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We present a Monte Carlo simulation of a typical cavity-QED experiment on the optical Stern-Gerlach effect
in terms of the quantum trajectory method. We show that the phenomenon of wave packet splitting may be
experimentally observed even in a moderate coupling regime where the atomic and cavity damping rates are
comparable to the atom-field coupling strength.
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I. INTRODUCTION

The mechanical interaction of light and matter has been
comprehensively studied since the pioneering work of
Kapitza and Dirac in 1933[1]. Much work has been done on
atomic beam deflection, diffraction, refraction, or interfer-
ence[2–8] by a standing-wave field, classical or quantized,
and the recent achievement of optical cooling and trapping of
neutral atoms[9] using the light pressure force may be said
to have a root in these themes. On the other hand, there were
great experimental advances recently in the field of con-
trolled single-atom or single-ion and few-photon interactions
in high-Q optical cavities[10–12].

One of the interesting issues that came up in the theme of
atom-field mechanical interaction is the so-called optical
Stern-Gerlach effect(OSGE) [13–16]. It has been explored
at various levels of sophistication since the mid-1970s when
it was suggested that the trajectory of a two-state atom inter-
acting with an optical field gradient can be split into two
paths, each path containing atoms in one of the two orthogo-
nal dressed states, under certain circumstances[15]. It is thus
an optical analogy of the well-known magnetic Stern-
Gerlach effect(MSGE) [17] in which the trajectory of a spin-
1
2 particle is split into two paths in a magnetic field gradient.

The OSGE was experimentally demonstrated in 1992 by
Sleator and others in the near-infraredsl,1 mmd with
metastable helium atomssHe* d [16]. The experimental re-
sult seems to be in agreement with semiclassical theories
[13–15], but later it was also pointed out that the OSGE may
show some additional peculiarities, sensitively depending on
the quantum nature of the field[18]. Not only incorporating
the quantum nature of light and the atomic center-of-mass
motion in the picture, recent works also take into consider-
ation the finite spatial extent of the atomic wave packet
[19–21], rather than treating an atom as a point mass[3] or a
plane wave[13,14] in space. References[22,23] deal with
the OSGE on resonance with quantized light field, whereas
the Refs.[24,25] treat the case of off resonance although the
wave packet is limited to quadratic and linear sections of the
optical potential. Particularly, the first reference in[19] pre-
sents quite an elegant operator method in such a full
quantum-physical description of the OSGE.

Noting, however, that the theories originally envisaged

the OSGE as coherent processes dealing with ideal lossless
systems, mostly in the linear regime, we explored the role of
decoherent processes in the OSGE, particularly in the non-
linear regime, which may be significant in the optical fre-
quencies. For systems free of damping, decent analytic treat-
ments may be available, but when the system is open to its
environment so that the coherent dynamical evolution of the
system is frequently interrupted by discontinuous processes
such as atomic spontaneous decays or cavity emissions, etc.,
analytic approaches may not be always possible. There are a
number of theoretical methods to deal with such open quan-
tum systems, but we resorted to the quantum trajectory
theory (QTT) [26] with our 16-node PC cluster(CPU clock
speed 2.4 GHz/node). Along with the numerical work, we
analyzed as well the effect of damping in the dynamics of
atomic wave packets in the quantum-trajectory point of view.

In Sec. II, we first provide our simple anad intuitive illus-
tration [27] on the OSGE, based on the dressed-state picture
[28], and in Sec. III, we discuss the effect olf damping in the
language of QTT. In Sec. IV, we perform a numerical simu-
lation of a typical experiment one can practically set up.
Section V summarizes this work.

II. OPTICAL STERN-GERLACH EFFECT

A. Wave packet “pulsation”

Consider a simple model in which a Gaussian wave
packet of a two-state atom initially in its ground state is
placed on a node of a standing-wave cavity, on the cavity
axis, as illustrated in Fig. 1. In order to quickly appreciate

FIG. 1. The model. The Gaussian wave packet of a two-state
atom initially in its ground state is placed on a node of a standing-
wave cavity, on the cavity axis.
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the essential physics, let us assume that the cavity field is
initially in a single-quantum Fock state, and the atom and
cavity are on resonance. We will neglect damping for the
time being. The interaction Hamiltonian is then simply writ-
ten as

H =
p2

2M
+ i"gsxdss−a† − s+ad, s1d

wherep is the atomic momentum operator conjugate to the
position x on the cavity axis,M the atomic mass, andgsxd
the atom-field coupling strength at positionx such that

gsxd = g0 sinkx, s2d

g0 being a constant andk the field wave number.a† sad is the
creation(annihilation) operator for the field, ands+= uelkgu
=ss−d† is the atomic excitation operator, withe sgd labeling
the atomic excited(ground) state.

We will focus only on a spatially well-localized wave
packet such that its initial widthDx is much smaller than the
wavelengthl of the cavity field. We chooseDx=l /40p
which corresponds to the width in momentum space,Dp
=10"k [29]. Due to the finite spatial extent of the wave
packet, the atom-field coupling strength at the node is non-
zero, although very small compared to its peak valueg0, and
the interaction slowly commences. Note that the initial effec-
tive coupling strength is given by an overlap integral of the
mode function and the atomic spatial probability
distribution—i.e.,

geff =E dxc0
2sxdugsxdu

= 2E
0

` 1
Î2psDxd2

3expF−
x2

2sDxd2Gg0 sinkx dx

, 2Î2pSDx

l
Dg0

, 0.04g0, s3d

where c0sxd is the initial atomic wave packet and we put
sinkx,kx as Dx!l. Thus the effective coupling strength
would be only about 4% ofg0 initially.

