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Analytical solutions of the Bogoliubov—de Gennes equations for excitations
of a trapped Bose-Einstein-condensed gas
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We propose a method for finding analytical solutions of the Bogoliubov—de G€Bd& equations for the
low-lying collective excitations in a harmonically trapped Bose-Einstein condensate beyond the Thomas-Fermi
limit. We first use a simple variational wave function for ground state to eliminate the divergence at the
boundary layer of the condensate, which appears in the Thomas-Fermi approximation. We then solve the BdG
equations analytically and obtain explicit and divergence-free expressions for the eigenvalues and eigenfunc-
tions of the excitations for the traps with spherical and cylindrical symmetries. The solutions of the zero-energy
mode of the BAG equations are also presented.
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I. INTRODUCTION It is necessary to develop a more useful technique to study
The study of elementary excitations is one of the mainlti?sitell?gig?gn?;fg?}z"'2 t(apAp;?g BbECS dbey?nd thef TF
subjects in quantum many-body physics. Due to the remark-" " follows) At the boundary layer o

. 2 . . . a condensate the Bogoliubov amplitudes vary sharply and
able experimental realization of Bose-Einstein condensatio ence the kinetic enerav of both the condensate and the ex-
much attention has been paid to the investigation on the el-.. - 9y - N 1€ ex
ementary excitations in trapped, weakly interacting atomicc't?t'ons.cf‘nn?; be TegleCtimﬂ' (g) ThI(_er(; appearl_st adsm— i
gased1]. Up to now the analytical works on the elementarytghu at; pmg n fethso u |odn ot the ﬁ.g?]'u OIX ar&p 'tl:] es a
excitations in Bose-Einstein condensatB&Cg9 are mainly e boundary of the condensg® which makes the theory

based on Gross-Pitaevskii and Bogoliubov theories. At Zergnsatlsfactory(m) When considering the nonlinear interac-

fmperature a weakyineractng Bos-condensea gas can 1,1 1 STeTa oo, one s caeyae e
well-described by the Gross-Pitaevskii equati@PE [2], ng o . o .
of the singular point in the Bogoliubov amplitudes results in

which can be transformed into a hydrodynamic form in terms divergence for the matrix elemerftZ]. In this work we
of the amplitude and phase of order parameter. However, thid 9 )

approach usually neglects the quantum fluctuations of nihvestigate the low-lying collective excitations in BECs with

condensate. I the ogolibov 1] cne makes a ca- DAY, 31 SARATAL, oyaene e Poental
nonical transformation for the field operators to diagonaliz prop

the Hamiltonian of the system by using the eigenfunctions o eyond_the TF limit. By takmg. Into the.cqntnbutu_)n from
Bogoliubov—de Gennes equatiofBIGES. The Bogoliubov zero-point pressure and applying a variational principle to
theory is easy to generalize to finite témperat(efg. the t_he ground state of the c_:ondensate with a Fetter-lik_e varia-
Hartree-Fock and Popov approachashen the qualntum tional ground state functiofiLl3], the divergence mentioned

: : above is eliminated completely. Although not rigorous, this
fluctuations are taken into account propddy. The sum rule .
approach is easy to give the excitation spectfdinThe key method can lead us to solve the BAGEs exactly. The eigen-

in the equivalent GP and Bogoliubov theor[& is to solve values and the corresponding eigenfunctions are obtained ex-

. : . licitly and they are valid in all regions of space. The solu-
respectively the hydrodynamic equations and the BAGE )
which is for an analytical treatment very difficult for a%i)ons of the zero-energy mode of the BAGEs are also

trapped BEC. For a repulsive atomic interaction and a Iargg rovided.
particle number an explicit result on the collective excita-

tions can be obtained under a Thomas-Fefh) limit by Il. MODEL AND BdGEs
using the fact that atomic interaction is dominant compared ] o )
with the quantum pressufé—9]. To include the contribution We start from the grand canonical Hamiltonian density

from the surface of the condensate, Fetter and Feder calc@f @ trapped, dilute Bose gas with a weak repulsive inter-
lated the leading correction of the condensate wave functiorgction between atoms[1] H=—(%%/2M)VZ+V (r)-pu
condensate energy, and low-lying collective modes beyond (q/2)¥(r,t)¥(r ,t), whereW(r ,t) is the field operatory

the TF approximatiori10]. =4mh?as /M is the atomic interaction constant wit the
atomic mass ands{(>0) the s-wave scattering length, and

is the chemical potential of the system. The trapping poten-
*Corresponding author. tial is of the formVe,(r)=(1/2Mw? (x2+y?+\?z%). Making
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the Bogoliubov approximation and canonical transformatiorthe low-lying excitations, i.efiw, <e,<u, substitution of
‘i’(r,t)=wG(r)+Eﬁ:0[un(r)én(t)+v;(r)6;(t)] with boson the TF solution int_o the BdQEs .yields an incorrect e_igen—
commutation relations of the annihilation and creation operaY@lue€ spectrum, since the kinetic energigse zero-point

