly broadens the wave packet in momen-
100 tum space, which ends up narrowing—i.e., localizing—the
17 wave packet in coordinate space although the uncertainty
= / > e product AXAp slowly grows in general. This is none other

< than the phenomenon of “damping-induced localization”
(DIL) [37]. For a moderate atomic damping, the wave packet
follows the coherent evolution showing DIL until an atomic
jump which brings about a sudden splitting—a gigantic
change—in the wave packet as shown in Figs) 8nd §b).

=

0

O COOC .02 O.OOOF

FIG. 9. The evolution 0fP,(q)=2,/Ce(n,q)|2. The inset shows D. Effect of cavity decay

the temporal behavior dfe=/daP(a). The cavity quantum jumps, on the other hand, do not do

much in the wave packet splitting. To see this let us turn off
wave packet in coordinate space during the coherent procesgie atomic damping channel and open the cavity decay chan-
not only the drastic change after the atomic jump: The wavenel. Then Eq(25) is replaced by the process
packet gets indeed continuously squeezed around its peak. _
The question is how such a motion of the wave packet of an |¥) — a|P), (39
infinitely heavy atom can occur in coordinate space. The | . . . -
reason that damping causes this type of wave packet evoIL\f‘—’h'Ch brings about changes in the coefficients such that
tion even for an infinitely massive atom can be seen in Egs. i [
(178 and (17b). There the atomic damping makes the two Cen,a) — vnCen+1.0), (353
equations symmetric in the sense that it adds a damping term _ .
only in Eqg. (173, and thereby we no longer have identities Cg(n,@) — Vn+1Cy(n+1,g). (35b)
such as Eq(32).

Since everything happened for an infinitively heavy atom,
the dynamics following an atomic jump is not a mechanical
process. That is, the mean position of a peak in coordinat
ffricspgignizttzi ;Z?;?O%E}(%;m)e d?fgﬁao;éhia; g erg]_olwen:ir?gfwlg to the atomic decay is regardless of the intensity of
for an obvious reason. The alert reader will find that the = o 'o"
correct relation between the mean positienand p in both
spaces right after an atomic jump is indeed obtained from the IV. QUANTUM-TRAJECTORY SIMULATION
uncertainty relation—i.e x~ a/p where« is a constant on OF ATYPICAL EXPERIMENT

the order off, though it is not exactlyi/2 because the wave Since atomic damping chanaes the wave packet in such a
packet no longer retains the minimum uncertainty, as Figs, ping 9 P

8(a) and 8b) demonstratg33-3§. Thus, it should be en- radic_al fashion, one may expect that it can_play a significa_nt

tirely attributed to the intrinsic wave nature of a matter ar-rOIe in actual experiments. An actual experimental setup wil

ticle as well as to the issue of the position and momentunfe most possibly such that a beam of atoms are launched to
I

uncertainty which forms the very heart of quantum mechan- y through the cavity mode while the cavity is continuously
ics [36] pumped by an external field, and one measures the position

distribution of the atoms emerging from the interaction re-
gion on a surface at some distance from the cavity.

For the purpose of particularly watching the effect of

When the atomic damping is strong such that1 (out of  damping in the OSGE, one may simplemindedly consider a
the strong coupling regimethe wave packet essentially fol- conditional measurement in which one records the position
lows the coherent decay only, without quantum jumps. Thisdistribution of only those atoms that have undergone any
can be quickly appreciated from the dynamical equations imumber of quantum jumps. However, one will soon realize
the quantum trajectory, Eq$248 and (24b). The form of  that it will not work that way because, even in such a cir-
Eq. (249 shows that the atomic upper-state probability cumstance, always is there the wave packet splitting due to
|C«(n,@)|? has an early time dependence roughly of the formthe coherent process. That is, it seems not practically pos-
7 exp(—yr). Figure 9 shows the temporal behaviors of sible to say, “This much splitting is due to the coherent evo-
Pu(@) =2|Ce(n,q)]? and P.=fdgP(q) in a trajectory in lution and that much is due to the quantum jumps.” One may
which an atomic jump has not occurred yet. For a lagge then consider another scheme in which the atom-field inter-

It will certainly change the shape of the wave packet slightly,
but never as much as splitting the packet into two pieces.
articularly when the mean cavity photon number is high,
ere will be no essential change, whereas the packet split-

C. Overdamped case
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action time is set so short that there is negligible splitting via ~ 0.03
the coherent process, and the aforesaid conditional measure

ment is done. But then again, one will realize that it is not
possible to resolve the splitting right after the jumps because

it is within the Heisenberg uncertainty limit. In the region far 0.02 1
from the interaction zone, on the other hand, the position
distribution gets so broad that the tiny splitting will be com- —
pletely buried. ®

