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We propose a scheme to achieve multiparty entanglement with perfectly efficient, ultraslow, multichannel
pairwise four-wave mixing(FWM). A cold atomic medium is illuminated with anN-mode continuous-wave
(cw) control laser to produce coherent mixtures of excited states. An ultraslowly propagating, single-photon
quantum probe field completes multichannel, pairwise FWM, creating a depth dependent entanglement ofN
Fock states. We show explicitly that this scheme can be utilized to realize anN-party entangled state of
ultraslowly propagating quantized fields. In particular, we give the explicit analytical expression of a three-
party W-state propagating at an ultraslow group velocity, and the numerical results of a multiparty W state of
2M +1 Fock states.
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I. INTRODUCTION

Entanglement of the quantum states of separate particles
is at the heart of quantum-information sciences(QIS) and
has been intensively studied[1–5]. Recently, a novel and
efficient scheme to create the entanglement of two Fock
states with a single(or a few) ultra-slow photons via four-
wave mixing(FWM) [1] has been proposed. The scheme has
been shown to have several advantages over the previous
Fock state entanglement scheme using cavity QED tech-
niques[2]. In particular, it has been shown that such a maxi-
mally entangled state can be efficiently generated, stored in
the medium and later retrieved with its full entanglement
properties recovered. These latter two capabilities have sig-
nificant implications in QIS. Ultimately, it would be desir-
able to be able to entangle a large number of Fock states
efficiently, store the entangled state for a long period of time,
and retrieve it without losing important entanglement prop-
erties becauseN-party entangled statessNù3d are generally
superior to biparty entangled states in testing the foundations
of quantum mechanics[2–4]. In addition, since entanglement
is a key resource for quantum computation and quantum in-
formation, the ability to entangle a large number of states or
particles represents a measure of being able to execute more
complex quantum computations. For these reasons, seeking
efficient schemes to realize the entanglement of a large num-
ber of quantum states or particles is an important and chal-
lenging task.

In this paper, we explore the possibility of entangling a
large number of Fock states using a perfect efficient, pair-
wise FWM technique. Specifically, we propose a scheme us-
ing a perfectly efficient, ultraslow, multichannel pairwise
four-wave mixing (FWM) technique as shown in Fig. 1.
Here a cold atomic medium is illuminated with anN-mode

continuous-wave(cw) control laser to produce coherent mix-
tures of excited states. An ultraslowly propagating, single-
photon quantum probe field completes multichannel, pair-
wise FWM, creating a depth dependent entanglement ofN
Fock states. In Sec. II, we describe the system and present
the general solution describing the evolution of the probe
fields. The general solution provides a convenient basis for
the investigation of anN-party entangled state of ultraslowly
propagating quantized probe fields. In Sec. III, we give the
analytical expression of a three-party W-state propagating
with an ultraslow group velocity. In Sec. IV, we present nu-
merical results showing an entanglement of 2M +1 Fock
states, and we conclude the paper with a summary in Sec. V.

*Author to whom correspondence should be addressed.

FIG. 1. A three-level lifetime broadened atomic system couples

with a quantized probe fieldÊp1svp1d and a strong classically
treated continuous-wave (cw) N-mode control field
sVc1,vc1;Vc2,vc2; . . . ;VcN,vcNd. The probe field frequencyvp1

and the control field frequencyvc1 are such that the exact two-
photon resonance between atomic levelsu1l andu3l is achieved. The
complex detuning are defined asdpj=dpj+ ig s j =1,2, . . . ,Nd where
dpj andg2=2g are the detunings from levelu2l and the decay rate of
level u2l, respectively.
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II. GOVERNING EQUATIONS AND GENERAL SOLUTION

We use the interaction picture to calculate the atomic dy-
namics and the probe photon field, but treat the strong
N-mode control fields and their interactions with the medium
classically. Taking the standard plane wave and slowly-
varying-phase-and-amplitude approximations, we derive the
following equations of motion for the complex amplitude of
the quantized probe fields
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where Ŝpj are the polarization operators, k12
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Taking the Fourier transformation of Eqs.(1)–(3), we obtain
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whered;pk=1
N dpk, D=do j=1