A A A ~ pressurg of the condensate and the excitations are equally
tors G0 and Gy(t), the Hamiltonian of the systent important(also se€8]). Hence we cannot omit the kinetic

=JdPr®T(r ,)yHW(r 1) at zero temperature becomBsEs  energy term in Eq(l). Furthermore, the TF solution leads to
+5P?+ - 0enCiCi+ the nonlinear terms, where the con- a logarithmic divergence in the mean kinetic enefdg],
densed state wave functiaf satisfies the GPE which is proportional to (a(r))~ [5drr4(3-T2)/(1-r?)
252 o, =4/3+B(0*,3/2=4/3-In 0" with B(a,b) the beta function.

[=AZV5/(2M) + Veu(r) = .+ lvel 19 =0, @ For enough largé\, (the particle number in the conden-
whereEg is the energy of the condensate efmd(l/\f'i)(ég satg the repulsive interaction becomes important and the
+3,) is its “momentum” operatof14,15. The excitations condensate expands®y from a,,= (/Mo )2 whereay,
generated in the condensate occupy the various normal-modgethe characteristic oscillator length of the trapping potential,

eigenstates that satisfy the linear BAGE} and R, /ap,=(15\P)5>1 with P=Nya./a,, We called
R the caseP>1 (a large but finite product dfl; and the ratio
Lun(r) +gleglPon(r) = + equn(r), (2)  as/ano) the TF regime and the cage— o« the TF limit. In

the TF limit the chemical potential has a simple fopm
1 . .
- =>hw, (15AP)?. In usual TF approximation and for large
2 —_ SNw

Lun(r) + 8lalUn(r) = = eqvn(r), ) finite P, the boundary layer is at the location of finite
whereu,(r) andv,(r) are the eigenfunctions of the excita- =R, . The TF solution leads(r) as well as{%a(r)) to be
tions associated with the eigenvalues The operatorI: is  singular and hence the calculation for the interacting matrix
defined byIA_=—ﬁ2V2/(2M)+VeX1(r)—,u+29|</fG|2. The zero- elements to diverggB,12], as mentioned above. Note that for

' . low-lying excitations and a large particle number one can
energy(gq=0) modeuy andv fulfill the equations[14,15 have two limit processes, i.e2=(15\P)"#5—0 anda(r)

— oo (forr— 1). Thus one can consider the situation in which

R 5 ~ ~
Luo(r) + gltha|vo(r) = (al2)[ug(r) = vo(r)], @ the productzXo(r)) remains finite, relying on the exact ex-
A pression foriyg beyond the TF limit. It is this important

Lug(r) + glig/2ue(r) = (a/2)[ug(r) — ve(r)], (5) observation that provides us with the possibility to get

. ] . divergence-free analytical solutions of the BdGBEsand(7)
with the parameter yet to be determined. The eigenfunc- i, the TF regime.

tionsu, andv, constitute an orthonormal and complete set of
functions with the relations/d®r [u, (r)u, (1) =v,(Nvg(r)]

=y JAr[Un(Nvn (1) =Un (NoR()]=0, S Jun(r)uy(r) Il SOLUTIONS FOR A=1
—vp(Nop(r)]=8r=r’), and =_[un(Nv,(r") —vp(ru,(r’)] The explicit analytical solutions for Eqg8) and (7) can
=0. be obtained in three steps. The first and key step is to use a

For convenience we rewrite the BAdGEs in terms of suit-Fetter-like variational solution for the GP&) by introduc-
able rescaled variables. We leer/R, andV=R,V with  ing a single variation parametey, i.e., we takey;=Cg(1
R, =12u/M’ the characteristic condensate radius. By in-—r)@2@(1-r), where Cg is a normalization constant.
troducing an important parametée=fw, /2 and a func-  Note that the condensate radids is a parameter in the TF
tion a(r)=-[V2ys(r)]/ ¥is(r), which is proportional to the regime rather than a variational parameter as Fetter did in the

zero-point pressure, the GRR) for the ground state be- vv_hole regime OfN [13]. The energy minimum condition
comes |a(r)/ ¥e(0)2=1-1>-20(r) and the coupled givesq as a function ofP shown below in Eq(13) for A

