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Twin polaritons in semiconductor microcavities
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The quantum correlations between the beams generated by polariton pair scattering in a semiconductor
microcavity above the parametric oscillation threshold are computed analytically. The influence of various
parameters, including the cavity-exciton detuning, the intensity mismatch between the signal and idler beams,
and the amount of spurious noise, is analyzed. We show that very strong quantum correlations between the
signal and idler polaritons can be achieved. However, the quantum effects in the outgoing light fields are
strongly reduced due to the large mismatch in the coupling of the signal and idler polaritons to the external
photons.
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I. INTRODUCTION respect10]. It is well known that optical parametric oscilla-

High finesse semiconductor microcavities with embeddedOrs (OPO$ can be used to generate twin beams, the fluctua-
quantum wells allow us to achieve the strong-coupling retions of which are correlated at the quantum level. A noise
gime between the quantum-well excitons and the cavity phoreduction of 86% was obtained by substracting the intensities
tons [1]. The normal modes are mixed exciton-photonof the signal and idler beams produced by a LiNbOPO
modes, called cavity polaritons, which present large nonlin{11].
earities coming from the Coulomb interactions between the The purpose of this paper is to investigate the possibility
exciton components. Under resonant pumping, this leads to g generating twin beams using a semiconductor microcavity
parametric process where a pair of pump polaritons scattefhove the parametric oscillation threshold. The classical
into nondegenerate signal and idler modes while conservinghodel developed by Whittakgt2] is no longer sufficient to
energy and momentum. The scattering is particularly strongtudy the quantum noise properties of the system. Thus we
in microcavities, because the unusual shape of the polaritogdapt the quantum model by Ciwt al., previously used in
dispersion makes it possible for the pump, signal, and idlethe context of parametric amplificatiqd3] and parametric
modes to be on resonance at the same tise® Fig. 1 fluorescencg9,14], to the parametric oscillator configura-
Moreover, the relationship between the in-plane momentuntion. Furthermore, we compute the field fluctuations using
of each polariton mode and the direction of the external phothe input-output methofil5,16. We also include the excess
ton to which it couple$2] enables us to investigate the para- noise associated with the excitonic relaxation, not considered
metric scattering using measurements at different angles tgy previous authorg9,14], which may play a critical role for

access the various modes. . _ experimental observation of the quantum effect.
Parametric processes were demonstrated in semiconduc-

tor microcavities by Savvidist al. [3] using ultrafast pump-

probe measurements. They observed parametric amplifica- 1496

tion, where the scattering is stimulated by excitation of the i

signal mode with a weak probe field. Parametric oscillation,

where there is no probe and a coherent population in the

signal and idler modes appears spontaneously, has since been

observed by Stevensat al. [4] and Baumberget al. [5] in

cw experiments. The lower polariton was pumped resonantly

at the “magic” angle of about 16°. Above a threshold pump 1493 | \_/idler

intensity, strong signal and idler beams were observed at i pump

about 0° and 35°, without any probe stimulation. The coher- 1492 -

ence of these beams was demonstrated by a significant spec- i

tral narrowing. 1491 + . .
The large optical nonlinearity of cavity polaritons makes 0 10 20

them very attractive for quantum optics. Noise reduction on 0 (deg)

the reflected light field has been predicf&l and achieved

experimentally[7] for a resonant pumping of the lower po-  F|G. 1. Energy dispersion of the two polariton branches for a
lariton at 0°. The parametric fluorescence was recently premicrocavity sample having a Rabi splitting of 2.8 meV at zero
dicted to produce strongly correlated pairs of signal and idletavity-exciton detuning. The arrows show the parametric conver-
polaritons, yielding a two-mode squeezed stf8]. The  sion of the pump polariton§=10°) into signal (0°) and idler
parametric oscillation regime is also very interesting in this(=20°) polaritons.
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2
Il. MODEL 5 Q&

Cy= .
A. Hamiltonian K 28+ Q45+ R+ QD)
Following Ciuti et al. [13,14 we write the effective

Hamiltonian for the coupled exciton-photon system. The spi
degree of freedom is neglected,

()

Xﬁ andCﬁ can be interpreted, respectively, as the exciton and
rbhoton fraction of the lower polaritop,. In the case of

resonant excitation of the lower polariton, it is possible to
consider only the lower polariton and neglect its nonlinear

H=Ho* Hexcexc* Haar (1) coupling to the upper polariton. In terms of the lower polar-
The first term is the linear Hamiltonian for excitons and cay-'to" OPerators, the Hamiltonia) then reads as
ity photons, H=Hp+HEH. (8)
Ho= 2, EexdKblby + X Eca(K)alay Hp is the free-evolution term for the lower polariton
k k
- t
+ S h0g(albe +bla), @ H= 2, Eolpipr, ©
k

: : . _andH&! is an effective polariton-polariton interaction,
with b) anda] the creation operators, respectively, for exci- PP P P

tons and photons of in-plane wave vecitgrwhich satisfy g 1 PPt
boson commutation rule&,,(k) andE,, (k) are the energy H§p=§ > Vi’ qPk+qPk—qPkPx» (10
dispersions for the exciton and cavity modes. The last term kk'.q

represents the linear coupling between the exciton and CaVit\X/here
photon, which causes the vacuum Rabi splittirig)2. The
fermionic nature of electrons and holes causes a deviation aof pp

’ = r + , + ’ [ .
the excitons from bosonic behavior, which is accounted focr)vkvk = VoXikeaXie + 2Vsal CliergXic + CieXjeag) Pk X
through an effective exciton-exciton interaction and exciton (11

saturation. The exciton-exciton interaction term writes . I
In the following, we neglect the contribution of the satu-