N suVcju2/dpjd, and is the Fourier

transformation ofÊpj
s+d with v being the transformation vari-

able.
We now consider the case where allN control fields have

the same intensity, i.e.,Vc1=Vc2=¯ =VcN;Vc. In this
case, Eq. (4) can be put into a concise matrix form

−i ] Ẑ/]h=GẐ with a solution

Ẑ = eihGẐ0, s5d

where h=zk12uVcuN/ sD−vdd;zsk12/ uVcud / sD̃−ṽd̃d, dj

=dpj / uVcu, d̃=d/ uVcuN;pk=1
N dk, D̃=D / uVcuN+1=o j=1

N sd̃/djd
and ṽ=v / uVcu. Ẑ=exps−ivz/cdsẐp1

s+d ,Ẑp2
s+d ,¯ ,ẐpN

s+ddT is a

column vector ofN components,Ẑ0=Ẑuz=0, and G is a N

3N matrix with elements Gij =fs1/djdsṽd̃−D̃+ d̃/djd
− d̃/dj

2gdi j + d̃/ sdidjd.
In order to obtain the explicit expressions ofN quantities

sẐpj
s+dd, we need to first find the eigenvaluesj of the matrixG

by solving the equation detsG−jId=0. It is readily shown
that this equation can be reduced to the following form:

o
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2 + djsD̃ − ṽd̃d

= 1. s6d

Once the eigenvaluesj are obtained, the coefficient matrix
for diagonalizing the matrixG can be trivially obtained from

Eq. (5), yielding explicit expressions of theN quantitiesẐpj
s+d.

In order to carry out the inverse Fourier transformation
analytically, thereby gaining important physical insight, we
follow the approximation in Ref.[1] by neglectingv depen-
dent terms in the coefficients of the solution, and keeping

only terms that are linear inv in the exponents, i.e., taking
j=j s0d+ṽjs1d+Osṽ2d. This approximation is justified be-
cause the assumptions made previously lead to a well be-
haved adiabatic following solution of Eq.(2)[1]. We thus
have
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s+dsz,td = o

k=1

N
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wherePstd is the pulse shape function for the initial photon
wave packet for the first probe field of frequencyvp1, âpk is
the annihilation operator for thekth probe field, , sn

=k12jn
s0d / suVcu D̃d, and the group velocities are given by

1

Vgn
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c
+
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s0d/D̃d−2G . s8d

Heresn=1,2, . . . ,Nd are the roots of the following equation
for j s0d [6]:

o
j=1

N
j s0d

j s0ddj + D̃
= 0. s9d

Equations(7)–(9) indicate that in general the wave packet
will break into N parts that travel with different group ve-
locities but all of themretain a pulse shape identical to that
of the input probe field. Under the initial condition of only
one photon wave packet in the probe fieldEp1 and none in
others, the state vector of the probe waves in the Schrödinger
picture can be expressed as
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uCl = o
k,n=1

N

fc1k
sndeizsng*PSt −

z

Vgn
Dâpk

† uvacl. s10d

Here uvacl= u0vp1
lu0vp2

l . . .u0vpN
l denotes the vacuum state of

the probe waves, and hence âpk
† uvacl

= u0vp1
l . . .u1vpk

l . . .u0vpN
l is the state with one photon in the

kth probe wave and none in the others. Equation(10) repre-
sents a linear combination ofN Fock states and it is an en-
tangled state at specific space-time pointssz,td.

