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The quantum correlations between the beams generated by polariton pair scattering in a semiconductor
microcavity above the parametric oscillation threshold are computed analytically. The influence of various
parameters, including the cavity-exciton detuning, the intensity mismatch between the signal and idler beams,
and the amount of spurious noise, is analyzed. We show that very strong quantum correlations between the
signal and idler polaritons can be achieved. However, the quantum effects in the outgoing light fields are
strongly reduced due to the large mismatch in the coupling of the signal and idler polaritons to the external
photons.
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I. INTRODUCTION

High finesse semiconductor microcavities with embedded
quantum wells allow us to achieve the strong-coupling re-
gime between the quantum-well excitons and the cavity pho-
tons [1]. The normal modes are mixed exciton-photon
modes, called cavity polaritons, which present large nonlin-
earities coming from the Coulomb interactions between the
exciton components. Under resonant pumping, this leads to a
parametric process where a pair of pump polaritons scatter
into nondegenerate signal and idler modes while conserving
energy and momentum. The scattering is particularly strong
in microcavities, because the unusual shape of the polariton
dispersion makes it possible for the pump, signal, and idler
modes to be on resonance at the same time(see Fig. 1).
Moreover, the relationship between the in-plane momentum
of each polariton mode and the direction of the external pho-
ton to which it couples[2] enables us to investigate the para-
metric scattering using measurements at different angles to
access the various modes.

Parametric processes were demonstrated in semiconduc-
tor microcavities by Savvidiset al. [3] using ultrafast pump-
probe measurements. They observed parametric amplifica-
tion, where the scattering is stimulated by excitation of the
signal mode with a weak probe field. Parametric oscillation,
where there is no probe and a coherent population in the
signal and idler modes appears spontaneously, has since been
observed by Stevensonet al. [4] and Baumberget al. [5] in
cw experiments. The lower polariton was pumped resonantly
at the “magic” angle of about 16°. Above a threshold pump
intensity, strong signal and idler beams were observed at
about 0° and 35°, without any probe stimulation. The coher-
ence of these beams was demonstrated by a significant spec-
tral narrowing.

The large optical nonlinearity of cavity polaritons makes
them very attractive for quantum optics. Noise reduction on
the reflected light field has been predicted[6] and achieved
experimentally[7] for a resonant pumping of the lower po-
lariton at 0°. The parametric fluorescence was recently pre-
dicted to produce strongly correlated pairs of signal and idler
polaritons, yielding a two-mode squeezed state[8,9]. The
parametric oscillation regime is also very interesting in this

respect[10]. It is well known that optical parametric oscilla-
tors (OPOs) can be used to generate twin beams, the fluctua-
tions of which are correlated at the quantum level. A noise
reduction of 86% was obtained by substracting the intensities
of the signal and idler beams produced by a LiNbO3 OPO
[11].

The purpose of this paper is to investigate the possibility
of generating twin beams using a semiconductor microcavity
above the parametric oscillation threshold. The classical
model developed by Whittaker[12] is no longer sufficient to
study the quantum noise properties of the system. Thus we
adapt the quantum model by Ciutiet al., previously used in
the context of parametric amplification[13] and parametric
fluorescence[9,14], to the parametric oscillator configura-
tion. Furthermore, we compute the field fluctuations using
the input-output method[15,16]. We also include the excess
noise associated with the excitonic relaxation, not considered
by previous authors[9,14], which may play a critical role for
experimental observation of the quantum effect.

FIG. 1. Energy dispersion of the two polariton branches for a
microcavity sample having a Rabi splitting of 2.8 meV at zero
cavity-exciton detuning. The arrows show the parametric conver-
sion of the pump polaritonss.10°) into signal s0°d and idler
s.20°d polaritons.
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II. MODEL

A. Hamiltonian

Following Ciuti et al. [13,14] we write the effective
Hamiltonian for the coupled exciton-photon system. The spin
degree of freedom is neglected,

H = H0 + Hexc−exc+ Hsat. s1d

The first term is the linear Hamiltonian for excitons and cav-
ity photons,

H0 = o
k

Eexcskdbk
†bk + o

k
Ecavskdak

†ak

+ o
k

"VRsak
†bk + bk

†akd, s2d

with bk
† andak

† the creation operators, respectively, for exci-
tons and photons of in-plane wave vectork, which satisfy
boson commutation rules.Eexcskd andEcavskd are the energy
dispersions for the exciton and cavity modes. The last term
represents the linear coupling between the exciton and cavity
photon, which causes the vacuum Rabi splitting 2"VR. The
fermionic nature of electrons and holes causes a deviation of
the excitons from bosonic behavior, which is accounted for
through an effective exciton-exciton interaction and exciton
saturation. The exciton-exciton interaction term writes

Hexc−exc=
1

2 o
k,k8,q

Vqbk+q
† bk8−q

† bkbk8, s3d

where Vq.V0=s6e2aexc/e0Ad for qaexc!1, aexc being the
two-dimensional exciton Bohr radius,e0 the dielectric con-
stant of the quantum well, andA the macroscopic quantiza-
tion area. The saturation term in the light-exciton coupling is

Hsat= − o
k,k8,q

Vsatsak+q
† bk8−q

† bkbk8 + ak+qbk8−qbk
†bk8

† d, s4d

where Vsat=s"VR/nsatAd with nsat=7/s16paexc
2 d being the

exciton saturation density. We consider resonant or qua-
siresonant excitation of the lower polariton branch by a
quasimonochromatic laser field of frequencyvL=EL /" and
wave vectorkL . If the pump intensity is not too high the
resonances(i.e., the polariton states) are not modified, except
for an energy shift(that will be calculated below). Then it is
much more convenient to work directly in the polariton ba-
sis. The polariton operators are obtained by a unitary trans-
formation of the exciton and photon operators