1 ration term, which can be shown to be more than an order of
Hex&excza > ququl,_qbkbk,, 3 magnitude smalleépthan the polariton-polariton interaction
k.k',q [17]. This yieIdst’k,’q:Vox‘k+q|xer|k,_q|xk. We also ne-

h V= (62 f ) h glect multiple diffusions, i.e., interactions between modes
where V= V= (6€"8c,d/ €A) for aec<1, exc beING the  qipor than the pump mode. This approximation is valid not
two-dimensional exciton Bohr radiugg the dielectric con- 145 far above the parametric oscillation thresHoltt. is

stant of the quantum well, an8l the macroscopic quantiza- gqyivalent to considering only the terms where the pump
tion area. The saturation term in the light-exciton coupling iSpolariton operatop, appears at least twice:
. :

Hsat=~ 2 Vsat(ait+qblr_qbkbk’+ak+qbk’—qblzbl’)’ (4) eff_l T a7
kk'q Hpp = 5 Vi ki 0Pk, Pi P P
where Vg,= (A Qp/NsaA) With ng,=7/(167a2,) being the + > Vi k ke k(Ph PPk P +H.C)
exciton saturation density. We consider resonant or qua- k#k, = o - L Lot
siresonant excitation of the lower polariton branch by a PPt Lt
quasimonochromatic laser field of frequenoy=E, /% and + zkz Vick, 0Pk, PkPi Px- (12
L

wave vectork . If the pump intensity is not too high the
resonancee.e., the polariton statg¢sire not modified, except The first term is a Kerr-like term for the polaritons in the
for an energy shiftthat will be calculated belowThenitis  pump mode. The second term is a “fission” process, where
much more convenient to work directly in the polariton ba-two polaritons of wave vectdk, are converted into a “sig-
sis. The polariton operators are obtained by a unitary transaal” polariton of wave vectok and an “idler” polariton of

formation of the exciton and photon operators wave vector R, —k. The last term corresponds to the inter-
action of the pump modie, with all the otheik states, which
(pk> _ <‘ Ck Xk)(ak> 5) results in a blueshift proportional lipkL|2.
Ok X C/\b /)’

. B. Resonance condition
where X, and Cy are positive real numbers called the N o
Hopfield coefficients, given by The resonance condition for the fission procéss,k, }
—{k, 2k, =k} reads
St V& +Q3

Xe= ==
2V5§+Q§

(6)

"Multiple diffusions were demonstrated in Refg4,25.

063807-2



TWIN POLARITONS IN SEMICONDUCTOR MICROCAVITIES PHYSICAL REVIEW A69, 063807(2004

d —_—
d—a;‘(o =~y 27N, (16)

WhereAik“(t) is the incoming coherent laser field, which has
fluctuations equal to the vacuum noise. In this equation the
normalizations are not the same for the cavity field as for the
external field:nak(t)=<a11(t)ak(t)> is the mean number of cav-
ity photons, whilel!"=(A"(t)Al"(t)) is the mean number of
incident photons per second.
ky (cm'l) Exciton relaxation is a much more complex problem. The
density is assumed to be low enough to neglect the relaxation
due to exciton-exciton interactiof20]. At low density and
low enough temperature the main relaxation mechanism is
the interaction with acoustic phonons. A given exciton mode
FIG. 2. Plot of the quantityEp(k)+Ep(2k, k)~ 2Ep(k,)| (in b, is coupled to all the other exciton modas and to all the

meV) as a function ofk, andk, (in cm™) for the parameters of phonon modes fglfilling the con_ditio_n Of. energy.anq wave-
Fig. 1. Y vector conservatiofi2l]. Relaxation in microcavities in the

strong-coupling regime has been studied in def2#,23.
_ ~ ~ However, the derivation of the corresponding fluctuation
Ep(k) + Ep(2k, — k) = 2Ep(k,), (13 terms requires additional hypothegé€]. We model the re-
~ laxation by a linear coupling to the exciton reserv@irade
whereEp(q) is the energy of the polariton of wave vecr  of gl the exciton modes,, with k’ # k), which is assumed
renormalized by the interaction with the pump polaritons  to be harmonié. Then, in the same way as for the photon
field, the fluctuation-dissipation part in the Langevin equa-

lg (Cm-l) 20000

Ep(q) = Ep(q) + 2V ol{pe I (14 tion for the excitons writes
Note that the factor of 2 disappears fgpek, . Equation dhby(t) .
(13) always has a trivial solutiok =k, . Nontrivial solutions a4t = = Yo (1) + wf'ZykaL“(t), (17)

exist, provided that the wave vectiy is above a critical
value, or equivalently, if the angle of incidence is above the . . . . i
so-called “g1agic anéle’@c 3], grom NoW on we suppose Where vy, is the exciton linewidthtHWHM) and B/(t) the

that the microcavity is excited resonantly with an angje input excitonic field, which is a linear combination of the
Figure 2 is a plot of the quantityEp(K)+Ep(2k, —k) reservoir modes. Since there is no direct excitation of the