In order to obtain theN-party entangled state for the quan-
tized probe fields, and more importantly to be able to store
and retrieve the entangled state with its full entanglement
properties recovered, it is desirable to have allN parts of the
wave packet traveling with closely matched group velocities.
This is particularly important when slow propagation veloc-
ity is an essential feature of the problem because under ul-
traslow propagation conditions the longitudinal spatial distri-
bution of the wave packet is very small and any significant
mismatch will result in significant reduction of efficiency
and will render the storage and recovery incomplete. In the
case ofN-channel entanglement this is a formidable task
since one must choose appropriate values forN complex
detuningsdpj=dpj+ ig s j =1,2, . . . ,Nd so that theN group ve-
locitiesVgj have nearly identical values. In the following, we
show that it is indeed possible to realize efficient entangle-
ment ofN Fock states propagating with the same group ve-
locity by considering two specific situations.

III. THE THREE-PARTY W STATES

In this section, we show that in the case ofN=3, we can
choose the parameters so as to achieve the same ultraslow
group velocity for three probe fields, and show explicitly and
analytically that the entanglement of three Fock states can
indeed be realized.

It follows from Eq. (9) that with N=3 the threej s0d’s are
(with j−

s0d;j2
s0d andj+

s0d;j3
s0d)

j1
s0d = 0, j±

s0d = − o
k=1

3

dk ±Îo
k=1

3

dk
2 − D̃. s11d

Substituting thesej s0d’s into Eq. (8) and takingdp1=0, dp2
=−dp3=D, we readily obtain

1
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+
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, s12ad
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+
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D2 + g2 G . s12bd

Therefore, under the conditiong! uDu, the group velocities
can be closely matched. We thus have

Êpj
s+dsz,td = CPSt −

z

Vg1
Do
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3

âpkMjkszd, s13d

where C is an appropriate constant,Mjkszd=Mkjszd ( j ,k
=1,2,3 butj Þk), M33szd=M22

* szd, and

M11szd = f1 + 2e−Bz cossAzdg, s14ad

M12szd = f1 − e−Bz cossAzd + iÎ3e−Bz sinsAzdg, s14bd

M13szd = f1 − e−Bz cossAzd − iÎ3e−Bz sinsAzdg, s14cd

M23szd = 1 −e−Bz cossAzd, s14dd

M22szd = 1 + 2e−Bz cossAzd − iÎ3e−Bz sinsAzd. s14ed

In the above equations B=Imss±d=3k12g / sD2+g2d
<3k12g /D2, A=Ress−d=k12

Î3uDu / sD2+g2d<k12
Î3/uDu un-

der the conditiong! uDu, s±=k12s7Î3uDu+3igd / sD2+g2d,
ands1=0. Consequently, the state vector of the probe wave
is given as[see Eq.(10)]

uCl = C*fM11
* szdu1vp1

lu0vp2
lu0vp3

l + M12
* szdu0vp1

lu1vp2
lu0vp3

l

+ M13
* szdu0vp1

lu0vp2
lu1vp3

lgPSt −
z

Vg1
D . s15d

Equations(14) and (15) indicate that under the condition
of g! uDu (so thatB<0) and when the distancez satisfies
cossAzd=sÎ3−1d /2, we have

uCl = Î3C*fu1vp1
lu0vp2

lu0vp3
l + e−iuu0vp1

lu1vp2
lu0vp3

l

+ eiuu0vp1
lu0vp2

lu1vp3
lgPSt −

z

Vg1
D , s16d

where eiu= ±Î2Î3/sÎ3+1d. This state is equivalent to the
standard three-party W-state. We note that unitary transfor-
mations âp3

† →e−iuâp3
† and âp2

† →eiuâp2
† transform Eq.(16)

into

uCl = Î3C*fu1vp1
lu0vp2

lu0vp3
l + u0vp1

lu1̃vp2
lu0vp3

l + u0vp1
l

3u0vp2
lu1̃vp3

lgPSt −
z

Vg1
D , s17d

which is the standard three-party W-state[5] propagating
with an ultraslow group velocity. We emphasize that unlike
most of the previous schemes that are probabilistic(with a
very small probability), the three-photon W-state obtained in
our scheme is nonprobabilistic in nature.