Spk

qk
D = S− Ck Xk

Xk Ck
DSak

bk
D , s5d

where Xk and Ck are positive real numbers called the
Hopfield coefficients, given by

Xk
2 =

dk + Îdk
2 + VR

2

2Îdk
2 + VR

2
, s6d

Ck
2 =

VR
2

2Îdk
2 + VR

2sdk + Îdk
2 + VR

2d
. s7d

Xk
2 andCk

2 can be interpreted, respectively, as the exciton and
photon fraction of the lower polaritonpk. In the case of
resonant excitation of the lower polariton, it is possible to
consider only the lower polariton and neglect its nonlinear
coupling to the upper polariton. In terms of the lower polar-
iton operators, the Hamiltonian(1) then reads as

H = HP + HPP
ef f. s8d

HP is the free-evolution term for the lower polariton

HP = o
k

EPskdpk
†pk , s9d

andHPP
ef f is an effective polariton-polariton interaction,

HPP
ef f =

1

2 o
k,k8,q

Vk,k8,q
PP pk+q

† pk8−q
† pkpk8, s10d

where

Vk,k8,q
PP = hV0Xuk+quXk8 + 2VsatsCuk+quXk8 + Ck8Xuk+qudjXuk8−quXk.

s11d

In the following, we neglect the contribution of the satu-
ration term, which can be shown to be more than an order of
magnitude smaller than the polariton-polariton interaction
[17]. This yieldsVk,k8,q

PP .V0Xuk+quXk8Xuk8−quXk. We also ne-
glect multiple diffusions, i.e., interactions between modes
other than the pump mode. This approximation is valid not
too far above the parametric oscillation threshold.1 It is
equivalent to considering only the terms where the pump
polariton operatorpkL

appears at least twice:

HPP
ef f =

1

2
VkL ,kL ,0pkL

† pkL

† pkL
pkL

+ o
kÞkL

VkL ,kL ,kL−ksp2kL−k
† pk

†pkL
pkL

+ H.c.d

+ 2 o
kÞkL

Vk,kL ,0
PP pkL

† pk
†pkL

pk . s12d

The first term is a Kerr-like term for the polaritons in the
pump mode. The second term is a “fission” process, where
two polaritons of wave vectorkL are converted into a “sig-
nal” polariton of wave vectork and an “idler” polariton of
wave vector 2kL −k. The last term corresponds to the inter-
action of the pump modekL with all the otherk states, which
results in a blueshift proportional toupkL

u2.

B. Resonance condition

The resonance condition for the fission processhkL ,kLj
→ hk ,2kL −kj reads

1Multiple diffusions were demonstrated in Refs.[24,25].
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ẼPskd + ẼPs2kL − kd = 2ẼPskLd, s13d

whereẼPsqd is the energy of the polariton of wave vectorq,
renormalized by the interaction with the pump polaritons

ẼPsqd = EPsqd + 2Vq,kL ,0ukpkL
lu2. s14d

Note that the factor of 2 disappears forq=kL . Equation
(13) always has a trivial solutionk =kL . Nontrivial solutions
exist, provided that the wave vectorkL is above a critical
value, or equivalently, if the angle of incidence is above the
so-called “magic angle”uc [3]. From now on we suppose
that the microcavity is excited resonantly with an angleuc.
Figure 2 is a plot of the quantityuEPskd+EPs2kL −kd
−2EPskLdu as a function ofk =hkx,kyj, with kL being parallel
to thex axis.

This shows that the resonance condition can be satisfied
for a wide range of wave vectorshk ,2kL −kj. In recent ex-
periments, parametric oscillation was observed in the normal
direction k =0 [4,19]. In this paper we consider only the
parametric processhkL ,kLj→ h0,2kLj assuming that the
other ones remain below threshold. Then, we can neglect the
effect of modes other than0,kL ,2kL . The evolution of these
three modes is given by a closed set of equations that we are
now going to derive.

III. HEISENBERG-LANGEVIN EQUATIONS

In order to study the quantum fluctuations we have to
write the Heisenberg-Langevin equations, including the re-
laxation and fluctuation terms. The relaxation of the cavity
mode comes from the interaction with the external electro-
magnetic field through the Hamiltonian[18],

HI = i"E dv

2p
ksak

†Av − Av
†akd. s15d

The coupling constant is given byk=Î2gak, wheregak is
the cavity linewidth(HWHM). This leads to the following
evolution equation for the cavity field in an empty cavity:

dak

dt
std = − gakakstd + Î2gakAk

instd, s16d

whereAk
instd is the incoming coherent laser field, which has

fluctuations equal to the vacuum noise. In this equation the
normalizations are not the same for the cavity field as for the
external field:nak

std=kak
†stdakstdl is the mean number of cav-

ity photons, whileIk
in=kAk

in†stdAk
instdl is the mean number of

incident photons per second.
Exciton relaxation is a much more complex problem. The

density is assumed to be low enough to neglect the relaxation
due to exciton-exciton interaction[20]. At low density and
low enough temperature the main relaxation mechanism is
the interaction with acoustic phonons. A given exciton mode
bk is coupled to all the other exciton modesbk8 and to all the
phonon modes fulfilling the condition of energy and wave-
vector conservation[21]. Relaxation in microcavities in the
strong-coupling regime has been studied in detail[22,23].
However, the derivation of the corresponding fluctuation
terms requires additional hypotheses[10]. We model the re-
laxation by a linear coupling to the exciton reservoir(made
of all the exciton modesbk8 with k8Þk), which is assumed
to be harmonic.2 Then, in the same way as for the photon
field, the fluctuation-dissipation part in the Langevin equa-
tion for the excitons writes

dbkstd
dt

= − gbkbkstd + Î2gbkBk
instd, s17d

wheregbk is the exciton linewidth(HWHM) and Bk
instd the

input excitonic field, which is a linear combination of the
reservoir modes. Since there is no direct excitation of the
exciton field, it comprises only noise, which is at least the
vacuum noise(in the case where the exciton reservoir is the
vacuum state).