Let us first present our numerical results on the evolution
of the atomic wave packet in Figs. 2(a) and 2(b). Precisely
speaking, the figures show the position and momentum dis-
tributions which are nothing but the mod squares of the wave
packet in the position and momentum representation, respec-
tively. Details of the numerical work are given in Sec. III.
Note that since the atomic massM, field wave numberk, and
atom-field coupling constantg0 appear in the Hamiltonian at
the same time, one needs to specify these quantities some-
how, but the only system-dependent parameter is the dimen-
sionless factor m="k2/2Mg0, which appears from the
Schrödinger equation when we rescale time in units ofg0

−1

and the momentum in"k. Note that m=ks"k/Md /2g0

=kv1/2g0 is the ratio of the Doppler shift by the single-
photon recoil to the single-photon Rabi frequency. Let us
take m=1.7310−4 with M =100 a.u.,l=600 nm, andg0
=200 MHz for a typical atom interacting with an optical
field in the strong coupling regime.

The figures show that the initial Gaussian packet evolves
into a double-peaked distribution and then back to its origi-
nal shape, as time proceeds. The inset is a ground-level view
of the packet in the coordinate space along with the coskx
curve, which clearly shows that the two split bumps make
turns exactly at the neighboring nodes. Let us first note that
the two figures aremechanicallyconsistent in the following
sense. Lett=g0t. In momentum space, the positionp̄ of one
of the split peaks grows roughly linearly in time in the fash-
ion p̄std,0.9"kt until t,100 and then bounces back to the
original position. So the positionx̄ of a peak after one cycle
of motion in momentum space is roughly

FIG. 2. The evolution of an atomic wave packet placed on a
node of the cavity field. The probability distributions in momentum
space(a) and in coordinate space(b). q=p/"k, j=x/l, andt=g0t.
For a typical atom withm="k2/2Mg0,1.7310−4. The atom is
initially in the ground state having a momentum spreadDp=10"k
while the field is prepared in a single-quantum Fock state. The inset
is a lateral view of(b) into the time axis along with the coskx
curve.
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x̄ , 2E
0

100/g0 p̄

M
dt , s2.93 103mdl = 0.49l – 0.5l, s4d

which is in a good agreement with Fig. 2(b). Although this
wave packet motion can be said to have essentially a
quantum-mechanical origin in the sense thatx̄ vanishes if"
does, the motion conforms at the same time to classical me-
chanics. We will get back to this apparently trivial observa-
tion when we include damping in the system in Sec. II and
will point out some interesting features in connection to this
issue.

Thus we have seen an exotic phenomenon ofwave packet
pulsation on a node. Notice that since the atom and cavity
are on exact resonance, there isno net dipole force[28] as it
is proportional to the atom-cavity detuning. So this phenom-
enon does not seem to be explained in terms of the dipole
force. For a quick comparison, Ref.[30], for instance, dis-
cusses the atomic dynamics in the large detuning limit. In
this limit, the atom will stay essentially in its ground state all
the time, and consequently there will be no significant wave
packet dispersion. Thus the atomic motion can be well ap-
proximated to that of a classical oscillator moving in anon-
zero dipole force field and is conceptually easy to under-
stand.

Note also that the analytic approaches such as[19] based
upon the linear approximation did not predict thispulsation.
The descriptions are mostly limited to the wave packet split-
ting in an early stage of the atom-field interaction. If the
atoms are let to leave the interaction region at some point of
time, the emerging wave packet will have a pair of distin-
guishably separated probability density peaks. This phenom-
enon of wave packet splitting is the very optical Stern-
Gerlach effect mentioned in the Introduction. In the
following, let us provide a simple intuitive account for the
physical origin of the wave packet pulsation that we have
just seen, in the viewpoint of the dressed-state picture[28].

B. Dressed-state picture, on resonance

Dressed states are the eigenstates of the atom-cavity com-
bined system which form a manifold of infinite hierarchy
called the Jaynes-Cummings ladder. Since only one quantum
is in the system, we need only to consider up to the first
couplet such that

u ± l = s1/Î2dsu0,el ± i u1,gld, s5d

which have Rabi-split eigenenergies given by

E±sxd = "fv0 ± g0 sinskxdg, s6d

where 0 and 1 count the number of quanta in the field. Figure
3(a) shows the spatial variation ofE±sxd on the cavity aris
around a node. In the figure, one can immediately see that if
the system is in stateu1l, it will start to slide down the slope
of its energy curve and move to the left, and inu2l, to the
right. However, as one can easily show, the state function of
the system at an arbitrary time turns out to be always a 50-50
superposition ofu1l andu2l when the system starts out in an
energy eigenstate—e.g.,u1,gl. Thus, half of the wave packet
sitting on a node is pushed to the left and the other half to the

right, resulting in the splitting of the packet into two pieces.
When the two split bumps of wave packets hit the turning
points at the neighboring nodes, they return just like a pair
the of classical particles. This is the essential explanation as
to why we have such a pulsation of the wave packet as in
Figs. 2(a) and 2(b). We can do a very simple Newtonian
mechanics here again. One of the two components of the
wave packet will receive from the energy slope a force of
sizeF="kg0 coskx. In the early stage of time where a linear
approximation is valid,F,"kg0 and the peak will gain the
momentum growing asp̄,"kt initially. But the overall be-
havior is rather close to our eye estimation ofp̄std,0.9"kt
in Eq. (4). One can easily show that the periodt0 of the wave
packet pulsation in coordinate space is exactly given byt0

=s2/Îmde0
p/2ds/Îsins<400; cf. Fig. 2(b).

