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We propose a method for finding analytical solutions of the Bogoliubov–de Gennes(BdG) equations for the
low-lying collective excitations in a harmonically trapped Bose-Einstein condensate beyond the Thomas-Fermi
limit. We first use a simple variational wave function for ground state to eliminate the divergence at the
boundary layer of the condensate, which appears in the Thomas-Fermi approximation. We then solve the BdG
equations analytically and obtain explicit and divergence-free expressions for the eigenvalues and eigenfunc-
tions of the excitations for the traps with spherical and cylindrical symmetries. The solutions of the zero-energy
mode of the BdG equations are also presented.
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I. INTRODUCTION

The study of elementary excitations is one of the main
subjects in quantum many-body physics. Due to the remark-
able experimental realization of Bose-Einstein condensation,
much attention has been paid to the investigation on the el-
ementary excitations in trapped, weakly interacting atomic
gases[1]. Up to now the analytical works on the elementary
excitations in Bose-Einstein condensates(BECs) are mainly
based on Gross-Pitaevskii and Bogoliubov theories. At zero
temperature a weakly interacting Bose-condensed gas can be
well-described by the Gross-Pitaevskii equation(GPE) [2],
which can be transformed into a hydrodynamic form in terms
of the amplitude and phase of order parameter. However, this
approach usually neglects the quantum fluctuations of the
condensate. In the Bogoliubov theory[3] one makes a ca-
nonical transformation for the field operators to diagonalize
the Hamiltonian of the system by using the eigenfunctions of
Bogoliubov–de Gennes equations(BdGEs). The Bogoliubov
theory is easy to generalize to finite temperature(e.g., the
Hartree-Fock and Popov approaches) when the quantum
fluctuations are taken into account properly[1]. The sum rule
approach is easy to give the excitation spectrum[4]. The key
in the equivalent GP and Bogoliubov theories[5] is to solve
respectively the hydrodynamic equations and the BdGEs,
which is for an analytical treatment very difficult for a
trapped BEC. For a repulsive atomic interaction and a large
particle number an explicit result on the collective excita-
tions can be obtained under a Thomas-Fermi(TF) limit by
using the fact that atomic interaction is dominant compared
with the quantum pressure[6–9]. To include the contribution
from the surface of the condensate, Fetter and Feder calcu-
lated the leading correction of the condensate wave function,
condensate energy, and low-lying collective modes beyond
the TF approximation[10].

It is necessary to develop a more useful technique to study
the elementary excitations in trapped BECs beyond the TF
limit. The reasons are as follows.(i) At the boundary layer of
a condensate the Bogoliubov amplitudes vary sharply and
hence the kinetic energy of both the condensate and the ex-
citations cannot be neglected[11]. (ii ) There appears a sin-
gular point in the solution of the Bogoliubov amplitudes at
the boundary of the condensate[8] which makes the theory
unsatisfactory.(iii ) When considering the nonlinear interac-
tion of the elementary excitations, one must calculate the
interacting matrix elements of the excitations. The existence
of the singular point in the Bogoliubov amplitudes results in
a divergence for the matrix elements[12]. In this work we
investigate the low-lying collective excitations in BECs with
spherically and cylindrically symmetric trapping potentials
and propose a method to solve the BdGEs for the excitations
beyond the TF limit. By taking into the contribution from
zero-point pressure and applying a variational principle to
the ground state of the condensate with a Fetter-like varia-
tional ground state function[13], the divergence mentioned
above is eliminated completely. Although not rigorous, this
method can lead us to solve the BdGEs exactly. The eigen-
values and the corresponding eigenfunctions are obtained ex-
plicitly and they are valid in all regions of space. The solu-
tions of the zero-energy mode of the BdGEs are also
provided.