Using these results we can write the Heisenberg-Langevin
equations for the cavity and exciton modes of wave vectors
0,kL ,2kL and then for the three corresponding lower polar-
iton modes. We define the slowly varying operators,

p̃kL
std = pkL

stdeiELt/",

p̃0std = p0stdeiEps0dt/",

p̃2kL
std = p2kL

stdeiEps2kLdt/", s18d

which obey the following equations:

dp̃0

dt
= −

i

"
s2V0,kL ,0p̃kL

† p̃kL
− ig0dp̃0

−
i

"
VkL ,kL ,kL

p̃2kL

† p̃kL

2 eiDEt/" + P0
in, s19d

2The effect of the phonon reservoir is included only in the cou-
pling coefficient; as a result, this model does not allow us to study
the temperature dependence of the fluctuations.

FIG. 2. Plot of the quantityuEPskd+EPs2kL −kd−2EPskLdu (in
meV) as a function ofkx and ky (in cm−1) for the parameters of
Fig. 1.
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dp̃2kL

dt
= −

i

"
s2V2kL ,kL ,0p̃kL

† p̃kL
− ig2kL

dp̃2kL

−
i

"
VkL ,kL ,kL

p̃0
†p̃kL

2 eiDEt/" + P2kL

in , s20d

dp̃kL

dt
= −

i

"
sDL + VkL ,kL ,0p̃kL

† p̃kL
− igkL

dp̃kL

−
2i

"
VkL ,kL ,kL

p̃kL

† p̃0p̃2kL
e−iDEt/" + PkL

in , s21d

where for any given wave vectorq, Pq
in=−Cq

Î2gaqAq
in

+Xq
Î2gbqBq

in is the polariton input field(which is a linear
combination of the cavity and exciton input fields; only the
driving laser field AkL

in has a nonzero mean value), gq

=Cq
2gaq+Xq

2gbq is the polariton linewidth;DL=EpskLd−EL is
the laser detuning; andDE=Eps2kLd+Eps0d−2EL is the en-
ergy mismatch.

Compared to previous treatments[9,14], the model in-
cludes a full treatment of the field fluctuations. In addition, it
is valid above threshold since the equation of motion of the
pumped mode accounts for the pump depletion. As men-
tioned above, this is valid not too far above threshold, be-
cause otherwise multiple scattering cannot be neglected any-
more [24,25].

This set of equations is similar to the evolution equations
of a nondegenerate triply resonant optical parametric oscilla-
tor [26]. The nonlinearity is ofxs3d type, while in most OPOs
it is of xs2d type. OPOs based on four-wave mixing have
already been demonstrated[27]. However, let us stress that
here the parametric process involves the excitations of a
semiconductor matter wave(i.e., polaritons) instead of pho-
tons. In the following, we evaluate the potential applications
of this type of OPO in quantum optics. The hybrid nature of
polaritons makes the treatment of quantum fluctuations more
complicated, since we have to consider additional sources of
noise(i.e., the luminescence of excitons).

IV. MEAN FIELDS ABOVE THRESHOLD

The first task is to compute the stationary state of the
system. This comes to the calculation done by Whittaker in
Ref. [12]. We neglect the renormalization effects due to the
interaction with the pump mode, which allows us to get ana-
lytical expressions. We suppose that the angle of incidence is
adjusted in order to satisfy the resonance conditionDE=0
and that the pump laser is perfectly resonantsDL=0d. Equa-
tions (19)–(21) now write

dp̃0

dt
= − g0p̃0 − iEintp̃2kL

† p̃kL

2 + P0
in, s22d

dp̃2kL

dt
= − g2kL

p̃2kL
− iEintp̃0

†p̃kL

2 + P2kL

in , s23d

dp̃kL

dt
= − gkL

p̃kL
− 2iEintp̃kL

† p̃0p̃2kL
+ PkL

in , s24d

whereEint=VkL ,kL ,kL
/". Let us recall that among the polar-

iton input fields, only the photon part ofPkL

in corresponding
to the pump laser field has a nonzero mean value. The exci-
tonic input fieldsBq

in correspond to the thermal excitation of
the exciton modes(that eventually gives rise to lumines-
cence) and are incoherent fields with zero mean value. The
stationary state is given by

− gkL
p̄kL

− 2iEintp̄kL

* p̄0p̄2kL
= CkL

Î2gaĀkL

in , s25d

− g0p̄0 − iEintp̄2kL

* p̄kL

2 = 0, s26d

− g2kL
p̄2kL

* + iEintp̄0p̄kL

*2 = 0. s27d

For a nontrivial solution to exist, the determinant of the
last two equations must be zero,

Eint
2 up̄kL

u4 − g0g2kL
= 0, s28d

which gives the pump-polariton population threshold

up̄kL
u2 =

Îg0g2kL

Eint
, s29d

and the pump intensity threshold

IkL ,thr
in = uĀkL ,thr

in u2 =
gkL

2 sg0g2kL
d1/2

2gaCkL

2 Eint

. s30d

The signal and idler polariton populations are easily de-
rived,

up̄0u2 =
gkL

2Eint

Îg2kL

g0
ss − 1d, s31d

up̄2kL
u2 =

gkL

2Eint
Î g0

g2kL

ss − 1d, s32d

wheres=ÎIkL

in / IkL ,thr
in is the pump parameter. We finally get

the intensities of the signal and idler output light fields,

I0
out = 2gaC0

2up̄0u2 =
gagkL

C0
2

Eint

Îg2kL

g0
ss − 1d,

I2kL

out = 2gaC2kL

2 up̄2kL
u2 =

gagkL
C2kL

2

Eint
Î g0

g2kL

ss − 1d. s33d

Above threshold, all the polaritons created by the pump
are transferred to the signal and idler modes, so that the
number of pump polaritons is clamped to a fixed value. This
phenomenon, called pump depletion, is well known in triply
resonant OPOs. The signal and idler intensities grow like
ÎIkL

in (see Fig. 3). These results are in agreement with those
of Ref. [12].
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Finally, we study the ratio of the signal and idler output
intensities, which is an important parameter in view of the
analysis of the correlations between these two beams. It is
given by the simple equation,