In this fashion, the dressed-energy gradient created by the
nonuniform spatial structure of the cavity field plays as a
dressed-state selector, splitting the atomic wave packet into
two distinct groups of orthogonal dressed states,u1l andu2l,
which is the very OSGE. Let us add that, on an antinode, on
the other hand, theu1l component of the wave packet tends
to be pulled out to both sides of the antinode while theu2l
component tends to be squashed toward the antinode as il-
lustrated in Fig. 3(b), giving the net effect of distorting the
initial Gaussian packet into a wing-broadened, peak-
sharpened feature.

FIG. 3. Spatial modulation of the dressed energiess"=1d and
motion of the dressed states starting from a node(a) and from an
antinode(b). A andN, respectively, denote antinode and node.
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C. Off-resonant case

In the actual experiments, however, it is not practically
possible to keep theexact resonance indefinitely. So let us
consider the case in which the atom and cavity are slightly
detuned. Letd;vC−vA denote the detuning, wherevAsCd is
the atomic transition(cavity resonance) frequency. The
atom-cavity detuning causes an anticrossing of the energy
levels which makes the picture slightly complicated. The first
couplet is now designated by

ud+l = cosuu0,el + i sinuu1,gl, s7ad

ud−l = sinuu0,el − i cosuu1,gl, s7bd

where

tanu = fd/2gsxdg + Îfd/2gsxdg2 + 1, s8d

with the associated eigenenergies given by

E1
±sxd = "fv0 + sd/2dg ± "Îg2sxd + sd/2d2, s9d

as depicted in Fig. 4[28]. One has to be careful about the
association of the eigenenergies to the eigenstates. In the
region whereX;d /2gsxd is positive,ud±l are associated with
E1

±, but in the negativeX region, these are associated with
E1

7. This is simply because sinuu±X=cosuu7X (due to the
mutually symmetric behavior of sinu and cosu aroundu
=p /4), and the eigenenergies are determined by the mod
squares of the coefficients—i.e.,

E+ = ucosuu2"va + usinuu2"vc for X ù 0

= usinuu2"va + ucosuu2"vc for X , 0, s10d

etc. It is sufficient to consider the solution of Eq.(8) in the
range 0ø2uøp. Let us first consider two limiting cases.
First, in the regions relatively far from the node whereuXu
!1, we haveu→p /4, and thereforeud±l respectively ap-
proximate tou6l. Thus, in these regions, the wave packet
behaves just like in the case of exact resonance discussed
above, as expected. Note that, on the left-hand side of the
node, ud+l has the lower energyE1

−sxd, which approaches
E+sxd in Eq. (6), and ud−l the higher energyE1

+sxd<E−sxd,

whereas on the right-hand side, the levels are reversed. Sec-
ond, in the region near the node, on the other hand, we have
d /2gsxd→±`. When gsxd approaches the node from the
positive side,u→p /2 and when it approaches from the
negative side,u→0. Thus the behavior of the first couplet is
summarized as

gsxd , 0

E1
+: ud−l → u1,gl

E1
−: ud+l → u0,el U

gsxd . 0

ud+l → u1,gl,

ud−l → u0,el,

s11d

What it means is the following: if the system is inu1,gl, for
instance, the system is placed in a potential well defined by
E1

+sxd in this region, and when it is inu0,el, it is sitting on a
potential hill defined byE1

−sxd. Thus, if the system starts
from u1,gl, the portion of the wave packet in this region
tends to be trapped in the potential well ofE1

+sxd while the
wings of the packet outside this central region will slide
down the slopes ofE1

−sxd on both sides of the node, since
outside the region,u1,gl is a combination ofud±l<u± l as a
aforementioned. Note that the overall state of the system at
arbitrary time is no longer a 50–50 combination ofud±l. Nev-
ertheless, the packet motion occurs always in a symmetric
fashion about the node, as a matter of course. To see this,
write the internal state asucl=C1u0,el+C2u1,gl with com-
plex coefficientsC1 andC2. Then, at a positionx=x1 (with
respect to the origin at a node), it is written asucl=A+ud+l
+A−ud−l where A+=C1 cosu− iC2 sinu and A−=C1 sinu
+ iC2 cosu, whereas atx=−x1, it is given by ucl=B+ud+l
+B−ud−l where B+=C1 sinu− iC2 cosu and B−=C1 cosu
− iC2 sinu. But since uA±u= uB7u, the portions of the wave
packet in the upper energy state on both sides are the same.
Thus the symmetry arises around the node. The ratio of the
portions in the upper and lower energy states, however, is
changing in time. As a result, we will have the initial single-
bumped wave packet evolving into atriple-peaked structure
on a node in the presence of finite atom cavity detuning
instead of the double-peaked shape in case of the exact reso-
nance.