II. MODEL AND BdGEs

We start from the grand canonical Hamiltonian density
of a trapped, dilute Bose gas with a weak repulsive inter-

action between atoms[1] Ĥ=−s"2/2Md¹2+Vextsr d−m

+sg/2dĈ†sr ,tdĈsr ,td, whereĈsr ,td is the field operator,g
=4p"2asc/M is the atomic interaction constant withM the
atomic mass andascs.0d thes-wave scattering length, andm
is the chemical potential of the system. The trapping poten-
tial is of the formVextsr d=s1/2dMv'

2 sx2+y2+l2z2d. Making*Corresponding author.
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the Bogoliubov approximation and canonical transformation

Ĉsr ,td=cGsr d+on=0
` funsr dĉnstd+vn

*sr dĉn
†stdg with boson

commutation relations of the annihilation and creation opera-

tors ĉnstd and ĉn
†std, the Hamiltonian of the systemĤ

=ed3r Ĉ†sr ,tdĤĈsr ,td at zero temperature becomesĤ=EG

+ a
2 p̂2+on.0«nĉn

†ĉn+ the nonlinear terms, where the con-
densed state wave functioncG satisfies the GPE

f− "2¹2/s2Md + Vextsr d − m + gucGu2gcG = 0, s1d

whereEG is the energy of the condensate andp̂=s1/Î2dsĉ0
†

+ ĉ0d is its “momentum” operator[14,15]. The excitations
generated in the condensate occupy the various normal-mode
eigenstates that satisfy the linear BdGEs[1]

L̂unsr d + gucGu2vnsr d = + «nunsr d, s2d

L̂vnsr d + gucGu2unsr d = − «nvnsr d, s3d

whereunsr d and vnsr d are the eigenfunctions of the excita-

tions associated with the eigenvalues«n. The operatorL̂ is

defined byL̂=−"2¹2/ s2Md+Vextsr d−m+2gucGu2. The zero-
energys«0=0d modeu0 andv0 fulfill the equations[14,15]

L̂u0sr d + gucGu2v0sr d = sa/2dfu0sr d − v0sr dg, s4d

L̂v0sr d + gucGu2u0sr d = sa/2dfu0sr d − v0sr dg, s5d

with the parametera yet to be determined. The eigenfunc-
tionsun andvn constitute an orthonormal and complete set of
functions with the relationsed3r fun

*sr dun8sr d−vn
*sr dvn8sr dg

=dnn8, ed3r funsr dvn8sr d−un8sr dvnsr dg=0, on=0
` funsr dun

*sr 8d
−vnsr dvn

*sr 8dg=dsr −r 8d, and on=0
` funsr dvn

*sr 8d−vnsr dun
*sr 8dg

=0.
For convenience we rewrite the BdGEs in terms of suit-

able rescaled variables. We letr̄ ; r /R' and ¹̄;R'¹ with
R'=Î2m /Mv'

2 the characteristic condensate radius. By in-
troducing an important parameterz;"v' /2m and a func-

tion ssr d;−f¹̄2cGsr dg /cGsr d, which is proportional to the
zero-point pressure, the GPE(1) for the ground state be-
comes ucGsr d /cGs0du2=1−r̄2−z2ssr d and the coupled
BdGEs(2) and (3) are equivalent to the single fourth-order
ordinary differential equations for the functionsw±sr d
;un±vn and the dimensionless eigenfrequencyv̄n;vn/v'

[8]:

− ¹̄2s1 − r̄2dw+ − s1 − r̄2dsw+ + s1/2dz2

3f¹̄4 + 3¹̄2s + s¹̄2 + 3s2gw+ = 2v̄n
2w+, s6d

− s1 − r̄2d¹̄2w− − s1 − r̄2dsw− + s1/2dz2

3f¹̄4 + ¹̄2s + 3s¹̄2 + 3s2gw− = 2v̄n
2w−. s7d

The general BdGEs(6) and (7) are very difficult to solve
analytically because they involve the high-order derivative

¹̄4 and the trapping potential. As pointed out in[5] that, for

the low-lying excitations, i.e.,"v'ø«n!m, substitution of
the TF solution into the BdGEs yields an incorrect eigen-
value spectrum, since the kinetic energies(the zero-point
pressure) of the condensate and the excitations are equally
important (also see[8]). Hence we cannot omit the kinetic
energy term in Eq.(1). Furthermore, the TF solution leads to
a logarithmic divergence in the mean kinetic energy[10],
which is proportional to kssr dl,e0

1dr̄r̄2s3−r̄2d / s1−r̄2d
=4/3+Bs0+,3/2d=4/3−ln 0+ with Bsa,bd the beta function.