I0
out

I2kL

out =
g2kL

C0
2

g0C2kL

2 . s34d

We consider a typical III-V microcavity sample contain-
ing one quantum well, with a Rabi splitting 2"VR
=2.8 meV. At zero cavity-exciton detuning, one findskL
=1.153104 cm−1. The photon fractions of the signal and
idler modes are, respectively,C0

2=0.5 andC2kL

2 .0.053. As-
suming that they have equal linewidths the signal beam
power should be about 10 times that of the idler beam. It is
possible to reduce this ratio by increasing the cavity-exciton
detuning, as can be seen in Fig. 4. However, the oscillation
threshold goes up. In the following, all the results will be
given at zero detuning.

V. FLUCTUATIONS

A. Linearized evolution equations

For any operatorOstd we define a fluctuation operator
dOstd=Ostd−kOstdl. In order to compute the fluctuations, we
use the “semiclassical” linear input-output method, which
consists of studying the transformation of the incident fluc-
tuations by the system[16]. It has been shown to be equiva-

lent to a full quantum treatment. We linearize Eqs.(22)–(24)
in the vicinity of the working pointp0 computed in the pre-
vious section. We obtain the following set of equations:

ddpkL

dt
= − gkL

dpkL
− 2iEintsp̄0p̄2kL

dpkL

† + p̄kL

* p̄2kL
dp0

+ p̄kL

* p̄0dp2kL
d + dPkL

in , s35d

ddp0

dt
= − g0dp0 − iEints2p̄2kL

* p̄kL
dpkL

+ p̄kL

2 dp2kL

† d + dP0
in,

s36d

ddp2kL

dt
= − g2kL

dp2kL
− iEints2p̄0

* p̄kL
dpkL

+ p̄kL

2 dp0
†d + dP2kL

in .

s37d

We can now inject the mean values of the fieldspkL
, p0,

andp2kL
that we have computed in the previous section[Eqs.

(29), (31), and(32).
First, we have to choose the phases of the fields(this

choice has no influence on the physics of the problem). We
set the phase of the pump fieldAkL

in to zero. Thenp̄kL
is a

positive real number. Equations(26) and (27) impose the
same relationship between the signalw0 and idler w2kL
phases,

w0 + w2kL
= −

p

2
, s38d

whereas the relative phasew0−w2kL
is not fixed and under-

goes diffusion like the phase of a laser. We setp̄0 to be a real
positive number(this corresponds to neglecting phase diffu-
sion). Then p̄2kL

is a pure imaginary number. With these
choices of phase, the evolution equations write

ddpkL

dt
= − gkL

sdpkL
+ ss − 1ddpkL

† d − Î2gkL
g0ss − 1ddp0

− iÎ2gkL
g2kL

ss − 1ddp2kL
+ dPkL

in , s39d

ddp0

dt
= − g0dp0 + Î2gkL

g0ss − 1ddpkL
− iÎg0g2kL

dp2kL

†

+ dP0
in, s40d

ddp2kL

dt
= − g2kL

dp2kL
− iÎ2gkL

g2kL
ss − 1ddpkL

− iÎg0g2kL
dp0

† + dP2kL

in . s41d

Using these three equations and their conjugate equations we
can calculate the output fluctuations of the pump, signal, and
idler fields as a function of the input fluctuations.

FIG. 3. Intensities of the output signal(solid line) and idler
(dashed line) beams as a function of the pump intensity. All the
intensities are normalized to the threshold intensityIkL ,thr

in . The three
modes are assumed to have the same linewidths.

FIG. 4. The ratio of the photonic fractions of the signal and idler
polaritons as a function of the cavity-exciton detuningd. The Rabi
splitting is 2.8 meV.
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B. Amplitude fluctuations

In this paper we are mostly interested in the amplitude
correlations between signal and idler.3 We will see that in the
simple case where we neglect the renormalization effects it is
enough to solve a system of three equations. We define the
real and imaginary parts of the polariton, photon, and exciton
fields as

aq = dpq + dpq
†,

bq = − isdpq − dpq
†d,

aq
insoutd = dPq

insoutd + dPq
insoutd†,

bq
insoutd = − ifdPq

insoutd − dPq
insoutd†g,

aq
A,insoutd = dAq

insoutd + dAq
insoutd†,

bq
A,insoutd = − ifdAq

insoutd − dAq
insoutd†g,

aq
B,insoutd = dBq

insoutd + dBq
insoutd†,

bq
B,insoutd = − ifdBq

insoutd − dBq
insoutd†g. s42d

The mean fieldspkL
andp0 are real positive numbers, there-

fore akL
anda0 correspond to amplitude fluctuations andbkL

and b0 to phase fluctuations. The mean fieldp2kL
is a pure

imaginary number; therefore, −b2kL
corresponds to ampli-

tude fluctuations anda2kL
to phase fluctuations. The evolu-

tion equations for the amplitude fluctuations write

dakL

dt
= − gkL

sakL
− Î2gkL

g0ss − 1da0

+ Î2gkL
g2kL

ss − 1db2kL
+ akL

in , s43d

da0

dt
= − g0a0 + Î2gkL

g0ss − 1dakL
− Îg0g2kL

b2kL
+ a0

in,

s44d

db2kL

dt
= − g2kL

b2kL
− Î2gkL

g2kL
ss − 1dakL

− Îg0g2kL
a0

+ b2kL

in . s45d

We get a set of three linear differential equations. Taking
the Fourier transform we obtain in matrix notation

1
gkL

s − iV Î2gkL
g0ss − 1d − Î2gkL

g2kL
ss − 1d

− Î2gkL
g0ss − 1d g0 − iV Îg0g2kL

Î2gkL
g2kL

ss − 1d Îg0g2kL
g2kL

− iV
2

31 akL
sVd

a0sVd
b2kL

sVd 2 = 1 akL

in

a0
in

b2kL

in 2 . s46d

The inversion of the 333 matrix provides the amplitude
fluctuations of the fieldspkL

sVd, p0sVd, and p2kL
sVd as a

function of the input fluctuations.