~2E4(k, )| as a function ok ={k,,k,}, with k, being parallel exciton f|elq, it comprises only noise, whlch is at Ie@_st the
to thex axis vacuum I’IOIS;SIH the case where the exciton reservoir is the
. : " .. vacuum stat
forTahlv?/ijre]orva\\/ﬁ tgitft\?vi\\/rgsvoerggfke gﬁ ”f'li'}" nlnc?;lcl;ﬁts;?_sfleaaugng these results we can write the Heisenberg-Langevin
. ‘ 9 i i oL b ’ dinth quations for the cavity and exciton modes of wave vectors
penments, parametric oscriation was observed in the norm .k, 2k, and then for the three corresponding lower polar-

direction k=0 [4,19. In this paper we consider only the . : .
parametric procesdk, .k }—{0,2k,} assuming that the iton modes. We define the slowly varying operators,

other ones remain below threshold. Then, we can neglect the Br () = p (DL
effect of modes other thab, k , 2k, . The evolution of these t t

three modes is given by a closed set of equations that we are

now going to derive. Po(t) = po(t) g0V,

~ _ E(2k /%
IIl. HEISENBERG-LANGEVIN EQUATIONS Pa () = pac (DETFT, (18)

In order to study the quantum fluctuations we have towhich obey the following equations:
write the Heisenberg-Langevin equations, including the re-
laxation and fluctuation terms. The relaxation of the cavity dpo [

o at e
mode comes from the interaction with the external electro- dat g(ZVO.kL,OpkLPkL ~i170)Po
magnetic field through the Hamiltoniga8], .
' ~t =2 JAEUA , pin
. [d = Vi k kP Pic €7 + Py, (19
H, :mJ = (afA, - Alay). (15) i TETETETERLR
2
The coupling constant is given by=12y,, wherey, is “The effect of the phonon reservoir is included only in the cou-

the cavity linewidth(HWHM). This leads to the following pling coefficient; as a result, this model does not allow us to study
evolution equation for the cavity field in an empty cavity: the temperature dependence of the fluctuations.
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dba, i O dp, b o o
TR Z(szkL,kL,opkkaL —iyax )Pk, gt - Mk P~ 2BinPx PoPak * P (24
B i—V B2 JAEUH 4 pin (20) where E;,;= Vi kK, /h. Let us recall that among the polar-
7 Kok k PoPi © 2k iton input f|elds onIy the photon part cﬂ‘“ corresponding

to the pump laser field has a nonzero mean value. The exci-

tonic input ﬁeldsB'(;1 correspond to the thermal excitation of

d~pKL _ 0 A +V ~F = the exciton modegthat eventually gives rise to lumines-
dt h( L Vi ki 0Pk Pr P )Py, cence and are incoherent fields with zero mean value. The

2 stationary state is given by
“Vie ik, P PoPa €70 + Pe.  (21)

h = % Pr, ~ 2EinPi_PoPz, =Ci \2%AL . (25)
where for any given wave vectoq, P'q”——C ’Zyanq ~ YoPo— iEimPay P2 =0 (26)
L

+Xq\27qu'” is the polariton input fieldwhich is a linear
comblnatlon of the cavity and exciton input fields; only the . L
driving laser field A¢ has a nonzero mean valey, = Y2k P2k, +iEintPoPy, = 0. (27)
:C§7aq+xg7’bq is the polariton linewidthA =Ey(k )-E, is For a nontrivial solution to exist, the determinant of the
the laser detuning; andE=E,(2k )+E,(0)-2E, is the en- |55t two equations must be zero,
ergy mismatch.

Compared to previous treatmer(®,14], the model in- Eﬁnlﬁ(Ll“— YoYax =0, (28)

cludes a full treatment of the field fluctuations. In addition, it
is valid above threshold since the equation of motion of thevhich gives the pump-polariton population threshold

pumped mode accounts for the pump depletion. As men- W
tioned above, this is valid not too far above threshold, be- P 2= ﬂ, (29)
cause otherwise multiple scattering cannot be neglected any- - Eint
more[24,25.
This set of equations is similar to the evolution equatlons and the pump intensity threshold
of a nondegenerate triply resonant optical parametric oscilla- Y2 (Yoya )M
tor [26]. The nonlinearity is of® type, while in most OPOs I thr = =AM kL wl?=— 2 (30

e
it is of y'? type. OPOs based on four-wave mixing have 277:Cy Eint

already been demonstrat§2l7]. However, let us stress that

here the parametric process involves the excitations of Bve
ve

semiconductor matter wavge., polariton$ instead of pho-

The signal and idler polariton populations are easily de-

tons. In the following, we evaluate the potential applications Y Yok
of this type of OPO in quantum optics. The hybrid nature of Pol?= ==\ —(o-1), (31
polaritons makes the treatment of quantum fluctuations more 2B Y0

complicated, since we have to consider additional sources of

noise(i.e., the luminescence of excitons _ Vi Y
Pok 2= 5=/ = (o= 1), (32)
2Eint N v,

wherea:\/l'”L/ k_thr 1S the pump parameter. We finally get
The first task is to compute the stationary state of thethe intensities of the signal and idler output light fields,

IV. MEAN FIELDS ABOVE THRESHOLD

system. This comes to the calculation done by Whittaker in 5
Ref. [12]. We neglect the renormalization effects due to the Out —onC | 2= ?’aYkLCo VZkL( -1,
interaction with the pump mode, which allows us to get ana- YaolPol” = E. V oy

lytical expressions. We suppose that the angle of incidence is
adjusted in order to satisfy the resonance conditd~0 oy C2
; - . _ Yk “2k Y
and that the pump laser is perfectly resonat=0). Equa 19Ut = 24,02 |p2kL|2: 2R X -1, (33
tions (19)~(21) now write L L Eint Yok,

Above threshold, all the polaritons created by the pump

dvpo ~ yoPo = iEinPhe P2 + P, (22)  are transferred to the signal and idler modes, so that the
dt number of pump polaritons is clamped to a fixed value. This
phenomenon, called pump depletion, is well known in triply
i resonant OPOs. The signal and idler intensities grow like
Pak, ~ " (see Fig. 3 These results are in agreement with those
—_ k :
at Yk, Pak, ~ |E|ntp0pk + szL (23) of Ref. (12,
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8 0o lent to a full quantum treatment. We linearize E@2)—(24)