Our expectation is nicely confirmed by a numerical cal-
culation as shown in Fig. 5 where we taked /g0=0.1, for
instance, with other parameters the same as before. Of course
due to the small effective coupling constant, the system
slowly evolves fromu1,gl to u0,el, and the portion of the
wave packet in the central region will also gradually migrate
into both sides of the node. The volume of the central region
is confined byus2g0/ddsinskxdu!1 or uxu /l! s1/4pdsd /g0d.
For Dx/l=1/40p we have uxu /Dx!10sd /g0d. If d /g0

,0.01, thenuxu /Dx!0.1, which implies, though loosely, that
by far the largest part of the wave packet resides outside this
region and the central peak wil not be significant ifl /g0
ø0.01.

Let us leave a brief note regarding the dependence on the
field state. If the field state includes a nonzero amplitude of
the vacuum stateu0l as in the case of a coherent state, this
portion of field will tend to leave the atomic wave packet
intact in time. So there will be always some portion of the
packet standing still at its original position. This will show

FIG. 4. Spatial modulation of the dressed energiess"=1d in the
presence of nonzero atom-field detuning.v8=v0+d /2 and g8
=Îg0

2+sd /2d2.
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up as a peak at the center between the two separate peaks on
both sides, making the overall look of the wave packet some-
what similar to the case of nonzero detuning aforementioned.
This fact is most easily seen in the Schrödinger picture. We
will get back to this point at an appropriate place in the next
section since we will explicitly deal with the Schrödinger
equations there.

III. OSGE IN THE PRESENCE OF DAMPING

The picture given so far in the dressed-state formalism
provided a qualitative but intuitive understanding of the phe-
nomenon. Nevertheless, the real systems are after allopen
quantum systems subject to damping, and the dynamical ef-
fects of such decoherent processes are yet to be discussed.
The open systems can be dealt with in a number of ways—
e.g., master equations[26,31], quantum Langevin equations
[31], or Fokker-Planck equations[31,32] in appropriate situ-
ations. In this work, we deal with the system in the viewpoint
of the quantum-trajectory theory[26], doing the numerical
work with our 16-node PC cluster of clock speed 2.4 GHz.
Below, we will analyze rather in detail how QTT describes
the time evolution of an atomic wave packet, particularly at
the events of spontaneous emissions as the atom is moving
through a node of the field.

A. Quantum trajectory formulation

A quantum trajectory consists of piecewise continuous co-
herent evolution and discontinuous jumps such as the atomic
and cavity decays which randomly interrupt the coherent
evolution. LetGi si =1,2, . . .d denote the various decay rates
in the system andCi the corresponding “collapse”
operators—e.g.,s− for the atomic emission anda for the
cavity transmission. Then the coherent evolution of the sys-
tem is given by the following Schrödinger-like equation:

i"
d

dt
uC̄l = SH − o

i

i"
Gi

2
Ci

†CiDuC̄l. s12d

Thus the Schrödinger process is slightly modified by the
damping terms. Because of the damping terms, it is not a

norm-conserving process, anduC̄l represents anunnormal-
izedwave function. When the collapse probability

pc
i = Gdt

kC̄uCi
†CiuC̄l

kC̄uC̄l
s13d

is greater than a random numberRP f0,1d taken during the
time intervalft ,t+dtd, a quantum jump occurs in the fashion

uC̄l → CiuC̄l. s14d

Otherwise, the system dynamics follows Eq.(12). For further
details of the theory, see, e.g.,[26].

Now let us return to the original problem in which an
atomic wave packet in its ground state is placed at a node of
the cavity field mode, on the axis of the cavity. The cavity
can contain any photonic state of light, and let us neglect
cavity dampingsk=0d for the time being in order to focus on
the effect of atomic damping. For algebraic convenience, let
us writegsxd=g0 cosskxd and assume a very massive atom so
that the kinetic energy term can be neglected(Raman-Nath
approximation). Then the Hamiltonian in the interaction pic-
ture becomes as simple as

H = i"g0 cosskxdss−a† − s+ad. s15d

We expand the wave function in the fashion

uC̄l =E dqHo
n=1

`

fC̄esn,qdun − 1,q,el + C̄gsn,qdun,q,glg

+ C̄gs0,qdu0,q,glJ , s16d

wheren is the field quantum number andq the atomic mo-
mentum quantum number scaled in unit of"k. The coherent
evolution is then given by the following set of dynamical
equations:

d

dt
C̄esn,qd = −

În

2
fC̄gsn,q − 1d + C̄gsn,q + 1dg

−
g

2
C̄esn,qd sn ù 1d, s17ad

d

dt
C̄gsn,qd = +

În

2
fC̄esn,q − 1d + C̄esn,q + 1dg sn ù 0d,

s17bd

where we used the relations cosskxd=s1/2dfexpsikxd
+exps−ikxdg and exps±ikxduql= uq±1l with t=g0t and g
=gA/g0 the atomic decay rate scaled ing0. So thenth Jaynes-
Cummings couplet is decoupled in dynamics from the rest of
the infinite hierarchy of couplets.