C. Fluctuations of the output light fields

The intracavity light field for a given wave vectorq can
be deduced from the polariton fields by inverting Eq.(5):
aq=−Cqpq+Xqqq. Thus the spectrum of the intracavity light
field fluctuations is given by

daqsVd = − CqdpqsVd + XqdqqsVd, s47d

wheredaqsVd, dpqsVd, anddqqsVd are the Fourier compo-
nents of the field fluctuations in the rotating frame at the
lower polariton frequencyEpsqd.

The spectrum of the upper polariton fieldqq is peaked
around the upper polariton frequencyEqsqd. If the upper po-
lariton linewidth is smaller than the splittingEqsqd−Epsqd
(which we will assume, since it corresponds to the strong-
coupling condition), the components ofqq around the lower
polariton frequencyEpsqd are very small and can be ne-
glected. Therefore, if we limit ourselves to small enough
noise frequenciesV around the center frequencyEpsqd, we
have

daqsVd = − CqdpqsVd. s48d

It is easy to deduce the fluctuations of the output light
field using the input-output relationship for the cavity mirror
Aq

out=Î2gaqaq−Aq
in [15,16]. One finally obtains

dAq
outsVd = − Cq

Î2gaqdpqsVd − dAq
insVd s49d

or, for the amplitude fluctuations,

aq
A,outsVd = − Cq

Î2gaqaqsVd − aq
A,insVd. s50d

D. Input fluctuations

In this paragraph we study the noise sources in our sys-
tem.AkL

in is the coherent pump laser fieldA0
in and both other

input fieldsA2kL

in are equal to the vacuum field. Therefore, the
amplitude fluctuations of these three fields are equal to the
vacuum fluctuations. The treatment of excitonic fluctuation is
more complex. The amplitude noise spectra(normalized to
the vacuum noise) of the three excitonic fieldsBkL

in , B0
in, and

B2kL

in are given by

3Correlations between other quadratures of the signal and idler
fields are hardly accessible in experiments, because of the large
frequency difference between them(a few meV, i.e., a few hun-
dreds of GHz).
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Saq

B,insVd = 1 + 2nq for q = 0,kL ,2kL , s51d

wherenq is the mean number of excitations in the reservoir
which depends on the temperature and pump intensity. Since
the reservoir is populated through phonon-assisted relaxation
from the pump mode it is a reasonable assumption to take the
reservoir occupation as proportional to the mean number of
excitons in the pump mode

nq = bubqu2 = bXq
2upqu2, s52d

whereb is a dimensionless constant which characterizes the
efficacy of the relaxation process. This simple model ac-
counts for the excess noise of the reflected light at low exci-
tation intensity in a satisfactory way. In particular, it repro-
duces the observed linear dependence of the excess noise
with the excitation intensity[10].

E. Noise spectra

In fluctuation measurements the measured quantity is the
noise spectrum. The noise spectrumSOsVd of an operatorO
is defined as the Fourier transform of the autocorrelation
function COst ,t8d,

SOsVd =E COstdeiVtdt, s53d

where

COst,t8d = kOstdOst8dl − kOstdlkOst8dl = kdOstddOst8dl,

s54d

and for a stationary processCOst ,t8d=COstd with t= t− t8.
The noise spectrum is related to the Fourier transformdOsVd
of the fluctuationsdOstd by the Wiener-Kinchine theorem

kdOsVddOsV8dl = 2pdsV + V8dSOsVd. s55d

In the same way the correlation spectrumSOO8sVd of two
operatorsO,O8 is defined as the Fourier transform of the
correlation function

COO8st,t8d = kOstdO8st8dl − kOstdlkO8st8dl. s56d

The correlation spectrum is also related to the Fourier com-
ponents of the fluctuations

kdOsVddO8sV8dl = 2pdsV + V8dSOO8sVd. s57d

The relevant quantity is the normalized correlation spectrum

COO8sVd =
SOO8sVd

ÎSOsVdSO8sVd
. s58d

One has alwaysuCuø1. A nonzero value ofCOO8sVd indi-
cates some level of correlation between the two measure-
ments.

VI. RESULTS

A. Fluctuations of the intracavity polariton fields

In order to shed some light on the above-mentioned anal-
ogy with an OPO, we assume that all three polariton modes

have the same linewidths. This is the case if the cavity and
exciton linewidths are equalsgak=gbkd and do not depend on
k. We setg=gkL

=g0=g2kL
=ga=gb.

After some straightforward algebra we get the amplitude
fluctuations of the polariton fields,

akL
sVd =

1

DsVd
f− gsV + 2igdakL

in − gÎ2ss − 1ds2g − iVda0
in

+ gÎ2ss − 1ds2g − iVdb2kL

in g, s59d

a0sVd =
1

DsVd
hgÎ2ss − 1ds2g − iVdakL

in + fg2s3s − 2d − V2

− igVss + 1dga0
in + gfgss − 2d + iVgb2kL

in j, s60d

b2kL
sVd =

1

DsVd
h− gÎ2ss − 1ds2g − iVdakL

in + gfgss − 2d

+ iVga0
in + fg2s3s − 2d − V2 − igVss + 1dgb2kL

in j,

s61d

with

DsVd = gf8g2ss − 1d − V2ss + 2dg + iVfg2s4 − 6sd + V2g.

s62d

B. Twin polaritons

Let us now calculate the fluctuations of the difference of
the signal and idler amplitudes. Letr be the normalized
quantity

rsVd =
1
Î2

fa0sVd + b2kL
sVdg. s63d

The plus sign comes from the fact that the idler amplitude
fluctuation is −b2kL

. We find

rsVd = f4g2ss − 1d − V2 − iVgsgr in s64d

with

r in =
1
Î2

sa0
in + b2kL

in d.