5 025 . L . . )

g in the vicinity of the working pointp, computed in the pre-

g 0.2 vious section. We obtain the following set of equations:

'5 0.15

:§ 0.1 dbbk _

s e (R 2iEin(PoP2x kaL Pre_ P2k, o

§ 0.05 _

% 0 + P PodPz ) + 5Py (35

721

Pump intensity
d5p0_ f o -2 T in
FIG. 3. Intensities of the output signébolid line) and idler dt Y00Po = IEim(szkkaLépkL * pkLékaL) + P,
(dashed ling beams as a function of the pump intensity. All the
intensities are normalized to the threshold intenléj‘p{hr. The three (36)
modes are assumed to have the same linewidths.
. . . . dbekL _ : —r— =2 o f in
Finally, we study the ratio of the signal and idler output e Yok 02k, ~ 1Eint(2PoPk, Ok, + Pic Po) + 0P

intensities, which is an important parameter in view of the
analysis of the correlations between these two beams. It is (37)
given by the simple equation, We can now inject the mean values of the fiem§, Po

jgut 72kLC§ andpy, that we have computed in the previous secfiggs.

o =7 (34 (29, (31), and(32).

2k Yook First, we have to choose the phases of the figtts
We consider a typical Ill-V microcavity sample contain- €hoice has no influence on the _|rc])hy5|cs of the problénfe

ing one quantum well, with a Rabi splitting 72 set the phase of the pump fleAj(L to zero. Thenp, is a

=2.8 meV. At zero cavity-exciton detuning, one flnkl§ positive real number. Equation@6) and (27) impose the

=1.15x 10 cmr'L. The photon fractions of the signal and same relationship between the signaj and idler gy

idler modes are, respectivel3=0.5 andC2k =~0.053. As-  phases,

suming that they have equal linewidths the signal beam

power should be about 10 times that of the idler beam. It is + __T (38)

possible to reduce this ratio by increasing the cavity-exciton LCERCIPY

detuning, as can be seen in Fig. 4. However, the oscillation

threshold goes up. In the following, all the results will be whereas the relative phagg- @2, is not fixed and under-

given at zero detuning. goes diffusion like the phase of a Iaser Weggto be a real

positive numbecthis corresponds to neglecting phase diffu-

sion). ThenHZKL is a pure imaginary number. With these

V. FLUCTUATIONS choices of phase, the evolution equations write

A. Linearized evolution equations

For any operatoiO(t) we define a fluctuation operator épkL + 1 _ \/ﬁ
80(t)=0(t)-(O(t)). In order to compute the fluctuations, we = % (9P * (o= )5Dk ) Y Yo(o = 1) 3o

use the “semiclassical” linear input-output method, which I Y in
consists of studying the transformation of the incident fluc- N2y yaq (0= 1) 8Pz + 0Py, (39)
tuations by the systeifl6]. It has been shown to be equiva-

dép — N
— = = 00 + 2y volo = 1)opy —iy ')’O'YZKLap;kL

g ' dt |
4 + 6Py, (40)
2
72}
212
£ dapa _
= 10 p === Yok P, 12w va (0= D py,
-3 -2 -1 0 1 2 3 _ N
§ (meV) — iV ¥0Y26 8P + 6P - (41)

FIG. 4. The ratio of the photonic fractions of the signal and idler Using these three equations and their conjugate equations we

polaritons as a function of the cavity-exciton detuniigrhe Rabi  can calculate the output fluctuations of the pump, signal, and
splitting is 2.8 meV. idler fields as a function of the input fluctuations.
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B. Amplitude fluctuations WO~ iQ \/27kL70(0'_ 1) - \/27’kL72kL(0" 1)
In this paper we are mostly interested in the amplitude 2 V(o= 1) -
. . . . , - - -iQ v
correlations between signal and idfatve will see that in the 2y volo = D) % Yoz
simple case where we neglect the renormalization effects it is\ 2y ya (o~ 1) VY0 Yo, — 102
enough to solve a system of three equations. We define the i
real and imaginary parts of the polariton, photon, and exciton akL(Q) Qe
fields as x| ag@) |=| ol (46)
in
aq = 5pq + ma, BZkL(Q) 2k,

The inversion of the X3 matrix provides the amplitude

Bq=—1(pg = ). fluctuations of the fieldgy (), po((), and py () as a

function of the input fluctuations.

in(out) _ in(out) in(oupt
aq = 6Py + 0P, )

C. Fluctuations of the output light fields

,giq”(Wt) =- i[(spiqmout) - 5piq”(°”f)T], The intracavity light field for a given wave vectgrcan
be deduced from the polariton fields by inverting E§):
Ain(out — enin(out in(outt aq=—Cgpq+Xydq- Thus the spectrum of the intracavity light
%q inowd = 5Ag1(OU) + 5Ag1(ou) ' field fluctuations is given by
Bg\,in(out) —_ i[5Ai]"(°“t) _ 5Ai]”(°”t)T], 5aq(Q) =- Cqé]aq(()) + Xqéqq(Q), (47)

where da,(£2), dpy(£2), and q,(L2) are the Fourier compo-

B,in(out) _ in(out) in(oupt
o = 5Bq + 5Bq ,

q
lower polariton frequenc¥e,(q).

nents of the field fluctuations in the rotating frame at the

BB,in(out):_i[ SBin(out _ sgin(ount] (42) The spectrum of the upper polariton fietg is peaked
q q q ’ around the upper polariton frequengy(q). If the upper po-