It is interesting to note that a maximally entangled state of
the last two probe waves can also be produced. For instance,
when the distancez satisfies cossAzd=−1/2 (again assuming
g! uDu so thatB<0), Eq. (15) becomes

uCl = su0vp1
lsu1vp2

lu0vp3
l ± i u0vp2

lu1vp3
ldPSt −

z

Vg1
D ,

s18d

wheres=3s1± idC* /2 is a constant. This is a maximally en-
tangled state of the second and third probe waves.

IV. W STATE OF 2 M +1 FOCK STATES

In this section, we show numerically that in the case of
N=2M +1, we can choose the parameters so as to achieve
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identical group velocities for the 2M +1 probe fields. For this
purpose it is convenient to relabel the probe and control
fields as shown in Fig. 2.

It is obvious from Eq.(8) that when a control field in the
three-state system depicted in Fig. 2 is sufficiently intense,
the propagation velocities of the probe and FWM fields are
very close to speed of light in vacuum. Consequently, modi-
fications to the group velocities of the probe and FWM fields
can be neglected[7]. We now assume that thes2M +1d chan-
nels are equally spaced. Therefore,dpj= jD+ ig with j
= ±1, . . . , ±M. We further require that the 2M control field
Rabi frequencies satisfyVcj= u j uVc s j Þ0d. The reason be-
hind this choice of control fields is the consideration of
achieving the sameeffectiveFWM production rate for all
channels. This is critically important to the realization of a
multiparty W-state. As we will demonstrate, different choices
of Rabi frequencies and propagation distances will allow one
to access a subset of multiparty W-states but only the above
selection permits an all-channel-participating entangled state.
We note that thej =0 channel is an important key element in
achieving our goal. Indeed, the single-photon wave packet
must be injected through this channel in order to obtain ideal
results. For this channel, we havedp0= ig and we takeVc0
=Vc. Under these assumptions Eq.(5) becomes

Ẑ = eik12zGẐ0. s19d

Here,Ẑ=exps−ivz/cdsẐpM
s+d ,¯ ,Ẑp,−M

s+d dT is a column vector of

s2M +1d components,Ẑ0=Ẑuz=0, andG is a s2M +1d3 s2M
+1d matrix with its elements given by

g00 =
X − 1

ig
, g0n = gn0 = X

unu
sn + iddD

, s20ad

gnk = iXd
unuuku

sn + iddsk + iddD
s1 − dnkd

−
1

sn + iddDF1 − iXd
n2

sn + iddGdnk, s20bd

where dnk is the Kronecker d function, n,k
= ±1, ±2, . . . , ±M and

X =
1

1 + X0
, X0 = 2d 2o

l=1

M
l2

l2 + d 2, d =
g

D
.

In general, the coefficient matrixeik12zG cannot be calcu-
lated analytically. In the following, we will demonstrate by
numerical calculation that as2M +1d-party W-state can in-
deed be generated with 100% efficiency, provided that a
single probe photon wave packet is injected in thej =0 chan-
nel. Before doing that, however, we will discuss some fea-
tures of this novel FWM scheme.

When a single probe photon is injected into thej =0 chan-
nel where the control fieldVc0=Vc maintains an electromag-
netically induced transparency channel for the probe field,
the single photon wave packet propagates nearly freely and
is eventually absorbed via a two-photon process. Because of
the existence of 2M control fields, this single probe photon
wave packet is simultaneously converted into 2M FWM
fields projected into the 2M exit channels. Since the control
fields are chosen such that theeffectiveFWM production rate
is identical for all 2M channels, the projection or production
of the 2M FWM fields occurs withequal probability. Con-
sequently, as the initial probe photon is being absorbed, 2M
FWM fields are produced in 2M channels with equal ampli-
tudes, creating a perfect 2M-mode FWM field with 100%
conversion efficiency, and thereby generating a multiparty
W-state of 2M Fock states. In Fig. 3 we plotted the absolute
values of the probability amplitude of each product-type
state obtained from Eqs.(19) and (20) as a function of
k12z/D. In this case, we takeM =4 and we expect to generate
a maximum entanglement of 9 Fock states[8]. The dashed
curve starting at 1.0 represents the absolute value of the
probability amplitude of the initial input channel. As the
propagation distancez increases, the input single-photon
wave packet is absorbed and the production of all 2M =8
FWM fields increases at the same rate(within our approxi-
mation). When the initial probe photon wave packet is fully
absorbed, the dashed line reaches zero amplitude and all
2M =8 mode FWM fields have reached thesameamplitude.
At this depth inside the medium, the following entangled
state has been generated,