It is important to notice thatr does not depend on the
pump fluctuations, which cancel out when we make the dif-
ference. This property is at the origin of twin beams genera-
tion in OPOs. We get perfect noise suppression forV=0 and
s→1.

In a degenerate or quasidegenerate OPO the symmetry
between signal and idler is conserved outside the cavity, be-
cause the two fields have the same frequency and are coupled
in the same way to the external field through the losses of the
cavity mirrors. In such systems the twin character of the
signal and idler fields can be shown directly by measuring
the fluctuations of the difference of the output signal and
idler field intensities.

In our case the signal and idler polaritons do not have the
same photon fraction and are not coupled in the same way to
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the external field. Clearly, this should lead to a significant
reduction of the correlations between the signal and idler
output light fields.

C. Fluctuations of the output light fields

Let us first comment on the relevant frequency for the
noise analysis. The noise spectra vary typically over a range
of the order of the polariton linewidth. In noise measure-
ments, experimentalists have access to very small analyses
frequencies(generally a few tens of MHz, i.e., a fraction of
meV) with respect to the polariton linewidths(a few hun-
dreds ofmeV). Therefore the noise at zero frequency is the
relevant quantity. In the following we will concentrate on the
study of the noise at zero frequency.

The general expressions of the noise spectra of the three
modes and of the signal-idler amplitude correlation can be
found in the Appendix. In the preceding section we have
taken equal linewidths for the pump, signal, and idler polari-
tons sgkL

=g0=g2kL
d. This assumption is not correct in most

microcavity samples. Indeed the energy of the polaritons of
wave vector 2kL is close to the energy of the nonradiative
excitons; scattering towards these states is enhanced by their
large density of states. Moreover, the idler energy is closer to
the electron-hole continuum. As a result, theexcitonic line-
width of the idlergb2kL

is larger than that of the signalgb0

and pumpgbkL
modes. The assumption that thecavity line-

width gak does not depend onk is correct, provided that the
three wave vectors of interest are within the stop band of the
Bragg reflectors. In recent experiments, the idler beam has
been found to be about 50 times weaker than the signal beam
(see, e.g., Ref.[5]), which is consistent with a linewidth ratio
of g2kL

/g0=5.
We will give the results in the ideal case(with equal line-

widths and an input noise equal to the standard quantum
noise), and then study the influence of the imbalance be-
tween signal and idler, and the input excitonic noise.

1. Ideal case

In the case of equal linewidths(and no input excess noise)
the general expressions given in the Appendix reduce to a
simpler form,

SakL

A,out = 1 +CkL

2 1

s − 1
, s65d

Sa0

A,out = 1 +C0
2− 7s2 + 16s − 8

8ss − 1d2 , s66d

Sb2kL

A,out = 1 +C2kL

2 − 7s2 + 16s − 8

8ss − 1d2 , s67d

Sa0−b2kL

A,out = C0C2kL

s2

8ss − 1d2 . s68d

The amplitude noises of the pump, signal, and idler
beams, as well as the signal-idler normalized amplitude cor-
relation, are drawn in Fig. 5 as a function of the pump pa-
rameters=ÎIkL

in / IkL ,thr
in . Although the curves go up tos=2,

let us recall that the model is not correct too far above thresh-
old, where we can no longer neglect multiple diffusions.

Let us observe that the signal and idler noise spectra have
exactly the same shape. However, the idler noise is closer to
the standard quantum level than the signal noise is, due to its
low photon fraction which causes important losses at the
output of the cavity. The ratio of the excess noisesS−1 is
simply equal to the ratio of the photon fractions

Sa0

A,outsVd − 1

Sb2kL

A,outsVd − 1
=

C0
2

C2kL

2 . s69d

The signal and idler amplitude fluctuations diverge close
to the threshold(for s→1+). Noise reduction is obtained
aboves=1.55. It grows with the pump intensity and satu-

FIG. 5. (a)–(c) Amplitude
noises at zero frequency of the
pump, signal, and idler beams, re-
spectively.(d) Signal-idler ampli-
tude correlation at zero frequency
as a function of the pump param-
eter s. The three modes are as-
sumed to have the same line-
widths. The input excess noises
for each mode are given by the
value of theb coefficient[see Eq.
(52)]. Dashed line: ideal caseb
=0 (the input noises are set as
equal to the standard quantum
noise). Solid line: b=5310−5.
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rates at a maximum value of 7C0
2/8 for the signal beam

(7C2kL

2 /8 for the idler beam). The signal and idler amplitudes
are very strongly correlated slightly above threshold. The
correlation tends to one in the vicinity of the thresholdss
→1+d and vanishes rapidly when increasing the pump inten-
sity. All these results are similar to those obtained in nonde-
generate OPOs[28].

2. Influence of the signal-idler imbalance

In this paragraph we still suppose that there is no input
excess noisesn0=nkL

=n2kL
=0d. Let us compare the results

with different linewidths to those of the “balanced” casesg
=gkL

=g0=g2kL
=ga=gbd in Eqs. (A1)–(A4). It is easy to

show that the excess noisesS−1 of the pump, signal, and
idler beams are respectively multiplied byga/gkL

, ga/g0, and
ga/g2kL

. The signal-idler correlation(without normalization)
is multiplied byga/Îg0g2kL

.
As an example the caseg0=gkL

=g2kL
/5=ga is shown in

Fig. 6. The amplitude noises of the pump and signal beams
have not been represented since they are unchanged. The
excess noise and noise reduction are strongly reduced on the
idler beam due to its larger losses[Fig. 6(a)]. The signal-idler
correlation remains strong close to threshold but decreases
more rapidly with increasing pump intensity[Fig. 6(b)].