The mean fieldg, andp, are real positive numbers, there- lariton linewidth is smaller than the splittingq(q) - Ey(q)

fore ay anday correspond to amplitude fluctuations afid
and B, to phase fluctuations. The mean figlgk is a pure
imaginary number; therefore,ﬂgkL corresponds to ampli-
tude fluctuations ane&2kL to phase fluctuations. The evolu-
tion equations for the amplitude fluctuations write

have
da _
d_,IEL ==y oak, ~ 2% Ylo - Dag 33(€2) = = Cqdpg(€2). (48)
' It is easy to deduce the fluctuations of the output light
+ N2y Yo (0= D)Boy + ay (43)  field using the input-output relationship for the cavity mirror
; AM'=\2y,58,—Al [15,16. One finally obtains
d . t - _ | _ i
%) == a0+ \2¥% yolo — Dax — Yoy Bk, + ag OAG1) = = Cq\272q0Pq((2) — 9AG () (49)

(44) or, for the amplitude fluctuations,

(which we will assume, since it corresponds to the strong-
coupling condition, the components af, around the lower
polariton frequencyE,(q) are very small and can be ne-
glected. Therefore, if we limit ourselves to small enough
noise frequencie$) around the center frequen&y(q), we

a/g\,out(Q) - _ Cq\"z'}’aqaq(ﬂ) - aﬂg,in(ﬂ)_ (50)

dBak
at == =y Bak, ~ V2% Ve (0= Da —\vova @0

* B, - (45)

D. Input fluctuations

In this paragraph we study the noise sources in our sys-

We get a set of three linear differential equations. Takinqem.Ai(”L is the coherent pump laser fieki? and both other

the Fourier transform we obtain in matrix notation input fields ‘anL are equal to the vacuum field. Therefore, the

amplitude fluctuations of these three fields are equal to the
idieyacuum fluctuations. The treatment of excitonic fluctuation is

3Correlations between other quadratures of the signal and

fields are hardly accessible in experiments, because of the lard@0re complex. The amplitude noise .Spgcﬂmait]malgfed to
frequency difference between the@a few meV, i.e., a few hun- the vacuum noiseof the three excitonic field8, , By, and

dreds of GHz. B'2”kL are given by
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sﬁvi”(g) =1+2n,for q=0,k., 2k, (51) have the same linewidths. This is the case if the cavity and
a exciton linewidths are equély,,= v, and do not depend on
wheren, is the mean number of excitations in the reservoirk. We sety=y, ==Y =¥a=Yo-
. . . . L L

which depends on the temperature and pump intensity. Since After some straightforward algebra we get the amplitude
the reservoir is populated through phonon-assisted relaxatiofuctuations of the polariton fields,
from the pump mode it is a reasonable assumption to take the
reservoir occupation as proportional to the mean number ofa Q) = 1
excitons in the pump mode kL D(Q)

Ng = Blbgl” = BXgPqf?, (52) + 1200 - D(2y-i0)B3 1, (59)

where is a dimensionless constant which characterizes the

efficacy of the relaxation process. This simple model ac- _ 1 ol V(s — i O i o2
counts for the excess noise of the reflected light at low exci—aom) B D(Q){y\‘ 2(0-1)(2y 'Q)“kL +[/Br-2)-0
tation intensity in a satisfactory way. In particular, it repro- . in , in

duces the observed linear dependence of the excess noise — 1Yo+ D]ag + ANo -2 +iQ]By },  (60)
with the excitation intensity10].

[~ HQ + 2} - W2(o-D(2y=iQ)ag

.

D(€)

In fluctuation measurements the measured quantity is the . in 5 in

noise spectrum. The noise spectr@s((}) of an operatolO +iQag +[Y(80 -2 - 0%~ iyQ(o + D)]B% ),

is defined as the Fourier transform of the autocorrelation (61)
function Cp(t,t'),

E. Noise spectra Bax, () = = 72e-D2y-i0)a +fno-2)

with
S(Q) = f Co(ne¥dr, (53 D(Q) =840~ 1) - Qo + 2)] +iQ[ (4 - 60) + O7].
(62)
where
Co(t,t") =(O[)O(t')) = (O(t)XO(t")) = (50(t) SO(t")), B. Twin polaritons
(54) Let us now calculate the fluctuations of the difference of

, , . ) the signal and idler amplitudes. Let be the normalized
and for a stationary procesSy(t,t")=Cpo(7) with 7=t-t’. quantity

The noise spectrum is related to the Fourier transfé@()
of the fluctuationssO(t) by the Wiener-Kinchine theorem

(80(Q)80(Q)) =278Q + Q') SH(Q). (55

In the same way the correlation spectrisg (1) of two

operatorsO,Q’ is defined as the Fourier transform of the

correlation function r(Q) =[4y4(c-1) - Q?-iQyo]r" (64)
Coor(1,t") =(O(H)O'(t')) =(O(MHXO'(t')).  (56)  with

The correlation spectrum is also related to the Fourier com- i in . Ain

ponents of the fluctuations r-= E 200 +:82kL)-

(80(Q) 80" (1)) = 2m Q2 + ) Soo (). (57) It is important to notice that does not depend on the

The relevant quantity is the normalized correlation spectrunPUmPp fluctuations, which cancel out when we make the dif-
ference. This property is at the origin of twin beams genera-

1
r(Q) = E[%(Q) + Ba (D)]. (63

The plus sign comes from the fact that the idler amplitude
fluctuation is B, - We find

Conr(@) S0 (Q) 58) tion in OPOs. We get perfect noise suppression(ier0 and
elog = Teione (o) 1.
VSo()Sor () . :

In a degenerate or quasidegenerate OPO the symmetry

One has alway$C|<1. A nonzero value ofCoo/(2) indi-  between signal and idler is conserved outside the cavity, be-
cates some level of correlation between the two measure&ause the two fields have the same frequency and are coupled
ments. in the same way to the external field through the losses of the

cavity mirrors. In such systems the twin character of the

VI. RESULTS signal and idler fields can be shown directly by measuring

the fluctuations of the difference of the output signal and
idler field intensities.