: - =1. The asymptotic behavior is|~P?*—0 and R
BdGEs(2) and (3) are equivalent to the single fourth-order — 175 15 L
ordinary differential equations for the functiong.(r) ;r?g()[s‘tzs/is(t?)/ iétzgr?;]pa:aZetgr);; :g zZr_o)otjﬁthhuebsstﬁﬁ;e
=U.t i i i e
[8]Lfn_vn and the dimensionless eigenfrequengy= w,/w | o= (1+6)[3~(q+ 2)72]/ (1?2 in Egs.(6) and(7), i.e., we
' solve the leading-order approximation solutions of H@3.
_ 2 .
-V1 -, - (1 -P)oe, + (1/2) 2 and(7) by taking - as a small expansion parameter. We get
( o )¢ _( _)mp (112 the solutions of the form  ¢.(r)=C.(1
X[V4+3V20 + 0V2 + 30%]¢, = 2020, 6) -1 @FVATP(r2)Y, (0, ¢), where the radial functiorP(x)
with x=r? satisfies a hypergeometric differential equation

- (1-T)V2_ - (1-T)ae_+ (1/2) > 2X(1 -X)P"(x) +[2] + 3 - (2 + 5+ 29)x]P’(x)
X[V4+V2g+30V2+302]¢_= 2020 (7) + [(EE?I))Z =1 =1q]P(x) = 0. (8)

The general BAGE$6) and (7) are very difficult to solve The solutions of Eq(8) are classicah,th-order Jacobi poly-
analytically because they involve the high-order derivativenomials Pg"l’z‘q)(l—Zx), which form an orthonormal func-

V4 and the trapping potential. As pointed out[B] that, for  tion set in the interval &x=<1 with weight x*2(1-x)°.
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The normalization mtegratlon in the axial direction Ilfs,
= [Tdx®* V(1 -x)9P2 1. The eigenvalues of Eq8) are
given by (_‘0))2 ( D2+(2n,+1)g, where (w;)?=2n7
+2n,1+3n, +I is the result in the TF limit fom=(n,,l,m)

modes. Since the normalization coefficiefits have the re-
lation C,={w), 0)C_, from Eqgs.(6) and(7) we obtain the nor-

malized solutions by use of the conditig®r (U7 —vf ) =1:

pa(r) =[21(1, RO Zaff) (1 -2 @12
X Pnrl(Fz)Ynn(a, (p). (9)

Note that Eq(8) is similar to that in[5,7,8 but the solutions

¢.(r) are very different. The main difference is that there is

a weight factor(1-r?)% for q#0 in the TF regime and its
limit recovers the result obtained by using the TF liigié.,

for g—0). We stress that it is the use of the ground state
wave function given above, which vanishes smoothly when

T— 1, that makes not only*(c(r)) finite for 1<P <, but

also the eigenvalues and eigenfunctions of the BAGEs can be

obtained analytically.

The third step is to use a perturbation theory to calculate

the contribution from the terms proportional #6in Egs.(6)
and (7). Using the leading-order solutiop.(r) given above
we obtain the first-order correction of the eigenfrequency

—(O

a“r'"mnl. f dx>e+1’2P2(x){(1 X0+ (1-x)%

1-q -
+ 721 _X)q—z[@g(:l))z -3-2- 21—_2\«"x

+AX—— P (X)
P(x)
For the special modes of =0 andl =1, the above result is
simplified into

(10)

— Vi +1q
Y07 oB(1+3/2,g+ 1)

+2[(g-1-3)B(+3/2g-1)
-2(1-g)Bl+1,9-2)]}.

{B(1+3/2g+1)+B(1+3/2,9+1)

(11

Note that because of the existence of the weight fattor
-x)% the divergence in the integratiofl0) is eliminated
completely. This point can also be seen clearly from (&)

since wy=\1+const{2/q and 2/q~P 250 in the TF
limit. Although B(l,q) has singularity~1/q at q=0, the re-
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- 21 -y)W' +[(9+ 2q)y - 2(5+q) lyW + (5 +Q)[3 +q
- (6 +Q)YIW+ y*WI{% = aCgl (). (12)

We make the series expansidfy) =a,S,_,ay<, wherea, is
determined by the normalization conditigir (uj—v3)=1.
The single eigenvalue of Eq(l2) is found to be «
=—fiw, (9+4q- ) {/[27R3 CE31 AB(3/2 k+q+2)].