For enough largeN0 (the particle number in the conden-
sate) the repulsive interaction becomes important and the
condensate expands toR' from aho;s" /Mv'd1/2, whereaho

is the characteristic oscillator length of the trapping potential,
and R' /aho.s15lPd1/5@1 with P;N0asc/aho. We called
the caseP@1 (a large but finite product ofN0 and the ratio
asc/aho) the TF regime and the caseP→` the TF limit. In
the TF limit the chemical potential has a simple formm
. 1

2"v's15lPd2/5. In usual TF approximation and for large
finite P, the boundary layer is at the location of finiter
=R'. The TF solution leadsssr d as well asz2kssr dl to be
singular and hence the calculation for the interacting matrix
elements to diverge[8,12], as mentioned above. Note that for
low-lying excitations and a large particle number one can
have two limit processes, i.e.,z2.s15lPd−4/5→0 andssr d
→` (for r̄ →1). Thus one can consider the situation in which
the productz2kssr dl remains finite, relying on the exact ex-
pression forcG beyond the TF limit. It is this important
observation that provides us with the possibility to get
divergence-free analytical solutions of the BdGEs(6) and(7)
in the TF regime.

III. SOLUTIONS FOR l=1

The explicit analytical solutions for Eqs.(6) and (7) can
be obtained in three steps. The first and key step is to use a
Fetter-like variational solution for the GPE(1) by introduc-
ing a single variation parameterq, i.e., we takecG=CGs1
− r̄2dsq+1d/2Qs1−r̄d, where CG is a normalization constant.
Note that the condensate radiusR' is a parameter in the TF
regime rather than a variational parameter as Fetter did in the
whole regime ofN [13]. The energy minimum condition
gives q as a function ofP shown below in Eq.(13) for l
=1. The asymptotic behavior isq, P−2/5→0 and R'

=ahof4lP/Bs3/2,2+qdg1/5, P1/5→` for P→`. The sec-
ond step is to set the parameterz2 to be zero but substitute
s=s1+qdf3−sq+2dr̄2g / s1−r̄2d2 in Eqs. (6) and (7), i.e., we
solve the leading-order approximation solutions of Eqs.(6)
and(7) by takingz2 as a small expansion parameter. We get
the solutions of the form w±sr d=C±s1
− r̄2dsq71d/2r̄ lPsr̄2dYlmsu ,wd, where the radial functionPsxd
with x= r̄2 satisfies a hypergeometric differential equation

2xs1 − xdP9sxd + f2l + 3 − s2l + 5 + 2qdxgP8sxd

+ fsv̄nrl
s0dd2 − l − lqgPsxd = 0. s8d

The solutions of Eq.(8) are classicalnrth-order Jacobi poly-
nomials Pnr

sl+1/2,qds1−2xd, which form an orthonormal func-
tion set in the interval 0øxø1 with weight xl+1/2s1−xdq.
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The normalization integration in the axial direction isInrl

;e0
1dxxl+1/2s1−xdqPnrl

2 sxd. The eigenvalues of Eq.(8) are

given by sv̄nrl
s0dd2=sv̄nrl

TFd2+s2nr + ldq, where sv̄nrl
TFd2=2nr

2

+2nrl +3nr + l is the result in the TF limit forn=snr , l ,md
modes. Since the normalization coefficientsC± have the re-
lation C+=zv̄nrl

s0dC−, from Eqs.(6) and(7) we obtain the nor-

malized solutions by use of the conditioned3r sunrl
2 −vnrl

2 d=1:

w±sr d = f2/sInrl
R'

3 dg1/2szv̄nrl
s0dd±1/2s1 − r̄2dsq71d/2r̄ l

3Pnrl
sr̄2dYlmsu,wd. s9d

Note that Eq.(8) is similar to that in[5,7,8] but the solutions
w±sr d are very different. The main difference is that there is
a weight factors1−r̄2dq for qÞ0 in the TF regime and its
limit recovers the result obtained by using the TF limit(i.e.,
for q→0). We stress that it is the use of the ground state
wave function given above, which vanishes smoothly when
r̄ →1, that makes not onlyz2kssr dl finite for 1! P,`, but
also the eigenvalues and eigenfunctions of the BdGEs can be
obtained analytically.