In order to shed some light on the above-mentioned anal- In our case the signal and idler polaritons do not have the
ogy with an OPO, we assume that all three polariton modesame photon fraction and are not coupled in the same way to

A. Fluctuations of the intracavity polariton fields
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FIG. 5. (a—«c) Amplitude
noises at zero frequency of the
pump, signal, and idler beams, re-
spectively.(d) Signal-idler ampli-
tude correlation at zero frequency
as a function of the pump param-
eter . The three modes are as-
sumed to have the same line-
widths. The input excess noises
for each mode are given by the
value of thep coefficient[see Eq.
(52)]. Dashed line: ideal casg
=0 (the input noises are set as
equal to the standard quantum
noise. Solid line: B=5x 107,

Normalized noise

the external field. Clearly, this should lead to a significant 1. Ideal case
reduction of the correlations between the signal and idler

In the case of equal linewidtifand no input excess noise
output light fields. q h p 2

the general expressions given in the Appendix reduce to a

simpler form,
C. Fluctuations of the output light fields out_ , 1
| S =14 T (65)
Let us first comment on the relevant frequency for the
noise analysis. The noise spectra vary typically over a range
of the order of the polariton linewidth. In noise measure- SAout 1+ 02 -70%+160-8 (66
ments, experimentalists have access to very small analyses 8(c-12

frequencieggenerally a few tens of MHz, i.e., a fraction of
peV) with respect to the polariton linewidth@ few hun- 762+ 160—8
dreds ofueV). Therefore the noise at zero frequency is the s’*°”t 1 +C§k — 7
relevant quantity. In the following we will concentrate on the t 8(c-1
study of the noise at zero frequency.
The general expressions of the noise spectra of the three out
modes and of the signal-idler amplitude correlation can be aB—BZkL = COcZKLm' (68)
found in the Appendix. In the preceding section we have
taken equal linewidths for the pump, signal, and idler polari- The amplitude noises of the pump, signal, and idler
tons(yk = %= Yok, ). This assumption is not correct in most beams, as well as the signal-idler normalized amplitude cor-
mlcrocawty samples Indeed the energy of the polaritons ofelation, are drawn in Fig. 5 as a function of the pump pa-
wave vector B, is close to the energy of the nonradiative rametera=1/Iil /1 .. Although the curves go up to=2,
excitons; scattering towards these states is enhanced by théat us recall that the model is not correct too far above thresh-
large density of states. Moreover, the idler energy is closer told, where we can no longer neglect multiple diffusions.
the electron-hole continuum. As a result, gecitonicline- Let us observe that the signal and idler noise spectra have
width of the idleryb2kL is larger than that of the signak,  exactly the same shape. However, the idler noise is closer to
and pPUMP Y modes. The assumption that thavity line-  the standard quantum level than the signal noise is, due to its
width y,, does not depend okiis correct, provided that the low photon fraction which causes important losses at the
three wave vectors of interest are within the stop band of th@utput of the cavity. The ratio of the excess noisesl is
Bragg reflectors. In recent experiments, the idler beam hasimply equal to the ratio of the photon fractions
been found to be about 50 times weaker than the signal beam pou 5
(see, e.g., Ref5]), which is consistent with a linewidth ratio % @)-1 _ Co
of '}’Zkl_/ Yo=5. S;,;;ut(ﬂ) -1 Cgk,_.
We will give the results in the ideal cagwith equal line- -
widths and an input noise equal to the standard quantum The signal and idler amplitude fluctuations diverge close
noise, and then study the influence of the imbalance beto the thresholdfor o— 1*). Noise reduction is obtained
tween signal and idler, and the input excitonic noise. aboveo=1.55. It grows with the pump intensity and satu-

(67)

(69)
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Normalized noise Normalized correlation

FIG. 6. (8) Amplitude noise of
the idler beam an¢b) signal-idler
correlation at zero frequency as a
function of pump intensity for
Yk =5%. On both plots, the
curve in the dashed line is the
“balanced” caseyz = Yo-

rates at a maximum value ofC'gls for the signal beam the fact that the pump input noise is distributed equally be-
(7C§kL/8 for the idler beam The signal and idler amplitudes tween signal and idler, and contributes to the correlations.

are very strongly correlated slightly above threshold. The
correlation tends to one in the vicinity of the threshaie D. The quantum domain

—1%) and vanishes rapidly when increasing the pump inten- o del predicts st lati bet the sianal
sity. All these results are similar to those obtained in nondeé1 nd 'L(jjrlgﬁ(l)' it?’fl dg: msh;%ngacnorr(; lemontshatet\r,]v:se;begrigg?e
generate OPOR2G]. ' Ight T ; W y

quantum correlated? We will use two different criteria, one
evaluating the “quantum twin” character of the beams and
one associated with QND measurements.