The state of the cavity fielducfl can be expressed as a
linear combination of the number states—i.e.,

FIG. 5. Wave packet evolution in coordinate space in the pres-
ence of nonzero atom-field detuning,d /g0=0.1, while other param-
eters are the same as in Fig. 2.j=x/l.
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ucfl = o
n

fsndunl. s18d

Let the initial atomic positionx=j0l and the momentum
spreadDp=sDqd"k. Then the initial wave packet is given by

uCs0dl =E dqo
n=0

`

expF − q2

4sDqd2Gexps− 2piqj0dFsndun,q,gl,

s19d

whereFsnd denotes the normalized coefficients such that

Fsnd =
1

Î42psDqd2
fsnd. s20d

The initial values are therefore

Ce
0sn,qd = 0 sn ù 1d, s21ad

Cg
0sn,qd = FsndexpF − q2

4sDqd2Gexps− 2piqj0d. s21bd

Now at a node,j0=1/4, and Eq.(21b) is written as

Cg
0sn,qd = Fsnde−bq2

e−isp/2dq, s22d

whereb=1/4sDqd2, being the width parameter of the initial
wave packet. With this initial value, we solve Eqs.(17a) and
(17b) in the Eulerian fashion such that

C̄esgd
ndt sn,qd = C̄esgd

sn−1ddtsn,qd − dtC̄
˙

esgd
sn−1ddtsn,qd, s23d

where timet is divided by small discrete steps dt so thatt
=ndt with an integern. We obtain the behavior of the system
at an early timet given by

C̄e
tsn,qd , − iCg

0sn,qdS tÎn

2
D

3febs2q−1d − e−bs2q+1dge−sg/2dt sn ù 1d,

s24ad

C̄g
tsn,qd , Cg

0sn,qdH1 +
3

8
S tÎn

2
D2

3fe4bs2q−1d − 2 +e−4bsq+1dgJ sn ù 0d,

s24bd

keeping terms up to the order ofsdtd2. Note that by compar-
ing with the numerical solutions, we find that these expres-
sions are valid up tot,5. If the damping is weak, there will
be little difference in the coherent evolution in early times
such that exps−gt /2d<1. But what it does in the jump pro-
cess is quite remarkable. Since now there is a small probabil-
ity built up that the atom is in the excited state, there is a
probability that the atom will decay. Let us just assume that

such a decay happened now. The wave packet then under-
goes a quantum jump such that

uC̄l → exps− ikxhds−uCl, s25d

where exps−ikxhd describes the momentum recoil that the
atom gets from the emission, projected on thex axis, andh is

a random number in the rangef−1,1g. Here uC% l represents
an unnormalized wave function. In the coefficients, this pro-
cess is written as

C̄e
tsn,qd → 0, s26ad

C̄e
tsn,qd → C̄e

tsn + 1,q + hd ~ Fsn + 1d

3fe−bsq + h − 1d2 − e−bsq + h + 1d2ge−sg/2dt.

s26bd

Since then, the entire wave packet is determined byC̄g
tsn,qd,

yielding the probability distribution in momentum space
such that

Psqd = o
n

uCg
tsn,qdu2 ~ fe−bsq + h + 1d2 − e−bsq + h − 1d2g2.

s27d

It is simply the square of the difference of two Gaussians
which are slightly shifted from each other. So obviously it
will show a double-peaked structure. The locations of the
extrema ofPsqd are easily found in the limit of smallb. Note
that we are considering a spatially well-localized atomic
wave packetsDx!ld to which the small-b limit applies.
Then the locations of the two bumps inPsqd are given by
q< ±Î2sDqdsuhu!Dqd. Thus the initial momentum spread
somehow determines the locations of the peaks in the split
wave packet in the early stage of the atom-field interaction.

Figures 6(a) and 6(b) show the shapes of the wave packet
(again, the probability distribution, indeed) of an atom sitting
on a node right after an atomic jump that is arranged to occur
at a few different times, in the early stage of the atom-field
interaction: (a) in momentum space and(b) in coordinate
space, at various times of the atomic jump,t=1, 2,…, 5, 10,
and 20, with the same set of parameters as in Figs. 2(a) and
2(b). The Gaussian curve is the initial packet. Note that the
curves are independent trajectories. The figures show that
our simple argument reaching Eq.(27) is quite valid up to
t,5. It is seen that in coordinate space, the longer the co-
herent evolution time elapsed before the jump, the narrower
both the widths of and the separation between the split peaks
become, whereas in momentum space, the wider both be-
come.

In fact, one can extract two separate dynamical mecha-
nisms at work in these pictures. First, the packet splitting in
coordinate space—or in other words, the fact thatPsjd=0 at
a node—right after an atomic jump has the following physi-
cal grounds. The event of an atomic jump implies that the
atom was in the excited state before the jump. For the atom
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to be lifted from its initial ground state to the excited state,
the atom-field interaction must be nonzero. So an event of
the atomic jump tells us that the probability for the atom to
be at the node was indeed zero, and our initial Gaussian
wave packet has been accordingly modified through the
backaction of the measurement. Second, the reason that the
separation of the two split peaks in coordinate space be-
comes smaller and smaller as the advent of the atomic jump
is delayed is explained in the same context. That is, if the
atomic jump has not occurred after all, we have to conclude
that actually the atom has not gone through the Rabi inter-
action with the cavity field and has stayed in the ground
state. This means that the wave packet becomes narrower
and narrower around a node as time goes by before an
atomic jump really occurs. When a jump occurs, the packet
is split into two through the first mechanism, but since the
separation of the split packet is determined by the width of
the packet before the jump, it is narrower also. Thus one may
add that the theory of the quantum trajectory is none other
than the process of a continuous correction of our “lack of
knowledge” about the state of the system, based upon the
information provided from the measurements. The measure-
ments here are of course made by the environment—i.e., the
vacuum field which is continuously monitoring the atomic
damping.