IV. SOLUTIONS FOR A#1

In a similar way we may solve the BAGES) and(7) for
the case of cylindrical symmetry, in which case we hate
=s?+\?Z2 with s=s/R, andz=z/R,. We use the trial wave
function for the ground statég=CgV\(1-r2) @20 (1-T)

and the variation parameteris chosen by minimizing the
energy, i.e.q satisfies the equation

2+\?
BY%(3/2,2 +q)(4\P)*®

X{%_l (;+;+2q)[¢<2+q>-¢(§+q)]}

SR e A
(712+qB@3/2.2+q) 5| eTV T

2
- { (7/2 +Q)B(3/2,2 +q) C} ’ 13

wherey(2) is the logarithmic derivative of the gamma func-
tion, C=B(1+q,7/2+q)/B(3/2,2+q)B(1+q,2+q) and C’

is the derivative with respect tq. Hereq~P2°—0, R,
~PY 0, and ?/q~P?>—0 at P—x. Note that the
condensate radiu’, andR;=R, /X have two parameters in
the TF regime rather than two variational parameters as Fet-
ter did in the whole regime oN [13]. The solutions of
Egs. (6) and (7) have the form ¢,(r)=C.(1
-12)@7DZgMp(s 7)eM¢, where the coupled axial and radial
function P(s, ) satisfies a two-dimensional differential equa-
tion

(92 J (92
{(1 —gz—kz?)[ﬁ +(1+ 2|m|)§7§+ (9—22:| -2(1+q)
i 250 —0) 2 _ _ _
X<Sas+)\ az>+2[( Wnngn)” = M) |mIQJ}P 0.
(14)

The solutions of Eq.(14) are given by P(Z”S)(z S)

—E”poz'm[k/z]b ~21g2n where the prlnC|paI quantum num-

bern, and the zero-order e|genvall(|ean N m)2 are the solu-
Z'S

sult for the eigenspectrum and wave functions is d|vergence>(Ions of a standard continued fraction equalidh The poly-

free.

We now consider the solutiam, andv of the zero-energy
mode for Eqs(4) and (5). We let ¢q.(r) =ug*v, and find
that ¢q_ is just g and ¢o. has the formeg, =y @92W(y),
wherey=1-r? andW(y) satisfies the equation

nomials P(2 S)tz s) form an orthonormal function set in the
interval 0<r= 1 with the weights™(1-r _z)q The normaliza-
tion integral reads Ipn;,= 2fosd731 ?’“dz_s’m(l -
—)\ziz)q[P(Z”S)(z S)]2. The normalized eigenfunctions are
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( éf_(o)

@u(r) = \/Tnznsm

+1/2

(1-8 = \72) 2P (5 Z)em.

(15)
The eigenvalues are determined by
_ C U=
L J sdsJ R gz
n,ngm 0
x{(l =T+ (1122 + (1 -T2
X|: —0) m)Z 2 - 7\2 2|m|
2 (s—_P(z_s)+z—_P(ﬁ)} (16)
P9
The zero-energy mode takes the formpy,=(1

—12)@2N\(7's), whereW(z,s) satisfies the equation

C
)\&_

_ (1 _72\2v2 _72 —i 2-1)
e { (1-r9)V-+2(5+g)(1 )<Sa§+)\ za?

+2(1-Q)2+ND(L -T2 + (¢~ 4q - 9)
X (@ + NP + ?(1 —W}w@. 17

lts special solution givesy=(2cou/CeVN{1+¢4(1-g)(2

PHYSICAL REVIEW A 69, 063608(2004)

+2\?) = (b, o+ 2b, 1)C,]}, Wherec, is the normalization coeffi-
cient, andc, is the second-order coefficient of thé(z,s)
expanded in terms d®*"(z,9).

p

V. CONCLUSION

We have proposed a method for finding analytical solu-
tions of the BAGEs for the low-lying collective excitations of
a harmonically trapped Bose-condensed gas beyond the TF
limit. The singularity at the boundary layer of the condensate
has been eliminated by introducing a self-consistent varia-
tional parameter for the ground wave function of the conden-
sate. We have solved the BAGEs analytically and obtained
their eigenfrequencies and corresponding eigenfunctions,
which are divergence-free and valid in all spatial regions.
These general results cover also those obtained in the TF
limit. In addition, we have also presented the solution of the
zero-energy mode of the BAGEs. Because the regionmear
=1 has been analytically treated, the formulas obtained in
this work allow us to calculate the interacting matrix ele-
ments of the collective excitations, which will be given else-
where.
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