In this paragraph we still suppose that there is no input
excess noiséno:nkL:nZkL:O). Let us compare the results 1. Twin character

with different linewidths to those of the “balanced” cage In degenerate or quasidegenerate OPOs, the signal and

=Y T %07 Y2 T %= %) IN EGs. (AD~A4). 1t s easy to output beams have the same mean-field values and the
.ShOW that the excess UO'S&l (.)f fche pump, signal, and same noise properties. Quantum correlations between them
idler beams are respectively multiplied by/ %, va/ vo. @nd 50 avidenced by measuring the noise of the difference be-
Yal Y2 - The signal-idler correlatiowithout normalization  ween signal and idler intensities and comparing it to the
is multiplied by ya/\ o yax, - standard quantum level. The idea behind this is to compare
As an example the casg=1 =¥ /5=7a is shown in  the fields under consideration to a classical production of
Fig. 6. The amplitude noises of the pump and signal beamwvin beams, which can be achieved by using a 50% beam
have not been represented since they are unchanged. Thglitter.
excess noise and noise reduction are strongly reduced on the In our case, one beam is much more intense than the other
idler beam due to its larger lossgsg. 6(@)]. The signal-idler  one(the ratio of the intensities is of the order of 10 for equal
correlation remains strong close to threshold but decreasessgnal and idler linewidths What happens if the two light

2. Influence of the signal-idler imbalance

more rapidly with increasing pump intensitiig. 6(b)]. fields A; and A, under consideration have different mean
values and different nois€} andS,? To produce classically
3. Influence of input excess noise twin beams of unequal intensities, one can use an unequal

We have assumed that the largest source of noise for %eam splitter. The field fluctuations at the output of such a

given polariton mode is the luminescence of an exciton res- eam splitter can be written as

ervoir, which is populated by the polariton mode itself. The

input noise for a given mode is then proportional to the mean

exciton number in this mode. The efficiency of this process

is given by thes coefficient introduced abovsee Eq(52)]. SA, =1 A, — tSA,, (71

Here we will assume tha® has the same value for the three

modes. Slightly above the oscillation threshold, the pumpwith t#r, whereA;, is the input field andSA, the vacuum

mode is much more populated than the signal and idler poptfluctuations entering through the other port of the beam split-

lation; then the input noise is much greater for the pump tharer. Now the differencéA_= 6A;— A, is not relevant for our

for the signal and idler. purpose, since it does not give a quantity which is indepen-
Figure 5 shows an example in the “balanced” case for alent of 5A;,, the noise of the beam which has been used to

noise parametgB=5x 107°, evaluated from noise measure- produce the twin fields. However, one has in this case the

ments on the light reflected by a microcavity samfl@].  following relation which is independent @A

The input excess noise cuts down the noise reduction. Its

influence increases with the pump intensity since it is pro- (6A16A) 2 0cs= ((SAZ) = 1)((5AZ) - 1). (72

portional to the mean exciton population. However, the cor-

relation is actually enhanced by the excess noise. It is due tbhen the normalized correlation can be written as

OAL = toA, +TSA,, (70)
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1 1
(Cclasgzz(l_gl)(l_g) (73

It is equal to zero if the noise of the input beam is the
vacuum noise and increases towards 1 with the excess noise
of the input beam. We would now like to evaluate the twin
character of the beams by using a quantity which would be
smaller than 1 if the two beams are more strongly correlated .
than the copies from a beam splitter, just like the usual 1.2 .4 6 18 2
squeezing factor on the intensity difference. From E6) it
can be seen that the quantity

Conditional variances

FIG. 7. Dash-dotted line: the conditional variance of the signal
intensity fluctuations, knowing those of the idler. Solid line: the

G= 1-C (74) conditional variance of the idler intensity fluctuations, knowing
1- \/(1 _ i)(l : i) those of the signal. The dashed line is the standard quantum level.
S, S

- . . . ) signal and idler beams produced by a semiconductor micro-
satisfies this condition. Moreover, it is possible to show thakavity.

the “quantum twin” criterionG<1 does not depend on the
way by which the two classical twins are produci&0].
Thus G is indeed a useful generalization of the squeezing ] ) o N )
factor on the intensity difference that allows us to treat the e investigate the “QND criterion.” The conditional vari-
case of beams of unequal intensities. ances are shown in Fig. 7 in the case of equal linewidths and
Experimentally, one can measure separa@l;, andS,  Zero input excess noise. From th_e point of view of the idle_r
and computeS from (74). One can also amplify in a differ- Peam, the conditional variance is glways' lower than_ 1, if
ent way the two photocurrentwith gainsa and 1/, respec-  only by a few percent. From the point of view of the signal
tively) before measuring the noise on the intensity differ-b€am, the quantum domain is very small: it beginsoat

3. Discussion

ence; the measured fluctuation is théf,=adA, - 5A,/a. If ~ =1.53, very close to the point where it begins to be squeezed.
we choosea?=1/S,/S;, we find thatG is proportional to the It i only betweens=1.53 ando=1.55 that we get “QND
photocurrent fluctuations correlations” between beams that individually have excess
noise. Foro>1.55, the QND-correlation criterion is satis-
<5A§> 1 fied, although the correlation is quite small, because both
- V58-S -DS-1) (75 beams are squeezed. In conclusion, no significant “QND cor-
relations” can be observed on the signal and idler output

Thus, one has direct accessGoprovided the gains are ad- beams. . _ .
justed so that the noise levels are identical in the two chan- We now investigate the behavior of the quantiyby
nels. The denominator ii75) can be evaluated from the €valuating the twin character of the signal and idler beams. It

excess noises of each field. is drawn in Fig. 8 as a function of the pump parameter in
various cases. In the case of equal linewidths and zero input
2. QND correlation excess noiseG goes down to 0.85, which indicates the

o ) ) “quantum twin” character of the two beams. If we take the
A further level of correlation is achieved when the infor- onradiative losses of the idler polaritons into accogme
mation extracted from the measurement of one field provideggt againy,. =5,), G only goes under 1 by 7%. However
. . . . L L - 1
a QND measurement of the other, so that it is possible, using
the information on one field, to correct the other from a part .