uCl = CPSt −
z

c
Du0vp0

l o
kÞ0,k=−M

M

âpk
† uvacl, s21d

whereC is a complexc-numberfunction of propagation dis-
tance,Pstd is the pulse shape function for the initial photon
wave packet,uvacl= u0vpM

l . . .u0vp,1
lu0vp,−1

l . . .u0vp,−M
l denotes

the vacuum state of the 2M FWM waves(i.e., without the
probe wave vp0), and hence u0vp0

lsâpk
† uvacld

= u0vp0
lu0vpM

l . . .u1vpk
l . . .u0vp,−M

l is the state with one

FIG. 2. A three-level lifetime broadened atomic system

couples with a quantized probe fieldÊp0svp0d and 2M +1 strong,
classically treated continuous-wave(cw) control fields
fVcMsvcMd , . . . ,Vc,−Msvc,−Mdg. The probe field frequencyvp0 and
corresponding control field frequencyvc0 are such that exact one-
and two-photon resonance between atomic levelsu1l andu2l u1l and
u3l are achieved.
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photon in thekth probe (FWM) channel and none in the
others. Equation(21) represents a multiparty W-state of 2M
Fock states(without the initial probe photon state) at the
given propagation depth.

We note that a multiparty W-state ofs2M +1d Fock states
can be generated at a suitable propagation distancez [9]. In
this region ofz, all s2M +1d product type states have nearly
the same amplitude. This represents a multiparty W-state of
s2M +1d Fock states(see the inset of Fig. 3). At this depth
inside the medium, we have

uCl = C8PSt −
z

c
D o

k=−M

M

âpk
† uvac8l, s22d

whereC8 is a new propagation distance dependentc-number
function anduvac8l;u0vp0

luvacl. Equation(22) demonstrates

that a deterministic, multiparty W-state of a large number of
Fock states can be achieved with this highly efficient, multi-
channel, pairwise FWM scheme.

V. CONCLUSIONS AND SUMMARY

In summary, we have proposed a scheme to achieve maxi-
mum entanglement of a large number of Fock states using a
perfectly efficient ultraslowly propagating, multichannel,
pairwise FWM technique. We have presented solutions for
the N quantized probe waves and have shown that an ul-
traslowly propagating, single-photon quantum probe field via
FWM can create a depth dependent entanglement ofN quan-
tized probe waves. We have demonstrated analytically that
the three-party W-state can indeed be achieved for the initial
condition of one photon in the first probe wave and none in
the others. We have also shown numerically there exists the
multiparty W-state of 2M +1 Fock states.

The perfectly efficient, multichannel, pairwise FWM tech-
nique discussed here may have profound importance in pro-
ducing controllable entangled states. By adjusting the indi-
vidual control field Rabi frequency, it is possible to access
different entanglement subspaces, giving an interesting tun-
ability to the scheme. Indeed, it is possible to null at several
channels yet maintain efficient entanglement of other chan-
nels. Such ability of being able to access entangled sub-
spaces may have important applications in QIS. We empha-
size that the most important feature of the scheme presented
here is the deterministic and perfectly efficient generation of
a multiparty W-state ofN Fock states. This is to be con-
trasted with most of the previous schemes where the prob-
ability of entanglingN.3 states is very small. The frame-
work presented here may also serve as a useful basis for
entangling multiple photons. Experimental demonstration of
the scheme discussed in the present study and possible ex-
tension to multiphoton entanglement are currently under
way. Further theoretical studies on efficient access to desir-
able entanglement subspaces and multiphoton entanglement
have also been pursued.
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