The third step is to use a perturbation theory to calculate
the contribution from the terms proportional toz2 in Eqs.(6)
and (7). Using the leading-order solutionw±sr d given above
we obtain the first-order correction of the eigenfrequency

v̄nrl
=

v̄nrl
s0d

2Inrl
E

0

1

dxxl+1/2P2sxdHs1 − xdq + s1 − xd2q

+ z2s1 − xdq−2Fsv̄nrl
s0dd2 − 3 − 2l − 2

1 − q

1 − x
Îx

+ 4x
P8sxd
Psxd GJ . s10d

For the special modes ofnr =0 andl ù1, the above result is
simplified into

v̄0l =
Îl + lq

2Bsl + 3/2,q + 1d
hBsl + 3/2,q + 1d + Bsl + 3/2,2q + 1d

+ z2fslq − l − 3dBsl + 3/2,q − 1d

− 2s1 − qdBsl + 1,q − 2dgj. s11d

Note that because of the existence of the weight factors1
−xdq the divergence in the integration(10) is eliminated
completely. This point can also be seen clearly from Eq.(11)
since v̄0l =Îl +constz2/q and z2/q, P−2/5→0 in the TF
limit. Although Bsl ,qd has singularity,1/q at q=0, the re-
sult for the eigenspectrum and wave functions is divergence-
free.

We now consider the solutionu0 andv0 of the zero-energy
mode for Eqs.(4) and (5). We let w0±sr d;u0±v0 and find
that w0− is just cG and w0+ has the formw0+=ysq+5d/2Wsyd,
wherey=1−r̄2 andWsyd satisfies the equation

− 2y2s1 − ydW9 + fs9 + 2qdy − 2s5 + qdgyW8 + s5 + qdf3 + q

− s6 + qdygW+ y3W/z2 = aCG/smz2d. s12d

We make the series expansionWsyd=a0ok=0
` ãky

k, wherea0 is
determined by the normalization conditioned3r su0

2−v0
2d=1.

The single eigenvalue of Eq.(12) is found to be a
=−"v's9+4q−q2dz / f2pR'

3 CG
2 ok=0

` ãkBs3/2,k+q+2dg.

IV. SOLUTIONS FOR lÅ1

In a similar way we may solve the BdGEs(6) and(7) for
the case of cylindrical symmetry, in which case we haver̄2

= s̄2+l2z̄2 with s̄;s/R' andz̄;z/R'. We use the trial wave
function for the ground statecG=CG

Îls1−r̄2dsq+1d/2Qs1−r̄d
and the variation parameterq is chosen by minimizing the
energy, i.e.,q satisfies the equation

2 + l2

B1/5s3/2,2 +qds4lPd4/5

3H 5

2q2 − 1 −S1

q
+

7

5
+

2

5
qDFcs2 + qd − cS7

2
+ qDGJ

=C8 −
3

s7/2 +qdBs3/2,2 +qd
+

3

5
Fcs2 + qd − cS7

2
+ qDG

3F 2

s7/2 +qdBs3/2,2 +qd
− CG , s13d

wherecszd is the logarithmic derivative of the gamma func-
tion, C=Bs1+q,7 /2+qd /Bs3/2,2+qdBs1+q,2+qd and C8
is the derivative with respect toq. Here q, P−2/5→0, R'