of its quantum fI_uctL_Jatio_ns and transform_it into a squeezed 0075
state. This criterion is widely used in the field of QND mea- ’

suremen{29]. It can be expressed in terms of the conditional 095

variance G 0925

- 2 09

Vi =§(1-C9). (76) 0875

Note that when the two beams have different nois®s 0.85

#S,) one has two conditional variances and, therefore, two
possible criteria. This shows that the QND criterion evalu-
ates the correlation from the point of view of one beam, and k|G, 8. value of the quantiyG as a function of the pump
is not an evaluation of the quantum correlation between th@arameter, in three different casea) Solid line: ideal case where
two fields. One possibility is to state that the two fields areall linewidths are equal and there is no excess naiseDashed
QND-correlated if one ha¥;, <1 and \,; <1. This crite- line: different linewidths for the signal and idler modes, =5yo,
rion is stronger than the previous of®9]. In the following,  and no excess noiséc) Dashed-dotted line: all linewidths are
we will discuss these two quantum criteria in the case of thequal, and some excess noise is givendsys./2.
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the input excess noisgorresponding to the resonant lumi- fields at zero frequencgdenoted bySA out S’“’“t andSAOUt

nescence of the three polariton mogess little effect on the
quantum correlations. As explained above, this comes fro
the fact that the pump input noiggvhich is the strongest
slightly above threshold, when the pump polariton popula-
tion is much larger than the signal and idler populatjoss

respectively, and the signal-idler amplltude correlatlon at
MDero frequencydenoted b

,out
ag B, )-

First, the polariton field amphtude fluctuations are calcu-
lated by inverting Eq(46). Then, the amplitude fluctuations

equally distributed between the signal and idler modes an@f the output fields are given by E0). Finally, the ampli-

helps build up classicabut not quantumcorrelations.

tude noise and correlation spectra are calculated using Egs.

In conclusion, in present-day microcavity samples the(55) and(57), respectively.

“quantum twin” criterion is overcome by only a few percent.
This is due to the fact that only the polariton fields are per-
fectly correlated, and we can only observe their photonic
parts. A simple image is the following: we observe the po-
lariton system through a beamsplitter which amplitude trans-
mission coefficient is equal to the Hopfield coefficiery,
which leads to losses that destroy the quantum effects. The
correlations are further reduced by the imbalance between
signal and idler. The photonic part of the idler is very small
(of the order of 0.05 which corresponds to large losses.

VIl. CONCLUSION

We have presented a quantum model allowing us to cal-
culate the quantum fluctuations of the beams produced by a
semiconductor microcavity in the regime of parametric os-
cillation. It extends the model developed by Cigti al.
above threshold and includes the noise coming from the ex-
citon part of the polaritons.

We show that some quantum correlation exists between
the signal and idler beams in the vicinity of threshold. Taking
the parameters of microcavity samples, which have been
shown to work in the parametric oscillation regime, it can be
seen that the correlation overcomes the quantum limit by a
few percent. The measurement of these correlations would
be of great interest, since quantum correlations between the
output beams, however small, are an indication of much big-
ger correlations between the intracavity polariton fields. For
example, in the ideal case at threshodde Fig. 8 if we
measure5=0.91, this corresponds to perfect correlations in-
side the cauvity.

In order to observe better quantum correlations between
the output beams, it is very important that the signal and
idler linewidths be made as equal as possible. A simple so-
lution would be to use a low-finesse cavity. Then the nonra-
diative losses would be less important with respect to the
radiative losses, and the ratio of the signal and idler line-
widths would be smaller. A compromise has to be found
because the oscillation threshold would also be higher.

We acknowledge fruitful discussions with C. Fabre, C.
Ciuti, P. Schwendimann, and A. Quattropani.

APPENDIX: NOISE AND SIGNAL-IDLER CORRELATION
In this section, we give the general expressions for th

. t
SSOO u

a,o Cﬁ Ya 1
kL SV O~ a-1
XOnO')’bO')’Zk + X5 Mok, Yook, Yo
X (1 + L Lt | (AL
YoV
1 1
1+C22 = 1 752+160-8+————
*08(0 - 1) Vi YoY2k,

X [8(= 1)XE N, Yoig YoYax,+ (30— 2)?

2
X XN YboYig Yo+ (0= 2) ?Xax, Mok, Yozk, Vi Yol } :

(A2)
out 2 a 1
S=1+Ch — 5|~ 70’ +160-8
2 Ly 8o =1)
1 g
+ [8(0 = D)X Mic, Yok Y02
Y Yok,
+ (0= 2)XeNoy0ig Yo + (30— 2)°
X ngankL Yook, Vi, 7’0]} , (A3)

1

=CoCoy g1
VY0 YaK, 80— 1)?

X{a‘z— ;[(a— 2)(3c-2)
Y YoY2k

2 2
X (X5No YooYk, Yok, + Xak Mok, Yook, Vi Y0)

,out
ag~Bok,

= 8(0 = 1)XE N, Yol Y02k, ] (A4)

whereng, Ny, s andn2kL are the input excitonic noises. From

these expressions,

esignal—idler correlation at zero frequen@@b‘g‘;k () using
L

it is easy to calculate the normalized

amplitude noises of the signal, pump, and idler output lightdefinition (58).
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