3. Influence of input excess noise

We have assumed that the largest source of noise for a
given polariton mode is the luminescence of an exciton res-
ervoir, which is populated by the polariton mode itself. The
input noise for a given mode is then proportional to the mean
exciton number in this mode. The efficiency of this process
is given by theb coefficient introduced above[see Eq.(52)].
Here we will assume thatb has the same value for the three
modes. Slightly above the oscillation threshold, the pump
mode is much more populated than the signal and idler popu-
lation; then the input noise is much greater for the pump than
for the signal and idler.

Figure 5 shows an example in the “balanced” case for a
noise parameterb=5310−5, evaluated from noise measure-
ments on the light reflected by a microcavity sample[10].
The input excess noise cuts down the noise reduction. Its
influence increases with the pump intensity since it is pro-
portional to the mean exciton population. However, the cor-
relation is actually enhanced by the excess noise. It is due to

the fact that the pump input noise is distributed equally be-
tween signal and idler, and contributes to the correlations.

D. The quantum domain

Our model predicts strong correlations between the signal
and idler light fields. When can we say that these beams are
quantum correlated? We will use two different criteria, one
evaluating the “quantum twin” character of the beams and
one associated with QND measurements.

1. Twin character

In degenerate or quasidegenerate OPOs, the signal and
idler output beams have the same mean-field values and the
same noise properties. Quantum correlations between them
are evidenced by measuring the noise of the difference be-
tween signal and idler intensities and comparing it to the
standard quantum level. The idea behind this is to compare
the fields under consideration to a classical production of
twin beams, which can be achieved by using a 50% beam
splitter.

In our case, one beam is much more intense than the other
one(the ratio of the intensities is of the order of 10 for equal
signal and idler linewidths). What happens if the two light
fields A1 and A2 under consideration have different mean
values and different noisesS1 andS2? To produce classically
twin beams of unequal intensities, one can use an unequal
beam splitter. The field fluctuations at the output of such a
beam splitter can be written as

dA1 = tdAin + rdAv, s70d

dA2 = rdAin − tdAv, s71d

with tÞ r, whereAin is the input field anddAv the vacuum
fluctuations entering through the other port of the beam split-
ter. Now the differencedA−=dA1−dA2 is not relevant for our
purpose, since it does not give a quantity which is indepen-
dent ofdAin, the noise of the beam which has been used to
produce the twin fields. However, one has in this case the
following relation which is independent ofdAin:

kdA1dA2lclass
2 = skdA1

2l − 1dskdA2
2l − 1d. s72d

Then the normalized correlation can be written as

FIG. 6. (a) Amplitude noise of
the idler beam and(b) signal-idler
correlation at zero frequency as a
function of pump intensity for
g2kL

=5g0. On both plots, the
curve in the dashed line is the
“balanced” caseg2kL

=g0.
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sCclassd2 = S1 −
1

S1
DS1 −

1

S2
D . s73d

It is equal to zero if the noise of the input beam is the
vacuum noise and increases towards 1 with the excess noise
of the input beam. We would now like to evaluate the twin
character of the beams by using a quantity which would be
smaller than 1 if the two beams are more strongly correlated
than the copies from a beam splitter, just like the usual
squeezing factor on the intensity difference. From Eq.(73) it
can be seen that the quantity

G =
1 − C

1 −ÎS1 −
1

S1
DS1 −

1

S2
D s74d

satisfies this condition. Moreover, it is possible to show that
the “quantum twin” criterionG,1 does not depend on the
way by which the two classical twins are produced[30].
Thus G is indeed a useful generalization of the squeezing
factor on the intensity difference that allows us to treat the
case of beams of unequal intensities.

Experimentally, one can measure separatelyC, S1, andS2
and computeG from (74). One can also amplify in a differ-
ent way the two photocurrents(with gainsa and 1/a, respec-
tively) before measuring the noise on the intensity differ-
ence; the measured fluctuation is thendAa=adA1−dA2/a. If
we choosea2=ÎS2/S1, we find thatG is proportional to the
photocurrent fluctuations

G =
kdAa

2l
2

1
ÎS1S2 − ÎsS1 − 1dsS2 − 1d

. s75d

Thus, one has direct access toG provided the gains are ad-
justed so that the noise levels are identical in the two chan-
nels. The denominator in(75) can be evaluated from the
excess noises of each field.

2. QND correlation

A further level of correlation is achieved when the infor-
mation extracted from the measurement of one field provides
a QND measurement of the other, so that it is possible, using
the information on one field, to correct the other from a part
of its quantum fluctuations and transform it into a squeezed
state. This criterion is widely used in the field of QND mea-
surement[29]. It can be expressed in terms of the conditional
variance

V1u2 = S1s1 − C2d. s76d

Note that when the two beams have different noisessS1

ÞS2d one has two conditional variances and, therefore, two
possible criteria. This shows that the QND criterion evalu-
ates the correlation from the point of view of one beam, and
is not an evaluation of the quantum correlation between the
two fields. One possibility is to state that the two fields are
QND-correlated if one hasV1u2,1 and V2u1,1. This crite-
rion is stronger than the previous one[30]. In the following,
we will discuss these two quantum criteria in the case of the

signal and idler beams produced by a semiconductor micro-
cavity.

3. Discussion

We investigate the “QND criterion.” The conditional vari-
ances are shown in Fig. 7 in the case of equal linewidths and
zero input excess noise. From the point of view of the idler
beam, the conditional variance is always lower than 1, if
only by a few percent. From the point of view of the signal
beam, the quantum domain is very small: it begins ats
=1.53, very close to the point where it begins to be squeezed.
It is only betweens=1.53 ands=1.55 that we get “QND
correlations” between beams that individually have excess
noise. Fors.1.55, the QND-correlation criterion is satis-
fied, although the correlation is quite small, because both
beams are squeezed. In conclusion, no significant “QND cor-
relations” can be observed on the signal and idler output
beams.