The irregular shifts of the packets in momentum space are
due to the random momentum recoils from the atomic spon-
taneous emissions, whereas no such shifts are shown in co-
ordinate space. Note, however, that the latter isnot because

the atomic mass is infinite, but simply because

uc1sxdu2 = UE dpwsp − p1dexpsipx/"dU2

= UE dpwspdexpsipx/"dU2

= uc0sxdu2, s28d

regardless of the size of the recoil momentump1 or the
atomic mass—for the dual wave functionscsxd and wspd.
The physical reason for this is that the atomic jump has been
assumed to occurinstantaneously; i.e., no time has elapsed
before and after the jump. Hence no displacement before and
after the momentum kick. However, the absence of motion in
the coordinate spacebetweenthe atomic jumps is due to the
infinity of the atomic mass. As a matter of course, when the
atomic mass is finite, the system will evolve in coordinate
spaceafter an atomic jump according to the momentum kick
that it has gained. Anyhow, we see that there is some “inter-
nal motion,” if we may, i.e., splitting, spreading, and separa-
tion, of the wave packet even for aninfinitely massive atom
in an optical cavity although there is no center-of-mass mo-
tion. This interesting feature seems to deserve some further
discussion. The following subsection is devoted to this
purpose.

B. “Dynamics” of an infinite mass

Although an atom with infinite mass is entirely a fictitious
object, it deserves a consideration at this moment as it pro-
vides a deeper understanding of the quantum-trajectory point
of view. We just see that the wave packet of an infinitely
heavy atom interacting with the cavity field does show dy-
namics in momentum space, which is of course due to the
momentum exchanges with the field. In coordinate space,
however, nothing happensprovidedthat the system is free of
damping,no matter what happens to the wave packet in mo-
mentum space, as shown in Figs. 7(a) and 7(b). In the figure,
the inset is a lateral view of the three-dimensional-plot on the
bottom from the time axis which clearly shows the time in-
variance ofPsjd, the probability distribution in coordinate
space. From the viewpoint of mechanics, it appears rather
understandable as the atomic mass is assumed to be infinite,
but is still quite interesting in the sense thatPsjd is essen-
tially (though not exactly) a Fourier-type transform ofPsqd.
So, if Psqd changes so radically as shown in Fig. 7(a), one
would naively expect some change inPsjd also, whatever it
may be.

If we write the wave packet in the same fashion as Eq.
(16), Psjd at time t is given by

Psjd = P0o
n,a

udqei2pqjCasn,qdu2, s29d

wherea labels the atomic internal states andP0 a normaliz-
ing constant. The coefficientsCasn,qd continuously evolve
in time with the Hamiltonian, Eq.(15), but only in such a
fashion thatPsjd remains invariant in time. This is in fact
easily proved by looking at the time derivative ofPsjd—i.e.,

FIG. 6. The shapes of the wave packet sitting on a node right
after an atomic jump arranged to occur att=1, . . . ,5 ,10, and 20(a)
in momentum space and(b) in coordinate space.q=p/"k, j=x/l.
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d

dt
Psjd = P0o

n,a
E dqdq8ei2psq−q8djfĊasn,qdCa

*sn,q8d

+ Casn,qdCa
*sn,q8dg. s30d

Now from the dynamical equations(17a) and(17b), without
the damping term, we have

Ċesn,qdCe
*sn,q8d = −

În

2
fCgsn,q − 1dCe

*sn,q8d

+ Cgsn,q + 1dCe
*sn,q8dg, s31ad

Cgsn,qdĊg
*sn,q8d = +

În

2
fCgsn,qdCe

*sn,q8 − 1d

+ Cgsn,qdCe
*sn,q8 + 1dg, s31bd

etc., and simply because

E dqdq8ei2psq−q8djf− Cgsn,q − 1dCe
*sn,q8d

+ Cgsn,qdCe
*sn,q8 + 1dg = 0, s32d

etc., we find

d

dt
Psjd = 0. s33d

Nevertheless, even more interesting things happen when
the atom is subject to damping. Then the wave packet of an
infinitely massive atom does show dynamical evolutions in
coordinatespace as well both through the coherent decay
during the continuous evolution and by atomic jumps. Fig-
ures 8(a) and 8(b) show a typical time evolution of a wave
packet which has gone through a single atomic jump in mo-
mentum space(a) and in coordinate space(b) whereg=0.1,
Dq=10 andM =` for an atom initially in the ground state
and the field in a one-quantum coherent state in a lossless
cavity. In Fig. 8(b), we clearly see the actual evolution of the

FIG. 7. The time evolution of the atomic wave packet of an
infinitely heavy atom free of damping located at a node(a) in mo-
mentum space and(b) in coordinate space. The insets are ground-
level views into the time axis.