So, in this work, we just limited our attention to the ques-

tion of whether the OSGE discussed so far could be practi- 001

cally observed in a typical cavity-QED experiment even in

the presence of appreciable damping strengths. We did «

Monte Carlo simulation of a typical cavity-QED experiment

using the quantum-trajectory method. Below we will com- O~O?120 -6|0 (') 6|0 120

pare the result of a hypothetical experiment in which the

atoms are assumed to be nonradiative with that of a realistic 4

g?g)erlment '.ﬂ th'Ch the re]ltomhs ar(; radflfanve.f Obvu_)u(sjly the FIG. 10. The “far-field” momentum distributions averaged over
literence will be none other than the eflect ot atomic ampP-300 atoms at a location approximatelywt@way from the cavity

ing in the O,S_GE' . . axis. The thinner line is for the case of nonradiative atoms, while
As we did in our previous work on the cavity-QED atom e thicker line is for the case of radiative atoms wjttgy=0.5.
detection systenj21], we assumed a single-mode cavity

resonant to the transition line of barium®Ba) atom,\x  thatin casgb). The narrower distribution of cagb) can be
=553 nm, with go/2m=42MHz, which correspond tqu interpreted as weaker diffusive motion of the atoms in the
~1.1X 10‘4 The transverse Cavity mode is assumed to havéield during the interaction time. Less diffusion ImplleS less
a profile so that(xX) =g, exd —(y?+z%) /w?]coskx, where the frequent exchan_ges of quanta between the_atom and field—
cavity axis lies in thex direction andw, the mode waist, is |-€-» @ weaker interaction. So the mean-field intensity is
taken to be 37um. The atomic longitudinal velocity is set to Smaller in the latter case, which again indicates a greater
v,=400 m/sec. The driving field amplitudg is such that ~Portion of the vacuum state in the cavity field on average.
£/k=1 so that the mean intracavity photon number is just 17N€ stronger contamination of the cavity field by the vacuum
at steady state—i.e(a'a)..= 1—before the entry of an atom. State is due to the introduction of an additional damping

; — - hannel—i.e., the atomic damping—to the system. The nar-
We choose damping strengths as largeybgy=2«/gy=0.5. ¢ i S .
We assume that the initial atomic wave packet, to be detef2Wer width in caseb) can be understood in this way which
mined by the geometry of the system, is a Gaussian havin'@y P€ another interpretation of DIL. _
momentum uncertaintAp=104k which again corresponds Let us wrap up this section by Ieavmg with a brl'ef remark
to Ax=<\/100, a well-localized, particle like wave packet. on the states of the detected a‘OT“S: Without atomic o_lamplng,
Note that the “initial time” is the time when the atoms reacht€ outcome of such an experiment would also yield the

the plane normal to the atomic path, assumed to be wat 1pwave packet split into a pair of distinct bumps like the thin
line in Fig. 10. Then each bump will correspond to the ag-

away, for instance, from the cavity axis. Thus, until the wave o

packet reaches the region of appreciable atom-field couplin rega}te of atc.)ms'ln either of the orthogonal dressed statles. I

strength, it will freely evolve tomic damping is present, however, things become differ-
i ' ent. Note that an atomic jump will put the atom back to its

Figure 10 shows the “far-field” momentum distributions o .
averaged over 300 atoms detected on a screen located a@%Pund state which is simply a 50-50 mixture of the orthogo-

large distance—approximately wQaway, for instance, from nal dressed states. Furthermore, the final state of the system
the cavity axis(Note that the far-field position distributions Will eventually decay into the product of the atomic ground

are exactly the same in shape as those of the momentufiate and the initial coherent field state such that
distributions with proper axis labeling and scaling, according .

to the diffraction theory. Let us add that it took about a im[W (1) =[yn) @ |¢ha) =[a) @ J dpC(p)lp,9), (36)
month for our 16-node PC cluster of clock speed 2.4 GHz to o

complete the computation of 300 quantum trajectories onlywherea=£/ k, since the atom-field entanglement gets lost as
to obtain this figure. The thinner line is for ca@ in which  the cavity field is restored to the initial state by the driving
the atoms are assumed to be nonradiative, while the thickdield whereas the atom eventually decays into the ground
is for case(b) where the atomic decay channel is let openstate. Thus the atomic states on both peaks are the same. So,
with y/gp=0.5. It turns out that during the entire flight time, when atomic damping is present, it is difficult to say that the
each atom has gone through about 25 jumps on average gtate on one peak is, or has been, orthogonal to that on the
case(b). The figure shows that, even for the atoms and cavityother.

as strongly damped as the given strengths, the wave packet

splitting robustly shows up, having hardly been washed out. V. SUMMARY

The overall width ofP(q) in case(a) is greater than the value We analyzed the optical Stern-Gerlach effect in the
in case(b), the height ofP(0) in case(a) being smaller than cavity-QED realm. We presented an intuitive interpretation
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of the optical Stern-Gerlach effect in the dressed-state picsplit the packet. Proposing a feasible experimental scheme in
ture. We particularly investigated the effect of atomic damp-the cavity-QED realm, we pointed out that the phenomenon
ing on the wave packet evolution in the framework of of atomic wave packet splitting could be experimentally ob-

quantum-trajectory theory. In the viewpoint of QTT, it is served, even in a moderate coupling regime where the
found that the atomic damping can also cause the wavatomic damping rate is comparable to the atom-field cou-
packet splitting, and furthermore this process occurs in gling constant.
nonmechanicafashion, as opposed to the coherent process

that ismechanicallt is also found that theontinuousatomic

decay process tends to localize the atomic wave packet,

keeping it from spreading so fast as in the case of no atomic This work was supported by Korea Research Foundation
damping, whereas thdiscontinuousatomic jumps tend to Grant No. KRF-2002-070-C00044.
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