We now investigate the behavior of the quantityG by
evaluating the twin character of the signal and idler beams. It
is drawn in Fig. 8 as a function of the pump parameter in
various cases. In the case of equal linewidths and zero input
excess noise,G goes down to 0.85, which indicates the
“quantum twin” character of the two beams. If we take the
nonradiative losses of the idler polaritons into account(we
set againg2kL

=5g0), G only goes under 1 by 7%. However,

FIG. 7. Dash-dotted line: the conditional variance of the signal
intensity fluctuations, knowing those of the idler. Solid line: the
conditional variance of the idler intensity fluctuations, knowing
those of the signal. The dashed line is the standard quantum level.

FIG. 8. Value of the quantityG as a function of the pump
parameter, in three different cases.(a) Solid line: ideal case where
all linewidths are equal and there is no excess noise.(b) Dashed
line: different linewidths for the signal and idler modesg2kL

=5g0,
and no excess noise.(c) Dashed-dotted line: all linewidths are
equal, and some excess noise is given byb=bc/2.
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the input excess noise(corresponding to the resonant lumi-
nescence of the three polariton modes) has little effect on the
quantum correlations. As explained above, this comes from
the fact that the pump input noise(which is the strongest
slightly above threshold, when the pump polariton popula-
tion is much larger than the signal and idler populations) is
equally distributed between the signal and idler modes and
helps build up classical(but not quantum) correlations.

In conclusion, in present-day microcavity samples the
“quantum twin” criterion is overcome by only a few percent.
This is due to the fact that only the polariton fields are per-
fectly correlated, and we can only observe their photonic
parts. A simple image is the following: we observe the po-
lariton system through a beamsplitter which amplitude trans-
mission coefficient is equal to the Hopfield coefficientC0,
which leads to losses that destroy the quantum effects. The
correlations are further reduced by the imbalance between
signal and idler. The photonic part of the idler is very small
(of the order of 0.05), which corresponds to large losses.

VII. CONCLUSION

We have presented a quantum model allowing us to cal-
culate the quantum fluctuations of the beams produced by a
semiconductor microcavity in the regime of parametric os-
cillation. It extends the model developed by Ciutiet al.
above threshold and includes the noise coming from the ex-
citon part of the polaritons.

We show that some quantum correlation exists between
the signal and idler beams in the vicinity of threshold. Taking
the parameters of microcavity samples, which have been
shown to work in the parametric oscillation regime, it can be
seen that the correlation overcomes the quantum limit by a
few percent. The measurement of these correlations would
be of great interest, since quantum correlations between the
output beams, however small, are an indication of much big-
ger correlations between the intracavity polariton fields. For
example, in the ideal case at threshold(see Fig. 8), if we
measureG=0.91, this corresponds to perfect correlations in-
side the cavity.

In order to observe better quantum correlations between
the output beams, it is very important that the signal and
idler linewidths be made as equal as possible. A simple so-
lution would be to use a low-finesse cavity. Then the nonra-
diative losses would be less important with respect to the
radiative losses, and the ratio of the signal and idler line-
widths would be smaller. A compromise has to be found
because the oscillation threshold would also be higher.

We acknowledge fruitful discussions with C. Fabre, C.
Ciuti, P. Schwendimann, and A. Quattropani.

APPENDIX: NOISE AND SIGNAL-IDLER CORRELATION

In this section, we give the general expressions for the
amplitude noises of the signal, pump, and idler output light

fields at zero frequency(denoted bySa0

A,out, SakL

A,out, andSb2kL

A,out,

respectively), and the signal-idler amplitude correlation at
zero frequency(denoted bySa0 b2kL

A,out ).

First, the polariton field amplitude fluctuations are calcu-
lated by inverting Eq.(46). Then, the amplitude fluctuations
of the output fields are given by Eq.(50). Finally, the ampli-
tude noise and correlation spectra are calculated using Eqs.
(55) and (57), respectively.

SakL

A,out = 1 +CkL

2 ga

gkL

1

s − 1

3S1 +
X0

2n0gb0g2kL
+ X2kL

2 n2kL
gb2kL

g0

g0g2kL

D , sA1d

Sa0

A,out = 1 +C0
2ga

g0

1

8ss − 1d2H− 7s2 + 16s − 8 +
1

gkL
g0g2kL

3 f8ss − 1dXkL

2 nkL
gbkL

g0g2kL
+ s3s − 2d2

3X0
2n0gb0gkL

g2kL
+ ss − 2d2X2kL

2 n2kL
gb2kL

gkL
g0gJ ,

sA2d

Sb2kL

A,out = 1 +C2kL

2 ga

g2kL

1

8ss − 1d2H− 7s2 + 16s − 8

+
1

gkL
g0g2kL

f8ss − 1dXkL

2 nkL
gbkL

g0g2kL

+ ss − 2d2X0
2n0gb0gkL

g2kL
+ s3s − 2d2

3X2kL

2 n2kL
gb2kL

gkL
g0gJ , sA3d

Sa0−b2kL

A,out = C0C2kL

ga

Îg0g2kL

1

8ss − 1d2

3Hs2 −
1

gkL
g0g2kL

fss − 2ds3s − 2d

3sX0
2n0gb0gkL

g2kL
+ X2kL

2 n2kL
gb2kL

gkL
g0d

− 8ss − 1dXkL

2 nkL
gbkL

g0g2kL
gJ , sA4d

wheren0, nkL
, andn2kL

are the input excitonic noises. From
these expressions, it is easy to calculate the normalized
signal-idler correlation at zero frequencyCa0b2kL

A,out sVd using

definition (58).
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