FIG. 8. The dynamics of a wave packet in the presence of damp-
ing in which an atomic jump has occurred(a) in momentum space
and (b) in coordinate space.g=0.1 andDq=10, for an infinitely
heavy atominitially in the ground state placed at a node, with the
cavity field in a one-quantum coherent state. The insets are ground-
level views along the time axis.
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wave packet in coordinate space during the coherent process,
not only the drastic change after the atomic jump: The wave
packet gets indeed continuously squeezed around its peak.
The question is how such a motion of the wave packet of an
infinitely heavy atom can occur in coordinate space. The
reason that damping causes this type of wave packet evolu-
tion even for an infinitely massive atom can be seen in Eqs.
(17a) and (17b). There the atomic damping makes the two
equations symmetric in the sense that it adds a damping term
only in Eq. (17a), and thereby we no longer have identities
such as Eq.(32).

Since everything happened for an infinitively heavy atom,
the dynamics following an atomic jump is not a mechanical
process. That is, the mean position of a peak in coordinate
space cannot be related to a time integral of that in momen-
tum space in the fashionx̄=esp̄/Mddt, as we did in Sec. II,
for an obvious reason. The alert reader will find that the
correct relation between the mean positionsx̄ and p̄ in both
spaces right after an atomic jump is indeed obtained from the
uncertainty relation—i.e.,x̄,a / p̄ wherea is a constant on
the order of", though it is not exactly" /2 because the wave
packet no longer retains the minimum uncertainty, as Figs.
8(a) and 8(b) demonstrate[33–35]. Thus, it should be en-
tirely attributed to the intrinsic wave nature of a matter ar-
ticle as well as to the issue of the position and momentum
uncertainty which forms the very heart of quantum mechan-
ics [36].

C. Overdamped case

When the atomic damping is strong such thatgù1 (out of
the strong coupling regime), the wave packet essentially fol-
lows the coherent decay only, without quantum jumps. This
can be quickly appreciated from the dynamical equations in
the quantum trajectory, Eqs.(24a) and (24b). The form of
Eq. (24a) shows that the atomic upper-state probability
uCesn,qdu2 has an early time dependence roughly of the form
t2 exps−gtd. Figure 9 shows the temporal behaviors of
Pesqd=SnuCesn,qdu2 and Pe=edqPsqd in a trajectory in
which an atomic jump has not occurred yet. For a largeg,

the exponential-type factor dictates so that the atomic upper-
state probability quickly decays to zero, having no time to
grow up to an appreciable value. Thus no atomic jumps are
likely, and the system follows only the coherent decay. While
damping tends to put the system back to its initial internal
energy state in this fashion, the atom-field momentum ex-
change process rapidly broadens the wave packet in momen-
tum space, which ends up narrowing—i.e., localizing—the
wave packet in coordinate space although the uncertainty
productDxDp slowly grows in general. This is none other
than the phenomenon of “damping-induced localization”
(DIL ) [37]. For a moderate atomic damping, the wave packet
follows the coherent evolution showing DIL until an atomic
jump which brings about a sudden splitting—a gigantic
change—in the wave packet as shown in Figs. 8(a) and 8(b).

D. Effect of cavity decay

The cavity quantum jumps, on the other hand, do not do
much in the wave packet splitting. To see this let us turn off
the atomic damping channel and open the cavity decay chan-
nel. Then Eq.(25) is replaced by the process

uC̄l → auCl, s34d

which brings about changes in the coefficients such that

C̄e
tsn,qd → ÎnCe

tsn + 1,qd, s35ad

C̄g
tsn,qd → În + 1Cg

tsn + 1,qd. s35bd

It will certainly change the shape of the wave packet slightly,
but never as much as splitting the packet into two pieces.
Particularly when the mean cavity photon number is high,
there will be no essential change, whereas the packet split-
ting due to the atomic decay is regardless of the intensity of
the field.

IV. QUANTUM-TRAJECTORY SIMULATION
OF A TYPICAL EXPERIMENT

Since atomic damping changes the wave packet in such a
radical fashion, one may expect that it can play a significant
role in actual experiments. An actual experimental setup will
be most possibly such that a beam of atoms are launched to
fly through the cavity mode while the cavity is continuously
pumped by an external field, and one measures the position
distribution of the atoms emerging from the interaction re-
gion on a surface at some distance from the cavity.

For the purpose of particularly watching the effect of
damping in the OSGE, one may simplemindedly consider a
conditional measurement in which one records the position
distribution of only those atoms that have undergone any
number of quantum jumps. However, one will soon realize
that it will not work that way because, even in such a cir-
cumstance, always is there the wave packet splitting due to
the coherent process. That is, it seems not practically pos-
sible to say, “This much splitting is due to the coherent evo-
lution and that much is due to the quantum jumps.” One may
then consider another scheme in which the atom-field inter-

FIG. 9. The evolution ofPesqd=onuCesn,qdu2. The inset shows
the temporal behavior ofPe=edqPsqd.

QUANTUM-TRAJECTORY ANALYSIS OF AN OPTICAL… PHYSICAL REVIEW A 69, 063817(2004)

063817-9



action time is set so short that there is negligible splitting via
the coherent process, and the aforesaid conditional measure-
ment is done. But then again, one will realize that it is not
possible to resolve the splitting right after the jumps because
it is within the Heisenberg uncertainty limit. In the region far
from the interaction zone, on the other hand, the position
distribution gets so broad that the tiny splitting will be com-
pletely buried.