, P1/5→`, and z2/q, P−2/5→0 at P→`. Note that the
condensate radiusR' andRi=R' /l have two parameters in
the TF regime rather than two variational parameters as Fet-
ter did in the whole regime ofN [13]. The solutions of
Eqs. (6) and (7) have the form w±sr d=C±s1
− r̄2dsq71d/2s̄mPss̄, z̄deimw, where the coupled axial and radial
functionPss̄, z̄d satisfies a two-dimensional differential equa-
tion

Hs1 − s̄2 − l2z̄2dF ]2

] s̄2 + s1 + 2umud
]

s̄] s̄
+

]2

] z̄2G − 2s1 + qd

3Ss̄
]

] s̄
+ l2z̄

]

] z̄
D + 2fsv̄nznsm

s0d d2 − umu − umuqgJP = 0.

s14d

The solutions of Eq. (14) are given by Pnp

s2nsdsz̄, s̄d
=ok=0

np on=0
intfk/2gbk,nz̄

k−2ns̄2n, where the principal quantum num-
ber np and the zero-order eigenvaluesv̄nznsm

s0d d2 are the solu-
tions of a standard continued fraction equation[7]. The poly-
nomialsPnp

s2nsdsz̄, s̄d form an orthonormal function set in the
interval 0ø r̄ ø1 with the weights̄ms1−r̄2dq. The normaliza-

tion integral reads Inznsm
;2e0

1s̄ds̄e0
Î1−s̄2/ldz̄s̄2ms1−s̄2

−l2z̄2dqfPnp

s2nsdsz̄, s̄dg2. The normalized eigenfunctions are
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w±sr d =
szv̄nznsm

s0d d±1/2

Î2pR'
3 Inznsm

s1 − s̄2 − l2z̄2dsq71d/2s̄mPnp

s2nsdss̄,z̄deimw.

s15d

The eigenvalues are determined by

v̄nznsm
=

v̄nznsm
s0d

2Inznsm
E

0

1

s̄ds̄E
0

Î1−s̄2/l
dz̄s̄2mP2sz̄,s̄d

3Hs1 − r̄2dq + s1 − r̄2d2q + z2s1 − r̄2dq−2

3Fsv̄nznsm
s0d d2 − 2 −l2 − 2umu − 2

1 − q

1 − r̄2ss̄+ l2z̄d

−
2

Psz̄,s̄d
Ss̄

]

] s̄
Psz̄,s̄d + z̄

]

] z̄
Psz̄,s̄dDGJ . s16d

The zero-energy mode takes the formw0+=s1
− r̄2dsq+5d/2Wsz̄, s̄d, whereWsz̄, s̄d satisfies the equation

Îl
aCG

mz2 = F− s1 − r̄2d2¹̄2 + 2s5 + qds1 − r̄2dSs̄
]

] s̄
+ l2z̄

]

] z̄
D

+ 2s1 − qds2 + l2ds1 − r̄2d + sq2 − 4q − 9d

3ss̄2 + l4z̄2d +
2

z2s1 − r̄2d3GWsz̄,s̄d. s17d

Its special solution givesa=s2c0m /CG
Îldh1+z2fs1−qds2

+l2d−sb2,0+2b2,1dc̃2gj, wherec0 is the normalization coeffi-
cient, andc̃2 is the second-order coefficient of theWsz̄, s̄d
expanded in terms ofPnp

s2nsdsz̄, s̄d.

V. CONCLUSION

We have proposed a method for finding analytical solu-
tions of the BdGEs for the low-lying collective excitations of
a harmonically trapped Bose-condensed gas beyond the TF
limit. The singularity at the boundary layer of the condensate
has been eliminated by introducing a self-consistent varia-
tional parameter for the ground wave function of the conden-
sate. We have solved the BdGEs analytically and obtained
their eigenfrequencies and corresponding eigenfunctions,
which are divergence-free and valid in all spatial regions.
These general results cover also those obtained in the TF
limit. In addition, we have also presented the solution of the
zero-energy mode of the BdGEs. Because the region nearr̄
=1 has been analytically treated, the formulas obtained in
this work allow us to calculate the interacting matrix ele-
ments of the collective excitations, which will be given else-
where.
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