So, in this work, we just limited our attention to the ques-
tion of whether the OSGE discussed so far could be practi-
cally observed in a typical cavity-QED experiment even in
the presence of appreciable damping strengths. We did a
Monte Carlo simulation of a typical cavity-QED experiment
using the quantum-trajectory method. Below we will com-
pare the result of a hypothetical experiment in which the
atoms are assumed to be nonradiative with that of a realistic
experiment in which the atoms are radiative. Obviously the
difference will be none other than the effect of atomic damp-
ing in the OSGE.

As we did in our previous work on the cavity-QED atom
detection system[21], we assumed a single-mode cavity
resonant to the transition line of bariums138Bad atom, l
=553 nm, with g0/2p=42MHz, which correspond tom
,1.1310−4. The transverse cavity mode is assumed to have
a profile so thatgsxWd=g0 expf−sy2+z2d /w2gcoskx, where the
cavity axis lies in thex direction andw, the mode waist, is
taken to be 37mm. The atomic longitudinal velocity is set to
vz=400 m/sec. The driving field amplitudeE is such that
E /k=1 so that the mean intracavity photon number is just 1
at steady state—i.e.,ka†alss=1—before the entry of an atom.
We choose damping strengths as large asg /g0=2k /g0=0.5.
We assume that the initial atomic wave packet, to be deter-
mined by the geometry of the system, is a Gaussian having
momentum uncertaintyDp=10"k which again corresponds
to Dxøl /100, a well-localized, particle like wave packet.
Note that the “initial time” is the time when the atoms reach
the plane normal to the atomic path, assumed to be at 10w
away, for instance, from the cavity axis. Thus, until the wave
packet reaches the region of appreciable atom-field coupling
strength, it will freely evolve.

Figure 10 shows the “far-field” momentum distributions
averaged over 300 atoms detected on a screen located at a
large distance—approximately 40w away, for instance, from
the cavity axis.(Note that the far-field position distributions
are exactly the same in shape as those of the momentum
distributions with proper axis labeling and scaling, according
to the diffraction theory.) Let us add that it took about a
month for our 16-node PC cluster of clock speed 2.4 GHz to
complete the computation of 300 quantum trajectories only
to obtain this figure. The thinner line is for case(a) in which
the atoms are assumed to be nonradiative, while the thicker
is for case(b) where the atomic decay channel is let open
with g /g0=0.5. It turns out that during the entire flight time,
each atom has gone through about 25 jumps on average in
case(b). The figure shows that, even for the atoms and cavity
as strongly damped as the given strengths, the wave packet
splitting robustly shows up, having hardly been washed out.
The overall width ofPsqd in case(a) is greater than the value
in case(b), the height ofPs0d in case(a) being smaller than

that in case(b). The narrower distribution of case(b) can be
interpreted as weaker diffusive motion of the atoms in the
field during the interaction time. Less diffusion implies less
frequent exchanges of quanta between the atom and field—
i.e., a weaker interaction. So the mean-field intensity is
smaller in the latter case, which again indicates a greater
portion of the vacuum state in the cavity field on average.
The stronger contamination of the cavity field by the vacuum
state is due to the introduction of an additional damping
channel—i.e., the atomic damping—to the system. The nar-
rower width in case(b) can be understood in this way which
may be another interpretation of DIL.

Let us wrap up this section by leaving with a brief remark
on the states of the detected atoms: Without atomic damping,
the outcome of such an experiment would also yield the
wave packet split into a pair of distinct bumps like the thin
line in Fig. 10. Then each bump will correspond to the ag-
gregate of atoms in either of the orthogonal dressed states. If
atomic damping is present, however, things become differ-
ent. Note that an atomic jump will put the atom back to its
ground state which is simply a 50-50 mixture of the orthogo-
nal dressed states. Furthermore, the final state of the system
will eventually decay into the product of the atomic ground
state and the initial coherent field state such that

lim
t→`

uCstdl = ucfl ^ ucal = ual ^ E dpCspdup,gl, s36d

wherea=E /k, since the atom-field entanglement gets lost as
the cavity field is restored to the initial state by the driving
field whereas the atom eventually decays into the ground
state. Thus the atomic states on both peaks are the same. So,
when atomic damping is present, it is difficult to say that the
state on one peak is, or has been, orthogonal to that on the
other.

V. SUMMARY

We analyzed the optical Stern-Gerlach effect in the
cavity-QED realm. We presented an intuitive interpretation

FIG. 10. The “far-field” momentum distributions averaged over
300 atoms at a location approximately 40w away from the cavity
axis. The thinner line is for the case of nonradiative atoms, while
the thicker line is for the case of radiative atoms withg /g0=0.5.
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of the optical Stern-Gerlach effect in the dressed-state pic-
ture. We particularly investigated the effect of atomic damp-
ing on the wave packet evolution in the framework of
quantum-trajectory theory. In the viewpoint of QTT, it is
found that the atomic damping can also cause the wave
packet splitting, and furthermore this process occurs in a
nonmechanicalfashion, as opposed to the coherent process
that ismechanical. It is also found that thecontinuousatomic
decay process tends to localize the atomic wave packet,
keeping it from spreading so fast as in the case of no atomic
damping, whereas thediscontinuousatomic jumps tend to

split the packet. Proposing a feasible experimental scheme in
the cavity-QED realm, we pointed out that the phenomenon
of atomic wave packet splitting could be experimentally ob-
served, even in a moderate coupling regime where the
atomic damping rate is comparable to the atom-field cou-
pling constant.
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